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Abstract

While Bregman divergences have been used for cluster-
ing and embedding problems in recent years, the facts
that they are asymmetric and do not satisfy triangle in-
equality have been a major concern. In this paper, we
investigate the relationship between two families of sym-
metrized Bregman divergences and metrics that satisfy
the triangle inequality. The first family can be derived
from any well-behaved convex function. The second
family generalizes the Jensen-Shannon divergence, and
can only be derived from convex functions with certain
conditional positive definiteness structure. We interpret
the required structure in terms of cumulants of infinitely
divisible distributions, and related results in harmonic
analysis. We investigate kmeans-type clustering prob-
lems using both families of symmetrized divergences,
and give efficient algorithms for the same.

1 Introduction

Recent years have seen interest in going beyond Eu-
clidean distances for a variety of data mining problems.
One important development is to use Bregman diver-
gences [6, 2]. Bregman divergences are a general class
of distortion functions, which include squared Euclidean
distance, KL-divergence, Itakura-Saito distance, etc., as
special cases. Indeed, such a divergence can be gener-
ated from any (differentiable) convex function.

As examined by Banerjee et al., [2] Bregman diver-
gences may be considered a generalization of squared
Euclidean distance because of many shared properties.
A crucial property that is not shared is that, the square
root of a Bregman divergence is not necessarily a a met-
ric. In particular, Bregman divergences are not sym-
metric, and do not satisfy the triangle inequality. As
a result, data-structures and algorithms [15] that ex-
ploit these properties for scalability lay beyond reach of
methods that use Bregman divergences [7]. There have
been recent notable attempts to investigate symmetry
[23], however, they do not satisfy triangle inequality. In
this paper, we investigate two families of symmetrized
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Bregman divergences that do.
The first family of symmetrizations investigated,

called Generalized Symmetrized Bregman (GSB) diver-
gence, can be derived from any well behaved convex
function. We present necessary and sufficient conditions
under which a GSB divergence is the square of a metric.
Further, we show that they can be isometrically embed-
ded in a finite dimensional Euclidean space. The second
family, called Jensen-Bregman (JB) divergences, gener-
alizes the Jensen-Shannon divergence [9]. The second
family is obtained by direct symmetrization of Breg-
man divergences obtained from a special class of convex
functions. In particular, we show that JB divergences
are squares of a metric only when the associated convex
functions are conditionally positive definite (CPD).

We relate CPD functions with cumulants of in-
finitely divisible distributions, and related results in har-
monic analysis [5, 4, 19]. In the process, we develop
a powerful and flexible method for constructing met-
rics from convex functions. This technique proves met-
ric properties of some well known divergences. Chen
et al., [10] study the same symmetrization and identify
necessary and sufficient conditions for triangle inequal-
ity, but for univariate convex functions. In compari-
son, our work generalizes to multivariate convex func-
tions, explains the connection with CPD functions and
infinitely divisible measures, shows how the divergence
may be embedded in a Hilbert space, provides recipes
for creating such functions, and develops algorithms in-
timately tied with the properties of these divergences.

Both families of divergences considered in this paper
lead to Hilbert space embeddable metrics and permit
development of efficient algorithms for clustering and
search. We believe this family would be of interest
to practioners because of the computational advantages
of triangle inequality. Indeed, Cherian et al. [11] have
recently reported excellent performance on the task of
similarity based image search using a matrix extension.

A second advantage is the non-linearity associated
with such metrics, which is similar to but more general
than kernel methods. Recall that squared Euclidean
distance, the basis of many data-mining algorithms,
comes with some well known limitations. k-means clus-
tering, for example, leads to piece-wise linear cluster
boundaries that partition the space into polyhedrons.



Such a partitioning severely restricts the applicability
of k-means to clustering problems which require non-
linear partitions, possibly based on data density and re-
lated factors. Spectral graph partitioning does not have
this limitation, but can be computationally demand-
ing. A popular solution is to introduce non-linearity
using the “kernel trick” [29] which depend on positive
(semi)definite (PD) functions. In our work, an analo-
gous role is played by the larger class of CPD functions.
Indeed, a contribution of this paper is to show that the
well established PD kernel (algorithmic) machinery [28]
may be re-used for this CPD class as well.

