
Streaming Data Reduction Using Low-Memory Factored

Representations

David Littau
littau@cs.umn.edu

Daniel Boley
boley@cs.umn.edu

Abstract

Many special purpose algorithms exist for extracting information from streaming
data. Constraints are imposed on the total memory and on the average processing time
per data item. These constraints are usually satisfied by deciding in advance the kind
of information one wishes to extract, and then extracting only the data relevant for
that goal. Here we propose a general data representation that can be computed using
only modest memory requirements with only limited processing power per data item,
and yet permits the application of an arbitrary data mining algorithm chosen and/or
adjusted after the data collection process has begun. The new representation allows
for the at-once analysis of a significantly larger number of data items than would be
possible using the original representation of the data. The method depends on a rapid
computation of a factored form of the original data set. The method is illustrated with
two real datasets, one with dense and one with sparse attribute values.

keywords: streaming data, data reduction, clustering, PDDP, matrix approximation

1 Introduction

As data sets have become larger and often unbounded, the concept of a data stream has
become a useful model in data mining applications. The data stream model is applicable to
data sets in which new data arrive constantly, such as network connection data, credit card
transaction data, etc. Such data are usually examined once and either archived or deleted.
The data stream model is also applicable to data sets which are so large that they cannot
fit into memory at once. If the data cannot fit into memory it becomes expensive to apply
data mining algorithms based on the static data model, since such algorithms usually scan
the data several times.

In the data stream model [13], data points can only be accessed in the order in which
they appear in the stream. Random access of data is not allowed. The amount of memory
available is severely limited, much less than what would be required to store all the data at
once. Working under these constraints, the goal of our streaming data mining method is to
extract as much useful information as possible from in the data in a reasonable amount of
time, while not fixing the task to be performed on the data in advance.

The usual approach in streaming data mining applications [1, 2, 8, 10, 12, 16, 15, 21] is
to first decide what data mining task is to be performed, and then tailor the processing to
gather the information necessary for the specific task. This is an efficient approach to mining
stream data. It allows the data to be collapsed into some very tiny, efficient representation
whose memory footprint is limited to some constant size. The drawback to this technique is
that if another task needs to be completed, it is often necessary to process the data again to
gather the information for the different task. This can become very expensive very quickly.

One way to maintain the flexibility with respect to the task is to apply some kind of
approximation technique. Representations of the data are constructed which are designed
to both reflect the most important qualities of the data while taking up less room than the
original data, such as in the summaries used in [24, 6]. Most representations of the data
assign many data points to one representative, which means that individual data points are
no longer distinguishable.

We present a pre-processing method for streaming data which does not require the data
mining task to be selected beforehand. The data are represented in the vector space model.
We create a low-memory factored representation (LMFR) of the data, such that each data
point has a unique representation in the factored form. We accumulate data from the stream
in the form of chunks we call sections. Once a given section of data has been processed it does
not need to be accessed again. The low-memory representation allows for the at-once mining
of a much larger piece of data than would be possible when using the original representation
of the data. Any tasks which require the data points to be distinct, such as searching for
outliers or identifying individual data samples satisfying some new query (not known in
advance), will function with the low-memory representation. If the desire is to perform a
series of tasks such that the subsequent tasks depend on the results of previous tasks, the
LMFR provides a general representation such that it would not be necessary to start over in
processing the data stream, as may be required using other streaming data mining methods.
Also, since the data in the low-memory representation remain ordered in the same manner
as they arrived from the stream, it is simple to keep track of any time dependencies which
are present. Note that while the LMFR allows for a representation of a significantly larger
amount of data to be present in memory at once, an LMFR of an infinite data stream cannot
be contained in memory.

This paper is organized as follows. First, we give a brief survey of previous techniques
used to construct approximations to the data which consume less memory. Next we give a
description of the method used to construct the LMFR, along with cost analysis as appropri-
ate. Then we show some experimental results using the LMFR in the context of a clustering
using the the Principal Direction Divisive Partitioning (PDDP) [5] clustering method. The
results indicate that the LMFR represents the data sufficiently to obtain a PDDP clustering
comparable to the PDDP clustering of the original representation of the data.

2 Background

There are many streaming data mining tasks which can be performed using the LMFR. The
works in [1, 8, 16] describe different tasks performed over a moving window. Using the LMFR
in place of the original representation of the data, the window could be much larger. Babu

2

and Widom [2] discussed processing continuous queries over the data stream, and noted that
if the input data stream contains updates, a large portion of the input stream may need to
be stored. To compress the data stream when storage is required, they suggest the use of
summaries which while compact, tend to lose information about the data ordering, as well as
making it impossible to distinguish the original data items. The LMFR provides a compact
representation of the data in which individual data items have a unique representation. The
problem of clustering data streams is addressed in [21]. Using the LMFR would allow for
more stream data to be exposed to the algorithm at a given time.

The LMFR proposed in this paper is intended to be used in general streaming data
mining applications. Since the LMFR is a low-memory approximation to the original data,
we now discuss several previous efforts to compute alternate representations of the dataset
that occupy less space.

One common method used to approximate data is to form summaries from the data. The
summaries used in [6, 24] record the number of data items, the vector sum of the data items,
and the vector sum of squares of the data items represented by the summary. Using this
information it is possible to obtain the centroid and the diagonal of the covariance matrix
of the data items represented by the summary. The summary is also easy to update. When
a new vector is introduced, it is folded in with the closest summary as long as it is within a
threshold distance of an existing summary. Otherwise the new vector can be used to create
a new summary, or if it appears to be an outlier, it can be eliminated from consideration.

Other summary construction methods are available, such as those using wavelets [7, 11],
histograms [17], or a combination of the two [20]. The point we wish to emphasis about
summaries is that they assign more than one data item to a given representative of the data.

While the various summaries are probably the most compact way to represent many data
items, they have a few drawbacks. Once a data item is folded into a summary, it is no longer
possible to distinguish that data item from any other data items. If the desire is to use the
summaries for clustering, the summaries represent the smallest partitioning of the data that
can be created. Also, the summaries lose a lot of information about the ordering of the data,
which means a data mining application which depends on ordering may not be able to use
the summaries in place of the original representation of the data. The use of summaries was
proposed for clustering, so the number of post-processing algorithms which could be applied
to summaries is limited.

When it is necessary to have a unique representation of each data item, factoring tech-
niques are often used. Two factoring methods which have been designed to save memory are
the Semi-discrete Decomposition (SDD) [18] and the sparse SVD method developed in [25].
Both of these methods require multiple passes over the data, but we mention them because
our factored representation can be used for subsequent data mining tasks in the same ways
as these methods can. Each method was designed to find an alternative factorization to
the Singular Value Decomposition (SVD) that occupies less memory than the SVD and can
take the place of the SVD when performing tasks such as Latent Semantic Indexing(LSI)
[3]. Both methods reduce the residual approximation error for each new pair of columns and
the corresponding diagonal entry added to the factorization which takes the form

Ak = XkDkY
T
k , (1)

3

though the exact terminology used in each work is different.
The SDD saves memory by limiting the row entries in Xk and Yk to being either 1, 0, or

-1. The method in [25] saves memory by restricting the number of nonzero entries in Xk and
Yk. Both methods can be as expensive to compute as the standard SVD, but depending on
the approach taken, the SDD can be less expensive than the SVD.

A third factored representation is the Concept Decomposition [9]. This decomposition
requires a clustering of the entire dataset. Each original data point is represented with a
least-squares approximation using the centroids from the clustering. Rather than using an
approach which reduces residual error, approximation accuracy is increased by computing
more clusters. The method was developed as a faster alternative to the SVD for performing
LSI. Our LMFR method was motivated in large part by the Concept Decomposition.

The LMFR method we present is less expensive to compute than the SVD, and it is
simple to update the LMFR to incorporate new data as it arrives. Each data item has a
unique representation in the LMFR, unlike the case when using summaries. In addition,
the LMFR is constructed in a manner such that the order in which the data arrived in
the stream is preserved, while the summaries lose most ordering information. Most data
mining algorithms should function when replacing the original representation of the data
with the LMFR. In its simplest form, the LMFR method can be thought of as a piecemeal
concept decomposition with a sparsification of the matrix of data loadings, glued together
to form a complete decomposition. To this basic algorithm, we add a modest amount of
additional processing to the individual matrix factors to keep the memory requirements as
low as possible.

3 Constructing the Low-Memory Factored Represen-

tation

In this section we describe how we construct the Low-Memory Factored Representation
(LMFR) of the data. The LMFR is constructed in an incremental fashion. We accumulate
the data as it arrives from the stream to form a section. We construct a LMFR of that section
of data, after which we can delete the data comprising the section from memory. The LMFR
of the section is then added to the global LMFR of all data seen previously. Since the global
LMFR contains a unique representation for every data point, it is possible to apply any data
mining algorithm to the LMFR that could have been applied to the original representation
of the data.

We use the vector space model when constructing the LMFR. In the vector space model,
each data item is defined as being a column vector of its attributes. One intuitive example
of the vector space model is the case in which a document is converted to vector form. Each
document i is represented by a column vector xi consisting of word counts or frequencies.
We collect all these columns vectors into a single n × m matrix X, where n is the number
of attributes and m is the number of documents. If word j appears in the i-th document l

times, then Xij = l (before it is scaled). For other kinds of data a given attribute is different.
For example, an attribute of astronomical data sample could be position, brightness, the red-
shift value, etc. The important point is that each attribute, be it a word or measurement,

4

has a unique row assigned to it in the column vector representing the data item, and that
each attribute has a numerical value. If the data are sparse, only nonzero entries need to be
stored.

This section proceeds as follows. First, since we use the PDDP clustering method during
the construction of the LMFR, we briefly describe PDDP. Then, we describe how to compute
the LMFR for one section of data, followed by a description on how to construct the global
LMFR reflecting all the data seen so far from the data stream. Finally, we describe various
techniques which can be used to reduce the size of the global LMFR after it has been
constructed.

3.1 PDDP

Principal Direction Divisive Partitioning (PDDP) [5] is a top-down hierarchical clustering
method for static data sets. PDDP builds a binary tree by recursively splitting clusters. The
process starts with the root node, which contains all the data being clustered. To start, the
root node is split into two child clusters. Then, the child cluster with the largest scatter (25)
is split next. The process continues until the desired number of clusters is produced, or an
automatic stopping criteria [4] is met.

A cluster is split using a hyperplane to define the two halves of the cluster, with all
data on one side of the hyperplane being in one cluster, and all data on the other side of
the hyperplane being in the other cluster. Ties are arbitrarily assigned to one side. The
hyperplane is defined as being normal to the leading principal component of the data in the
cluster, which is computed using a rank 1 singular value decomposition of the data in the
cluster. The hyperplane is anchored at the projection of the mean value of the data onto
the leading principal vector.

The PDDP clustering method is fast and scalable. While an in-depth complexity analysis
of PDDP is beyond the scope of this paper, it has been determined that the complexity of
PDDP is O(mn log(kf)), where m is the number of data items, n is the number of attributes
per data item, and kf is the number of clusters produced.

3.2 Factoring One Section of Data

We now describe how to construct a LMFR for one section of data. This construction only
depends on data in the section. We assume that the section of data is small enough to fit
into memory while allowing sufficient space for overhead computations.

Assume a given data item has n attributes. We accumulate m data items from the stream
to form a section. The parameter m is chosen arbitrarily depending on the memory available.
We use this section of data items to construct the n × m matrix A. Our goal to construct
an LMFR of A,

A ≈ CZ, (2)

where C is an n × kc matrix of representative vectors and Z is a kc × m matrix of data
loadings. Each column zi of Z approximates the corresponding column ai of A using a
linear combination of the vectors in C. A sparsity condition is enforced on Z to obtain the
memory savings.

5

The first step in computing this factored form of A is to obtain the matrix of represen-
tative vectors C. We accomplish this task by clustering the data in A. We partition A into
kc clusters and compute the kc centroids of the clusters. These centroids are collected into a
n × kc matrix C,

C = [c1 c2 . . . ckc
], (3)

where the ci are the centroids of the clusters. We use the PDDP [5] method to compute
the clustering of A and hence C because PDDP is fast, but in principle, any clustering
method could be used to obtain the components of C. For example, K-means could be used
instead, but we preferred PDDP because, unlike K-means, PDDP does not depend on how
the iteration is started [22]. Furthermore, if we use a clustering method that automatically
adapts the number of clusters to the data, such as the PDDP method with its automated
stopping test [4], we can gain an advantage for certain types of data streams. If many of the
data in a section are either similar or the same, an adaptable technique is likely to produce
fewer representative vectors, saving more memory than might occur when manually fixing
the value of kc. Once we have obtained the centroids, the PDDP tree is discarded, leaving
only the clusters.