We show how to generate kernel matrices that
are isometric with respect to JB divergences. Such
kernel matrices may then be substituted transparently
for problems involving JB divergences. As a result,
clustering using JB divergences can be converted into a
kernel k-means problem based on such derived kernels.
One downside of a kernel k-means algorithm is that each
iteration is quadratic in the number of data points, and
hence can be slow for large datasets. Interestingly, we
show that clustering using JB divergences can be solved
using a variational algorithm, with linear complexity
per iteration. Thus, we get the power of kernel k-means
with a (per-iteration) computational cost of k-means.

The rest of the paper is organized as follows: In
Section 2, we review some necessary technical back-
ground. In Section 3, we introduce Generalized Sym-
metrized Bregman (GSB) divergences, which can be
obtained from any well behaved convex function, and
study their metric properties. In Section 4, we dis-
cuss Jensen-Bregman (JB) divergences and their met-
ric properties. We present and analyze clustering algo-
rithms based on both GSB and JB divergences in Sec-
tion 5, and conclude in Section 6.

2 Background

In this section we review Bregman divergences, positive
and conditionally positive definite characterization of
kernel functions, and infinitely divisible distributions.

2.1 Bregman Divergence Let φ be a convex func-
tion of Legendre type, i.e., φ is a closed proper convex
function, and if Θ = int(dom(φ)) ⊆ Rd, then Θ is non-
empty, φ is strictly convex and differentiable in Θ, and
∀θ ∈ bd(Θ), limθ→θb ||∇φ(θ)|| → ∞, where ∇φ(θ) is
the gradient of φ at θ [25]. For any x ∈ dom(φ), y ∈
int(dom(φ)) = Θ, the Bregman divergence [8] corre-
sponding to φ is defined as
(2.1) dφ(x, y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉 .
It is easy to show that dφ(x, y) ≥ 0 and dφ(x, y) = 0 iff
x = y. Let ψ = φ∗ be the conjugate function of φ, i.e.,
ψ(t) = supx∈dom(φ) {〈x, t〉 − φ(x)} .

Since φ is a convex function of Legendre type, it
follows [25] that ψ will also be a convex function of
Legendre type. Further, if Θ∗ = int(dom(ψ)), then
the gradient function ∇φ : Θ 7→ Θ∗ is a one-to-one
function from the open set Θ to the open set Θ∗.
Further, the gradient functions ∇φ,∇ψ are continuous,
and ∇ψ = (∇φ)−1. As a consequence, for any x ∈ Θ,
there is a unique t ∈ Θ∗ such that they are Legendre
transforms of each other, i.e., t = ∇φ(x) and x = ∇ψ(t).
As appropriate, we will denote the conjugate of x as tx,
or the conjugate of t as xt.

2.2 Conditionally Positive Definite Kernels A
real valued function C(·, ·) : S × S 7→ R is called a
conditionally positive definite (CPD) kernel1 if for any
positive integer n and any choice of n elements x1≤i≤n ∈
S and a choice of n reals ui ∈ R such that

∑

i ui = 0,
the following inequality

∑n
i,j=0 uiujC(xi, xj) ≥ 0 holds.

The kernels for which the inequality holds for any choice
of ui are called positive (semi)definite (PD). All PD
kernels are CPD, but the converse is not true.

The following is a striking result related to CPD
kernels, PD kernels and metric on a Hilbert space that
will be used in our analysis:

Theorem 1 ([27]) Let C(·, ·) be a function on a topo-
logical set S × S. If S is separable then there exists
a Hilbert space H of real-valued functions on S, and a
mapping Φ : S 7→ H such that
(2.2)

‖Φ(x)− Φ(y)‖2 = −C(x, y) + 1
2
(C(x, x) + C(y, y))

if and only if C(·, ·) is a CPD kernel or equivalently
K(·, ·) = exp(−βC(·, ·)) is a PD kernel for any β > 0.2

One should take special note of the fact that this
condition is both necessary as well as sufficient.