The matrix of data loadings Z is computed one column at a time. In approximating
each column ai, we use only a small number (kz) of the representatives in C in order to
save memory. Therefore, each column zi in Z has only kz nonzero entries. For example, to
approximate ai, we choose the kz columns in C which are closest in Euclidean distance to
ai and implicitly collect them into an n × kz matrix Ci. Then the nonzero entries in the
column zi are obtained by solving for the kz-vector ẑi:

ẑi = arg min
z

||ai − Ciz||
2
2. (4)

If the kz vectors in Ci are linearly independent, we use the normal equations with the
Cholesky decomposition to solve the least-squares problem. If the normal equations fail, we
use the more expensive SVD to get the least-squares approximation of the data item. Even
though there has been no attempt to create orthogonal representative vectors, in the vast
majority of cases the normal equations were sufficient to solve the least-squares problem.
The high independence among the centroids C is consistent with the behavior observed in
[9]. The parameters used to compute the LMFR are summarized in Table 1.

parameter description

m total number of data items per section
n number of attributes per data item
γ fill fraction for the attributes
kc number of centroids per section
kz number of centroids approximating each data item

Table 1: Definition of the parameters used in the low-memory approximation. The fill
fraction γ is only appropriate for sparse data sets.

When kz = kc, this factorization of A is essentially identical to the Concept Decomposi-
tion [9]. We typically select a value for kz such that kz ≪ kc, which can result in significant

6

memory savings. Since the memory savings are dependent on Z being sparse, we also re-
quire the condition that kz ≪ n. Thus low-dimension data are not a good candidate for this
factorization technique from a memory-savings standpoint.

Also, note that the memory savings are dependent on the LMFR remaining in factored
form. If the product CZ were explicitly formed for all the columns in Z at once, the amount
of memory occupied would be at least as much as that occupied by the original representation
of the data. When factoring sparse data sets, the usual result is that C is denser than A,
which means that the explicit formation of the product CZ would take up more memory
than the original representation of the data.

The memory savings over the original representation of the data are significant, but there
is a limit to the number of data items which can be represented in the LMFR. Each data
item has a column associated with it in Z. That column in Z requires a finite amount of
memory to contain it. Therefore the LMFR cannot approximate the entire contents of an
infinite data stream. Instead, it allows for the unique in-memory representation of many
more data items than would be possible using the original representation of the data.

3.2.1 Cost of Computing CZ

The cost of computing CZ for one section of data A can be broken down into the cost of
computing each matrix separately. First we will discuss the cost of computing C. If we use
PDDP to obtain a clustering of A, then the cost of obtaining kc clusters is

CostC = mγn log2(kc), (5)

where the parameters are as defined in Table 1. We assume we can extract the cluster
centroids used to form C (3) at negligible cost, since the centroids are computed during the
PDDP clustering and are readily available. Therefore the cost of obtaining C is the cost of
obtaining the clustering of A.

We construct Z one column at a time. To obtain one column zi of Z, we must compute
the Euclidean distance from ai to every representative in C, find the kz representatives in C

closest to ai and collect them to form Ci, and finally compute the least-squares approximation
to ai using the representatives in Ci.

It requires n multiplications and subtractions to compute the Euclidean distance from
ai to a single representative in C. Since there are kc representatives in C, the total cost
of computing the distances for one data item ai is kcn. We assume that the number of
representatives kz used to approximate ai is very small compared to kc, so that it will
be less expensive to directly select the kz closest representatives, rather than sorting the
distances first. Therefore, it takes kzkc searches through the distances to find the kz closest
representatives. Once found, the representatives are used to form Ci.

The final step is to compute the least-squares approximation for the data item using the
kz representatives obtained in the previous step. Assume the normal equations are used to
obtain the least-squares approximation. The cost of computing a least-squares approximation
using the normal equations is:

CostLS = k2
zn +

1

3
k3

z , (6)

7

if we ignore the lower order O(k2
z) term. The total combined cost for obtaining zi for one

data item ai is

CostZ = kcn + kckz + k2
zn +

1

3
k3

z . (7)

The combined cost of producing the factored representation CZ of A is

CostCZ = m

(
n

(
γ log2 (kc) + kc + k2

z

)
+ kckz +

1

3
k3

z

)
. (8)

To obtain the cost per data item, we divide (8) by m, with the result being

AmortizedCostCZ = n
(
γ log2 (kc) + kc + k2

z

)
+ kckz +

1

3
k3

z . (9)

The memory occupied by each section of the LMFR we have just computed is

memory
CZ

= kcn + βkzm, (10)

where the first term is the space occupied by C assuming it is completely dense, and the
second term is the space occupied by Z. The constant β is associated with the overhead
required for each nonzero element present in sparse matrix storage. This last term is a
natural consequence of the fact that we are keeping a representation of each individual data
sample, but each data sample is represented by only kz parameters, and in our experiments
kz is typically a very small number like 3. Each new section will also have its own C factor,
but in the sequel we will discuss three possible ways to consolidate and/or reduce the space
occupied by all the collected C factors.

3.3 Constructing the Global LMFR

Now that we have a technique to compute the LMFR of one section of data, we need to apply
the technique to constructing the LMFR of the entire data stream seen so far. Suppose that
we have not seen any data from the stream, and that we accumulate the first section of data,
comprised of m data items, from the stream. Let this first section of data be defined by the
n × m matrix A(1). We can construct the LMFR of A(1),

A(1) ≈ C(1)Z(1), (11)

as shown in §3.2. At this point, we have a factored representation of the first section of data.
We can now delete that data from memory and accumulate a new section of data. Let us
call this new section of data A(2). We construct a low-memory representation of A(2),

A(2) ≈ C(2)Z(2), (12)

in the exact same manner as was done for A(1). We now have two separate LMFRs for the
two sections of data. We can construct a LMFR that comprises both sections of data,

C
(2)
G = [C(1) C(2)] and Z

(2)
G =

[
Z(1) 0

0 Z(2)

]
, (13)

8

where C
(2)
G and Z

(2)
G represent the global factorization of the two sections of data seen so far.

Because we use a sparse internal representation for ZG, only the nonzero entries within the
nonzero blocks must be stored.

This process continues as long as we have new data arriving. Each new section of data
is approximated and added to the LMFR which reflects all sections of data previously seen.
Therefore, if i− 1 sections of data have been added to the LMFR, and the ith new section of
data A(i) has just been approximated as C(i)Z(i), we can create the updated global LMFR
of the data, C

(i)
G Z

(i)
G ,

C
(i)
G =

[
C

(i−1)
G C(i)

]
and Z

(i)
G =

[
Z

(i−1)
G 0

0 Z(i)

]
. (14)

Note that each section of data would usually have the same size and use the same parameter
values (cf. Table 1) when constructing the LMFR, but this is not a requirement. The
algorithm is shown in Figure 1.

Algorithm LMFR.
0. Start with a set of n-dimensional streaming data. Set the values for kc and kz

(see Table 1), and p, the number of sections of streaming data that will be
approximated.

1. For i = 1, 2, . . . , p do

2. Accumulate the latest m points from the data stream and use them

to form the n × m matrix A(i).
3. Compute the PDDP tree for the matrix A(i) with kc clusters.
4. Assemble the kc centroids from the leaf clusters into an n × kc matrix C(i).
5. Compute the kc × m matrix Z(i) minimizing the quantity ‖Mj − CjZj‖F ,

subject to the constraint on the number of nonzero elements kz

in each column of Zj.
6. If i = 1,

set C
(i)
G = C(i) and Z

(i)
G = Z(i).

7. Else,

form C
(i)
G and Z

(i)
G as in (14) in the text.

8. Result: A low-memory representation of the first p sections of streaming data.

Figure 1: LMFR Algorithm.

We have already remarked (cf. equ. (10)) that the LMFR represents each input data
sample with kz parameters, where kz is a small number on the order of 3. Hence it is clear
that the LMFR’s memory requirements grows without bound as the input data is processed.
We can reduce the memory growth up to a point. First we note that since each data item
is represented by a very small set of parameters, we can manipulate at once a much larger
number of such data items using the factored representation than with the original data.
Second, we note that given that the data has been collected and grouped into sections, it
is easy to remove stale data from the LMFR by removing the corresponding sections, thus
adopting a sliding window approach. Third, we propose in §3.4 three methods for reducing

9

the memory requirements by consolidating the columns of CG. These methods can be used
to put a hard bound on the space occupied by the CG factor. The Z factor, however, as
mentioned previously, will always grow as new data are added to the factorization. The only
control over the size of Z is through the parameter kz (see Table 1), which must be greater
than 1 if a unique representation of each data item it to be maintained.

3.4 Reducing the Size of the Global LMFR

Like any approximating technique, the LMFR has limits. Each data item approximated by
the global LMFR has a unique column in ZG, and that column requires a fixed amount of
space in memory. Given a large enough data stream, it is possible that the global repre-
sentation CGZG would exceed the available memory space. Before reaching that point, some
method to reduce the size of CGZG would be required.

One way to reduce the memory footprint would be to eliminate some of the data points
from the LMFR. This can be accomplished by deleting the corresponding columns in ZG.
When an entire section of data points has been deleted, the corresponding columns of CG can
also be deleted. If all individual data points must be preserved at least approximately, the
only way to reduce the memory footprint of CG ZG is to re-compute CG, re-compute ZG, or
re-compute both matrices. Note, however, that once CG has been re-computed, all columns
in CG will be shared across all approximations in ZG, and stale data can only be removed by
deleting the corresponding columns in ZG.

The following methods reduce the memory requirements of the LMFR. The form of the
LMFR remains unaltered. The same memory savings could be achieved by starting over
with the original data stream while using more conservative LMFR parameter choices (see
Table 1). These methods provide an alternative.

3.4.1 Directly Re-computing CG and ZG

One solution to reducing the size of CG and ZG is to compute a new global LMFR using the
reconstructed data from the existing global LMFR. Assume we have already computed the
n × kc matrix CG and the kc × mG matrix ZG which has kz nonzero entries per column. We
wish to compute

ĈGẐG ≈ CGZG, (15)

where ĈG has dimension n× k̂c and ẐG has dimension k̂c ×mG with k̂c ≪ kc and k̂z nonzero
entries per column. Typically k̂z = kz, but this could be varied. We obtain ĈG from a
clustering of CG, as shown in §3.2. We compute each column in ẐG in the same manner as
in (4), except that in place of the original data item ai we use the re-constructed data item

ài = CGZGi, (16)

where ZGi is the ith column of ZG. Since we use the re-constructed data items when computing
ẐG, we do not have to access the original data again. However, if we have access to the data
and can afford the cost, it might be advantageous to use the original data to compute ẐG.
We also have the option of setting k̂z to a value less than kz, which can save a significant

10

amount of memory. Once we have completed the computation, the new ĈGẐG replaces the
old CGZG, which is discarded: we can make the assignments

CG ⇐= Ĉ and ZG ⇐= ẐG, (17)

We then continue to augment the revised LMFR as new data arrive as in (14).
Since we choose the parameters used to construct ĈGẐG, we also know how much memory

ĈGẐG will occupy, and therefore how much memory savings we will achieve by completing the
computations. The drawbacks are that the entire data set has to be reconstructed during the
process, and that we are building an entire new ZG from scratch. This can be very expensive
if there are many data items approximated by the global LMFR CGZG, as we expect would
be the usual case.

The additional costs of this method over those shown in (8) are the costs of reconstructing
the data. Since ZG is sparse and we only need to consider nonzero entries in a column,
reconstructing one column of data (16) requires nkz multiplications and additions. Assuming
a total of mG data items, the total cost of computing ĈẐG is

mG

(
n

(
γ log2

(
k̂c

)
+ k̂c + kz + k̂2

z

)
+ k̂ck̂z +

1

3
k̂3

z

)
. (18)

3.4.2 Approximating CG

If we are only interested in reducing the size of CG, we can save some computation time over
the method in §3.4.1. Assume as before that we have already computed the n × kc matrix
CG and the kc×mG matrix ZG which has kz nonzero entries per column. We wish to compute
a LMFR of CG alone,

C̃Z̃ ≈ CG, (19)

where C̃ has dimension n× k̃c, Z̃ has dimension k̃c ×mg with k̃z nonzeroes per column, and

k̃c ≪ kc. This LMFR of CG is computed in the usual manner as in §3.2.
Since we are only computing a new approximation of CG, we do not need to reconstruct

the data, which can save significant computation time. The resulting global LMFR becomes
a three-matrix factorization,

C̃Z̃ZG. (20)

Of course, this means that any data mining algorithm to use the LMFR as an input would
have to allow for factorizations consisting of more than two matrices.

The method could be generalized to handle multiple re-factorizations. For example, it
would be possible to factor C̃ as

C̃ =
˜̃
C

˜̃
Z, (21)

with the result being the global LMFR having the factorization

˜̃
C

˜̃
ZZ̃ZG. (22)

This process of re-factorization could continue indefinitely. Carrying around these cascading
re-factorizations would add a bit of complication and expense. It would still be possible

11

to update CG and ZG in a manner analogous to (14) when new sections of data arrive, but
with the additional complication of more than two factors. In principle, one could explicitly
coalesce the factors:

Z̀G = Z̃ZG, (23)

leading to the the following update for the global LMFR,

CG ⇐= C̃ and ZG ⇐= Z̀G. (24)

However, it is possible (indeed likely) that Z̀G will be denser than ZG, depending on the
choice of k̃z. This results in losing some of the memory savings inherent in factoring CG.
The density of the resulting ZG will increase each time (19, 20, 23, 24) are computed, more
so for the columns in ZG which existed the first time this technique was applied.

3.4.3 Hybrid Approximation of CGZG

We have presented two different methods for decreasing the memory footprint of CGZG as
constructed in §3.3. The first method, recomputing both CG and ZG, will be expensive due
to both the cost of reconstructing the data and the costs associated with computing a new
least-squares approximation to each data item. The second method, computing a LMFR of
CG, will have some issues with memory growth.