2.3 Infinitely Divisible Distributions For a prob-
ability measure µ, let µn denote the n-fold convolu-
tion of the probability measure with itself, i.e., µn =
µ ∗ µ ∗ · · · ∗ µ (n times). A probability measure µ on Rd

is infinitely divisible if, for any positive integer n, there
is a probability measure µn on Rd such that µ = µnn, i.e.,
µ is the n-fold convolution of some other measure µn,
for all n ∈ N. While the definition of infinitely divisible
distributions is based on the n-fold convolution µn, the
β-fold convolution µβ is well defined and infinitely di-
visible for any β ≥ 0 [26, Lemma 7.9]. For the purposes
of our analysis, we need the following result concerning

1In the literature [4, 18], −C is often called negative definite.
2Note that the exponentiation here is element-wise.



the characteristic function of infinitely divisible distri-
butions. The result follows directly from Theorem 8.1
and Corollary 8.3 of [26].
Theorem 2 ([26]) Let µ be an infinitely divisible dis-
tribution with characteristic function F (z). Then, the
characteristic function of µβ is F (z)β. Conversely, the
characteristic function F (z)β uniquely corresponds to
the distribution µβ.

3 Symmetrized Bregman Divergences and
Metrics

For any x, y ∈ Θ, the symmetrized Bregman divergence
corresponding to φ is given by

(3.3) dsymφ (x, y) = dφ(x, y) + dφ(y, x) .

In general, this symmetrized Bregman divergence is not
related to metrics. We propose a natural generalization
of the symmetrized Bregman divergence, that we call
Generalized Symmetrized Bregman (GSB) divergence.
For x, y ∈ Θ, the GSB divergence corresponding to φ is
defined as

dgsbφ (x, y) = dsymφ (x, y) +
α

2
‖x− y‖2 + β

2
||tx − ty||2

= dφ(x, y) + dφ(y, x) +
α

2
‖x− y‖2 + β

2
||tx − ty||2 ,

where α, β ≥ 0 are constants and tx and ty are ∇φ(x)
and ∇φ(y) respectively . It is easy to see that the GSB
divergence is symmetric, i.e., dgsbφ (x, y) = dgsbφ (y, x).

We are now ready to state the main result con-
necting Generalized Symmetrized Bregman (GSB) di-
vergences and metrics.

Theorem 3 Let φ be any convex function of Legendre

type. Then,
√

dgsbφ (x, y) is a metric iff αβ ≥ 1.3

Proof. Let αβ ≥ 1. The kernels C1(x, y) = (
√
αx +

1√
α
tx)

T (
√
αy + 1√

α
ty) and C2(x, y) = tTx ty, being inner

products, are CPD. From [18, Lemma 2], recall that
C(x, y) is CPD iff C(x, y)+f(x)+f(y) is CPD, so that
adding functions of only x or y does not affect the CPD
property. Further, since CPD kernels are closed under
convex combinations,

C(x, y) =
1

2
C1(x, y) +

αβ − 1
α

C2(x, y)− xT tx − yT ty

=
α

2
xT y +

β

2
tTx ty − [dφ(x, y) + dφ(y, x)]

is CPD. It is straightforward to see that dgsbφ (x, y) =
−C(x, y) + (C(x, x) + C(y, y))/2 so that, following

Theorem 1,
√

dgsbφ is a metric.

3By ’only if,’ we mean ∃φ for which αβ ≥ 1 is necessary.