To balance the two, we suggest a third hybrid method in which the relatively inexpensive
second method (computing an LMFR of CG) is applied until the memory footprint of the
LMFR grows too large. At that point, the more expensive first method of recomputing both
CG and ZG is used to reduce the sparsity of ZG to the desired level.

This approach will be especially effective in cases where a large number of representatives
are used when computing the LMFR of the latest section of data, and when there are
already a large number of data points approximated in the LMFR. The relatively inexpensive
computation of the LMFR of CG would help to offset the likely inevitable need to compute
a new ZG from scratch.

4 Experimental Results

In this section we illustrate the method on two different data mining applications, one involv-
ing dense data and one involving sparse data. For the experiments, we chose to use clustering
to validate the effectiveness of the LMFR for data mining. Specifically, we demonstrate that
the performance of the clustering method PDDP [5] is not significantly hindered by replacing
the original representation of the data by the LMFR of the data with respect to the quality
of the clusters.

Clustering is just one possible application of the LMFR to streaming data mining, and
is not intended as the sole application. If clustering is the sole goal, a streaming method
which is specifically designed for clustering (e.g. [21]) would be faster since it avoids the
pre-processing involved in constructing the LMFR. However, the LMFR can be used in the
general case, not just for clustering, while the results of a pre-processing for a clustering-
specific method will most likely not be usable for other data mining tasks.

12

4.0.4 Performance Measures

We used scatter and entropy to measure clustering performance. The scatter is a measure
of the cohesiveness of the data items in a cluster with respect to the centroid of the cluster.
The scatter sC of a cluster MC is defined as:

sC
def

=
∑

j∈C

(xj − wC)
2 = ‖MC − wCe

T‖2
F , (25)

where wC is the centroid, e is the m-dimensional vector [1 1 . . . 1]T and ‖·‖F is the Frobenius
norm. We used the normalized sum of the scatters across all clusters. Scatter is a relative
performance measure, so it is usually appropriate only when comparing clusterings with the
same number of clusters.

The entropy measures the coherence of a cluster with respect to how a cluster is labeled.
An entropy calculation assumes that the labeling is perfect. The entropy of cluster j is
defined by:

ej
def

= −
∑

i

(
c(i, j)

∑
i c(i, j)

)
· log

(
c(i, j)

∑
i c(i, j)

)
, (26)

where c(i, j) is the number of times label i occurs in cluster j. If all of the labels of the
items in a given cluster are the same, then the entropy of that cluster is zero. Otherwise,
the entropy is positive. The total entropy for a given clustering is the weighted average of
the cluster entropies:

etotal
def

=
1

m

∑

i

ei · ki. (27)

The lower the entropy, the better the quality. As with the scatter, entropy is a relative
performance measure.

4.0.5 Implementation Details

The algorithms were implemented in MATLAB, and the experiments were performed on a
custom-built PC. The PC had an AMD 2200+ CPU, 1GB of memory, and 1.5GB of swap
space. The operating system used was Linux, Redhat 9.0.

4.1 Data Sets

We used two data sets, one dense and one sparse, to evaluate the method to obtain a LMFR
of streaming data. The dense data set was the intrusion detection data used in the KDD
Cup 1999 competition. This data set was obtained from the UCI:KDD machine learning
repository [14]. The point of the competition was to build a classifier that could determine
the difference between a normal network connection and a network connection associated
with an attack. We combined the test and training data into one large data set. A datum
consists of attributes associated with computer network connections, such as the protocol
used to make the connection (tcp, udp, icmp) the service type requested (ftp, http, etc.), the
number of password failures, the number of root accesses, etc. The data set consists of both
continuous and categorical attributes. The categorical attributes were converted to binary

13

attributes in order to conform to the vector space model. Each attribute was scaled to have
mean 0 and variance 1

m
. Finally, the data were randomly divided into 25 equal-sized sets.

The KDD data set is summarized in Table 2.

dataset KDD

number of samples m 4898431

number of attributes n 122

number of connection types 23

connection type number of appearances

normal 972781

smurf 2807886

neptune 1072017

satan 15892

ipsweep 12481

portsweep 10413

remaining 17 6961

Table 2: Summary of the DD Intrusion Detection data. All connection types other than
“normal” are attacks of some kind. The data set was obtained from the UCI:KDD machine
learning repository [14].

The sparse data set was the document data set provided by the Reuters News Service
[23]. It consists of roughly 810000 news items dated from 1996-08-20 to 1997-08-19. After
removing the stop words and applying Porter’s stemming algorithm, removing documents
with less than 10 words in them, and removing words that appeared in only one news
document, the data set was reduced to 802935 items composed from a possible 185953 words
in the dictionary. The dictionary contained a large number of misspelled words and other
non-words, but was used “as is” anyway. Since Reuters usually assigned many different topic
labels to each document, there were 14897 distinct combinations of topics. We treated each
combination as a distinct topic. Finally, the data were then scaled so each document vector
had unit length. The data were then randomly divided into 8 equal-sized sets. The Reuters
data set is summarized in Table 3.

dataset Reuters

number of samples m 802935

number of attributes n 185953

number of categories 14897

Table 3: Summary of the Reuters News Service data set. The number of items m and
the number of words in the dictionary n are the post-processing values. The data set was
obtained directly from the Reuters News Service [23].

14

4.2 Effectiveness of the LMFR

First we evaluate the effectiveness of the standard LMFR algorithm (see Figure 1) in the
context of a clustering operation. Each set of original data was further subdivided into 5
sections of the same size. This meant that only a relatively small number of data points
were exposed to the LMFR algorithm at any given time, which should highlight any side
effects of the LMFR method. We compared the results of a PDDP clustering of the original
representation of the data M with a PDDP clustering of the low-memory representation of
the data CGZG. We call the combination of a PDDP clustering of the LMFR CGZG Piecemeal
PDDP (PMPDDP) [19]. Both clusterings were taken to the same number of final clusters
kf .

The parameters and results for the KDD data set are shown in Table 4, and the time
taken to produce the LMFR CGZG is further illustrated in Figure 2(a). There are no re-
sults for PDDP for m > 979685 because the data occupied too much memory to allow for
computational overhead. The clustering quality from PMPDDP is comparable to PDDP in
both the scatter and entropy performance measures, which indicates the the LMFR reflects
the data sufficiently for a PDDP clustering of the KDD data set. The costs are higher for
PMPDDP, with the majority of the time is spent computing the LMFR of the data. Once
the LMFR is available, clusterings with a differing number of final clusters can be computed
relatively inexpensively.

For example, in Table 4 for m = 979685, quality as measured by entropy was actually
better for PMPDDP (.114) than for PDDP (.120). The time to compute the LMFR was rel-
atively high (1108.56 secs), but required substantially less memory than PDDP (48.75MB vs
956MB). Once the LMFR was computed, the final clustering for PMPDDP could be carried
out very fast (only 89.62 secs vs 282.44 for PDDP). This is because the PDDP clustering
method used in this final step works directly on the factored representation, whereas any
other method needing the distances between data items would require the explicit recon-
struction of the individual data items. The timing results for the different sizes indicate that
the cost of PDDP is linear in the number of data items, as expected [5]. As a consequence,
the average time per data item is a constant, as shown in Figure 2(a).

The memory savings from the LMFR are significant. The entire KDD intrusion detection
data set in its original representation would occupy over 4 GB of memory, beyond the limits
of most desktop workstations. The LMFR of the entire KDD data set only requires about 200
MB of memory for the parameters selected, leaving plenty of memory space for computational
overhead on a standard workstation.

The parameters and results for the Reuters data set are shown in Table 5, and the time
to compute CGZG is further illustrated in 2(b). There was just enough room to contain
the entire data set in memory on a 1GB machine, although some paging did occur during
the computations. The results indicate that the clusterings generated by PMPDDP are
comparable to PDDP clusterings, which means that using the LMFR in place of the original
representation of the data does not significantly hinder the clustering performance of PDDP.
Again, we see that the costs of constructing the LMFR and clustering the LMFR are linear in
the number of data items, though the costs themselves are much higher than when clustering
with PDDP. However, a similar sparse data set which could not fit into memory would not be

15

dataset KDD

m 195937 391874 587811 783748 979685 4898431

of sections 5 10 15 20 25 125

kc per section 392 392 392 392 392 392

kz 3 3 3 3 3 3

kf 36 36 36 36 36 36

Scatter Values, lower is better

PDDP 3.179e-04 3.279e-04 3.276e-04 3.290e-04 3.288e-04 won’t fit

PMPDDP 3.257e-04 3.236e-04 3.271e-04 3.250e-04 3.275e-04 N.A.

Entropy Values, lower is better

PDDP .127 .130 .129 .124 .120 won’t fit

PMPDDP .0590 .0585 .0546 .120 .114 .113

Time taken by experiments, in seconds, on XP 2200+

PDDP 39.72 89.68 140.45 204.87 282.44 won’t fit

Compute CGZG 216.66 450.41 674.49 872.15 1108.56 5652.59

Cluster CGZG 15.63 32.71 52.67 69.07 89.62 492.81

PMPDDP totals 232.29 483.12 727.16 941.22 1198.18 6145.40

Memory occupied by representation, in MB

M 191.20 382.40 573.60 764.90 956.20 4780

CGZG 8.24 16.48 24.72 39.00 48.75 206

Table 4: KDD data parameters and results. The clustering performance of PDDP is not
significantly hindered by replacing the original representation of the data with the LMFR.
The time taken to produce the LMFR appears to be linear in the number of data items.
The times for clustering the LMFR CGZG are similar to those for clustering the original
representation of the data M. The memory used by CGZG vs. M was less by a factor of 23.
This allowed the clustering of almost 5 million data points, which would normally occupy
4.78 GB of memory. The scatter values for PMPDDP on the entire data set could not be
computed since the data couldn’t fit into memory to make the computation. See Table 1 for
an explanation of the parameter names.

able to be mined with any static data technique such as PDDP. The LMFR method allows
for a much larger data set to be mined than would otherwise be possible.

Overall, we wish to point out that the LMFR saves a significant amount of memory over
the original representation of the data. As a result, the LMFR creates an approximation to
the data which allows for general data mining tasks, such as clustering, to be performed on
a much larger piece of the data than would otherwise be possible.

4.3 Evaluation of the Memory Reduction Methods

Next we show some experimental results for the methods we can use to reduce the memory
footprint of CGZG as described in §3.4.1, 3.4.2, and 3.4.3. To demonstrate the relative

16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

number of data items

tim
e

pe
r

da
ta

 it
em

 to
 c

om
pu

te
 C

G
 Z

G
 in

 s
ec

on
ds

Time per data item to compute C
G

 Z
G

KDD

0 1 2 3 4 5 6 7 8 9

x 10
5

0

0.05

0.1

number of data items

tim
e

pe
r

da
ta

 it
em

 to
 c

om
pu

te
 C

G
 Z

G
 in

 s
ec

on
ds

Time per data item to compute C
G

 Z
G

Reuters

(a) (b)

Figure 2: Time taken to produce the LMFR CGZG for the KDD (a) and Reuters (b) data
sets. The results indicate that the cost of producing CGZG is linear in the number of data
items for both dense and sparse data.

effectiveness of the methods, we changed the approach to the way the LMFR was constructed.
We modeled an extreme situation in which CG was re-computed each time we added a new

section to the global LMFR. We held the number of columns kc in CG to a constant number,
equal to the total number of columns present after the global LMFR was computed for the
entire data sets as in §4.2. This extreme situation was designed to highlight the various issues
involved in re-computing CG, and is not representative of a typical LMFR construction which
was shown in §3.3. In practice, we would expect to re-compute CG infrequently.

We proceeded in the following manner. We approximated the first section of data directly,
such that all kc columns in CG were associated with the first section. Then, to make room
to incorporate next section of data, we computed a new CG with half the original number of
columns, kc

2
, using either the method from §3.4.1 or the method from §3.4.2. We updated

ZG as appropriate for the given method. Then the new section of data was loaded and a
LMFR of that section was computed as in §3.2, again using a value of kc

2
for the number

of columns in C. When the global LMFR was updated to reflect the latest section of data,
as in (14), the result was that CG had kc columns. This process of reducing the number of
columns in CG by one-half and then adding the LMFR for the new section of data continued
until the stream was exhausted. At that point, a PDDP clustering of the global LMFR was
computed to determine whether the resulting LMFR was acceptable for general data mining
computations.

To evaluate the hybrid method outlined in §3.4.3, we applied the following technique.
Every fourth update of the global LMFR triggered the re-computation of both CG and ZG,
as presented in §3.4.1. Otherwise, we computed the LMFR of CG and updated ZG as in
§3.4.2.

These methods can be contrasted with the method outlined in §3.3 and experimentally

17

dataset Reuters

m 100299 200598 300897 401196 501495 601794 702093 802395

of sections 5 10 15 20 25 30 35 40

kc per section 201 201 201 201 201 201 201 201

kz 3 3 3 3 3 3 3 3

kf 320 320 320 320 320 320 320 320

Scatter Values, lower is better

PDDP .7681 .7708 .7722 .7743 .7766 .7771 .7791 .7791

PMPDDP .7707 .7759 .7776 .7804 .7813 .7821 .7833 .7832

Entropy Values, lower is better

PDDP 2.406 2.544 2.615 2.676 2.729 2.779 2.822 2.843

PMPDDP 2.446 2.580 2.654 2.705 2.763 2.813 2.863 2.877

Time taken by experiments, in seconds, on an XP 2200+

PDDP 630 1121 1555 1975.9 2501 2968 3435 3886

Compute CGZG 3547 7095 10637 14204 17907 21478 25062 28446

Cluster CGZG 7044 14238 22096 29948 37835 46168 54109 62636

PMPDDP totals 10592 21333 32733 44151 55742 67645 79172 91081

Memory occupied by representation, in MB

M 92.75 185.9 279.5 373.7 468.1 562.9 658.2 753.1

CGZG 33.63 67.40 102.9 135.5 169.7 204.1 238.8 273.1

Table 5: Reuters data parameters and results. As with the KDD data set, PDDP clustering
quality using the LMFR CGZG is similar to the quality when using the original representation
of the data M. The cost of producing the LMFR again appears to be linear in the number of
data items. One difference is that the cost of clustering the LMFR is an order of magnitude
greater when using the LMFR CGZG in place of M. This is due to the fact that CG is much
denser than M, so that more multiplications take place in the PDDP method using the
LMFR.

evaluated in §4.2. In §3.3, the global LMFR was computed without the intermediate step
of re-computing CG and ZG, and CG was allowed to gradually increase in size rather than
being held to a comparatively large constant number of columns after each section of data
is added. However, barring the intermediate step of the re-computation of CG and ZG before
adding a new section to the global LMFR, the methods outlined directly above are identical
the algorithm presented in §3.3.

4.3.1 KDD Results

The results for the time taken to compute CGZG and the memory occupied by CGZG for the
KDD data are shown in Figure 3. The value of kc was set to 25000, and kz was set to 3.
Note that this value of kc is much greater than that used in previous experiments. MATLAB
was not able to continue computations using the method from §3.4.2 past the addition of

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

0.02

0.04

0.06

0.08

0.1

0.12

number of data items

tim
e

pe
r

da
ta

 it
em

 to
 c

om
pu

te
 C

G
 Z

G
 in

 s
ec

on
ds

Time Taken per data item for 3 Update Methods for the KDD data

rebuild CZ
factor C
hybrid

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
6

0

100

200

300

400

500

600

number of data items

m
em

or
y

oc
cu

pi
ed

 b
y

C
G

 Z
G

, i
n

M
B

Memory used for 3 Update Methods for the KDD data

rebuild CZ
factor C
hybrid

(a) (b)

Figure 3: Time taken to produce CGZG (a) and memory occupied by CGZG (b) for the KDD
data set for the three memory reduction methods, rebuild CZ (§3.4.1), factor C (§3.4.2),
and hybrid (§3.4.3). Computing the LMFR of CG was the least expensive computationally,
and most expensive from a memory standpoint. Re-computing a new CGZG whenever a
new section of data was added saved memory but was very expensive computationally. The
hybrid method was effective at recovering the extra memory when computing an LMFR of
CG while being much less expensive than re-computing a new ZG each time a new section of
data was to be incorporated in the global LMFR.

the eleventh section due to memory constraints. As expected, computing the LMFR of CG

before a new section was added to the global LMFR was considerably less expensive than
re-computing ZG each time, but it required much more memory to contain, especially as the
number of columns in ZG increased. Figure 3b shows a slow linear growth in the memory
required by the “rebuild” method, almost entirely due to the added columns in the ZG matrix
corresponding to the new data. The “sawtooth” effect in the memory growth for the hybrid
method reflects the drop in memory requirement each time the factorization is regenerated
using the method of (§3.4.1). It is seen that the amount of memory used returned to the
desired level each time that regeneration process was applied.

The clustering results for the KDD data are shown in Table 6. The clustering quality for
the various techniques is comparable, which seems to indicate that the LMFR produced by
the various methods are all effective replacements for the original data.

The memory reduction methods appear to function correctly for the KDD data set.
However, from the results it is apparent that the methods should be used sparingly, since
they can be expensive to use.

4.3.2 Reuters Results

The results for the time taken to compute CGZG and the memory occupied by CGZG for the
Reuters data are shown in Figure 4. The value of kc was set to 8080, and kz was set to 3.

19

dataset KDD

method scatter entropy CGZG time (s) clust time (s) memory (MB)

standard (§3.3) 3.322e-04 .114 5988 381.82 220.3

rebuild CGZG (§3.4.1) 3.347e-04 .123 507959 357.62 220.3

hybrid (§3.4.3) 3.338e-04 .123 166661 442 315.8

Table 6: Memory reduction methods results for the KDD data set. The performance for
two of the three different methods are shown for the entire data set. The values from a
PDDP clustering of the global LMFR as produced by the standard algorithm from Figure 1
are shown for comparison purposes. All scatter values shown are computed with respect to
CGZG, not with respect to the original representation of the data. The clustering quality for
the various memory reduction methods is comparable.

Computing an LMFR of CG was again the most efficient computationally but used the most
memory of the three methods. Computing an entirely new CGZG was very expensive but
resulted in a sub-linear increase in the amount of memory used. This is caused by the fact
that CG is getting denser as more data is added, so that the effect on the memory use when
adding the LMFR for the latest section of data (14) is less severe. The “sawtooth” memory
profile seen in Figure 3b is much more hidden in Figure 4b because the CG factor occupies
a significant amount of space, and tends to lose sparsity each time it is regenerated by the
method of §3.4.2.

The clustering results for the Reuters data are shown in Table 7. The memory reduction
methods have better performance in both scatter and entropy than the standard method.
This is probably due to better representative vectors which comprise CG being computed.
With the standard method, a given section of data had only 201 representatives available
to construct the LMFR of the section. With the updating methods, a given section of
data used 4020 representatives to construct the LMFR. Since so many representatives were
available when computing the least-squares approximation, it makes sense that the overall
approximation would improve. The improvement in the quality of the LMFR resulted in
superior clustering performance. The additional representatives present are also the cause
of the increased cost, since not only does it take longer to produce more representatives, it
also takes longer to compute all the distances and complete the searches and least-squares
computations required to construct ZG.

As with the KDD data, the results indicate that the memory reduction methods should be
used infrequently. We suggest that they be applied sparingly and in a manner to significantly
reduce the memory occupied by the global LMFR CGZG, such that the memory recovered
will offset the cost of the computations.

5 Summary

We have presented a method for constructing a low-memory representation of streaming data.
The low-memory factored representation approximates each original data item uniquely. The

20

1 2 3 4 5 6 7 8 9

x 10
5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of data items

tim
e

pe
r

da
ta

 it
em

 to
 c

om
pu

te
 C

G
 Z

G
 in

 s
ec

on
ds

Time Taken per data item for 3 Update Methods for the Reuters data

rebuild CZ
factor C
hybrid

1 2 3 4 5 6 7 8 9

x 10
5

50

100

150

200

250

300

350

400

450

500

550

number of data items

m
em

or
y

oc
cu

pi
ed

 b
y

C
G

 Z
G

, i
n

M
B

Memory used for 3 Update Methods for the Reuters data

rebuild CZ
factor C
hybrid

(a) (b)

Figure 4: Total time taken to produce CGZG (a) and memory occupied by CGZG (b) for the
Reuters data set for the three memory reduction methods, rebuild CZ (§3.4.1), factor C

(§3.4.2), and hybrid (§3.4.3). As with the KDD data, the time taken by recomputing a new
CGZG each time a section of data is to be added is significantly greater than computing an
LMFR of CG, but used less memory. The hybrid method was between the other two from
both a memory and cost standpoint.

dataset Reuters

method scatter entropy CGZG time (s) clust time (s) memory (MB)

standard (§3.3) .7832 2.877 28446 62636 273.1

rebuild CGZG (§3.4.1) .7651 2.744 332124 32536 191.9

factor CG (§3.4.2) .7668 2.738 59944 45702 519.1

hybrid (§3.4.3) .7651 2.736 215436 33134 191.5

Table 7: Memory reduction methods results for the Reuters data set. The performance for
the three different updating schemes are shown for the entire data set. The values from a
PDDP clustering of the LMFR as produced by the standard algorithm from Figure 1 are
shown for comparison purposes.

ordering of the data is preserved. This low-memory representation can take the place of the
original representation of the data in most data mining techniques. Replacing the original
representation of the data with the low-memory representation allows for more data to be
exposed at once to stream mining methods. It can also be used to mine data sets which
would otherwise be too large to fit into memory. The representation is very well suited to
windowing techniques, since expiring old data items from the representation is trivial.

The LMFR should also be useful in the case in which subsequent data mining tasks are
performed based on the results of previous tasks. For this type of problem to be solved by a
standard streaming data method, it may be necessary to re-scan the entire original data set

21

in order to get the necessary information to solve subsequent tasks. The LMFR, however,
maintains a compact, general representation of the original data, so the information can be
extracted from the LMFR instead of re-scanning the original data set.

We demonstrated that the low-memory factored representation functions well in the
context of clustering using PDDP. The quality of the clusterings of both the original repre-
sentation and low-memory representation of the data were similar, which indicated that the
LMFR captured the information necessary for a good clustering for the data sets examined.
We expect that the LMFR can be used for many data mining tasks other than clustering,
and is applicable when the data mining tasks would otherwise require multiple scans of the
data to perform each desired task.

6 Acknowledgments

This work was partially supported by NSF grant IIS-0208621.

References

[1] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over stream-
ing data. In Proceedings of Thirteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 633–634, 2002.

[2] S. Babu and J. Widom. Continuous queries over data streams. ACM Sigmoid Record,
30(3):109–120, 2001.

[3] M. W. Berry, S. T. Dumais, and Gavin W. O’Brien. Using linear algebra for intelligent
information retrieval. SIAM Review, 37:573–595, 1995.

[4] D. Boley. A scalable hierarchical algorithm for unsupervised clustering. In R. Grossman,
C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors, Data Mining for

Scientific and Engineering Applications, pages 383–400, 2001. Kluwer.

[5] D.L. Boley. Principal Direction Divisive Partitioning. Data Mining and Knowledge

Discovery, 2:325–344, 1998.

[6] P. S. Bradley, Usama M. Fayyad, and Cory Reina. Scaling clustering algorithms to large
databases. In Knowledge Discovery and Data Mining, pages 9–15, 1998.

[7] K. Chakrabarit, M. N. Garofalakis, R. Rastogi, and K. Shim. Approximate query
processing using wavelets. In Proceedings of hte 2000 International Conference on Very

Large Dat Bases, pages 111–122, 2000.

[8] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over slid-
ing windows. In Proceedings of Thirteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 635–644, 2002.

22

[9] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using
clustering. Machine Learning, 42(1):143–175, 2001.

[10] P. Domingos and G. Hulten. Mining high-speed data streams. In Knowledge Discovery

and Data Mining, pages 71–80, 2000.

[11] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on
streams: one-pass summaries for approximate aggregate queries. In Proceedings of the

2001 International Conference on Very Large Data Bases, 2001.

[12] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering
data streams. In IEEE Symposium on Foundations of Computer Science, pages 359–
366, 2000.

[13] M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. Technical
Report 1998-011, Digital Systems Research Center, Palo Alto, CA, 1998.

[14] S. Hettich and S. D. Bay. The UCI KDD archive, 1999. kdd.ics.uci.edu/.

[15] G. Hulten and P. Domingos. Mining complex models from arbitrarily large databases
in constant time. In Proceedings of the Eighth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 525–531, 2002.

[16] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In Proc.

of the Seventh ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
pages 97–106, San Francisco, CA, 2001. ACM Press.

[17] Y. E. Ioannidis and V. Poosala. Histogram-based approximation of set-valued query-
answers. In Proceedings of the 1999 International conference on Very Large Data Bases,
pages 174–185, 1999.

[18] Tamara G. Kolda and Dianne P. O.’Leary. A semidiscrete matrix decomposition for
latent semantic indexing in information retrieval. ACM Trans. Information Systems,
16:322–346, 1998.

[19] D. Littau and D. Boley. Using low-memory representations to cluster very large data
sets. In D. Barbará and C. Kamath, editors, Proceedings of the Third SIAM Interna-

tional Conference on Data Mining, pages 341–345, 2003.

[20] Y. Matias, J. S. Vitter, and M. Wang. Dynamic maintenance of wavelet-based his-
tograms. In Proceedings of the 2000 International Conference on Very Large Data

Bases, pages 101–110, 2000.

[21] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data
algorithms for high-quality clustering. In Proceedings of 18th International Conference

on Data Engineering, pages 685–696. IEEE Computer Society, 2002.

23

[22] S. M. Savaresi and D. L. Boley. Bisecting k-means and PDDP: a comparative analysis.
Technical Report 00-048, University of Minnesota Department of Computer Science,
Minneapolis, MN, 2000.

[23] Reuters News Service. Reuters corpus, volume 1, english language, 1996-08-20 to 1997-
08-19. http://about.reuters.com/researchandstandards/corpus/available.asp,
2000.

[24] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: A new data clustering
algorithm and its applications. Data Mining and Knowledge Discovery, 1(2):141–182,
1997.

[25] Z. Zhang, H. Zha, and H. Simon. Low-rank approximations with sparse factors I: Basic
algorithms and error analysis. SIAM J. Matrix Anal., 23:706–727, 2002.

24