We prove the necessity of αβ ≥ 1 using a specific
convex function, φ(x) = xs log2 x − (log2 e)sx where
tx = s log2 x, s > 0. Let r =

√

β/α We will choose

three specific scalars x, y, z and set A =
√

dgsbφ (x, y),

B =
√

dgsbφ (y, z), and C =
√

dgsbφ (x, z). The triangle

inequality is A + B ≥ C, which through a direct
calculation yields C4+(A2−B2)2− 2C2(A2+B2) ≤ 0.
Now we use specific positive values for A,B,C, choosing
x = rs ,y = 2rs, and z = 4rs. The corresponding
conjugate ‘t’ values are tx = s(0 + log2 rs), ty = s(1 +
log2 rs), and tz = s(2+ log2 rs). Computing A

2, B2, C2

and plugging them back in the inequality above we have
C4+(A2−B2)2−2C2(A2+B2) = 4r2s4(1−(rα)2) ≤ 0,
which implies rα ≥ 1. Since r =

√

β/α, we note that
αβ ≥ 1 is necessary. This completes the proof.

Since
√

dgsbφ is a metric generated from a CPD ker-

nel, from [27, 18] it follows that (Θ,
√

dgsbφ ) can be iso-

metrically embedded in `2, the space of square inte-
grable functions. For GSB divergences, multiple exact
finite-dimensional metric embeddings can be obtained
in closed form. We give two such examples below.

Lemma 1 (Θ,
√

dgsbφ ) can be isometrically embedded in

R2d using two different maps:

f1(x) =

(√
αx+ 1√

α
tx

√

αβ−1
α

tx

)

and f2(x) =

( 1√
β
x+

√
βtx

√

αβ−1
β

x

)

Proof. A direct calculation shows that dgsbφ (x, y) =

||fi(x)− fi(y)||2, i = 1, 2.

A substantial generalization of the proposed GSB
divergences can be made to Mahalanobis-type metrics.
In particular, for symmetric positive definite matrices
A,B, we consider the GSB divergence

Dgsb
φ (x,y) =dφ(x,y) + dφ(y,x) +

1

2
(x− y)TA(x− y)

+
1

2
(tx − ty)

TB(tx − ty) .(3.4)

Theorem 4 Let φ be any convex function of Legendre
type. Then, Dgsb

φ (x,y) is a metric iff (AB − I) is
positive semi-definite.

The proof is similar to that of Theorem 3, and is skipped
due to lack of space. Theorem 4 is expected to be useful
in the context of metric learning, a topic we do not
explore in the current paper.



Example 1.A For φ(x) = x log x− x, with α, β = 1,
√

dgsbφ (x, y) = |x− y|+ log
(

max(x, y)

min(x, y)

)

,

is a metric. Similarly for φ(x) = − log x, with α, β = 1,
√

dgsbφ (x, y) = |x− y|
(

1 +
1

xy

)

.

4 Jensen Bregman Divergences and Metrics

In this section, we investigate a different symmetriza-
tion. Let φ be a convex function of Legendre type
and dφ (·, ·) be the corresponding Bregman divergence.
Then, for x, y ∈ Θ, we define the Jensen Bregman as

∆φ (x, y) ,
1

2
dφ

(

x,
x+ y

2

)

+
1

2
dφ

(

y,
x+ y

2

)

=
1

2
φ(x) +

1

2
φ(y)− φ

(

x+ y

2

)

.

(4.5)

Strict convexity of φ and the Jensen’s inequality to-
gether ensure that ∆φ (x, y) ≥ 0 and ∆φ (x, y) = 0 if
and only if x = y.

Note that apart from triangle inequality, all prop-
erties of a metric are satisfied by Jensen Bregman gen-
erated from any strictly convex function φ. We show
that ∆φ (x, y) is the square of a metric when the kernel
φ(x+ y), induced by the convex function φ, is CPD [3].

Lemma 2
√

∆φ (·, ·) is a metric iff φ(x + y) is a
conditionally positive definite (CPD) kernel. In this
case, there exists a a Hilbert space H of real-valued
functions on Θ, and a mapping Φ : Θ 7→ H, such that
√

∆φ(x, y) = ||Φ(x)− Φ(y)||.

Proof. Let {ci}ni=1 be a set of real numbers s.t.
∑

i ci =
0 and {xi}ni=1 be any set of points xi ∈ Θ. Then, if
φ(x+ y) is CPD

n
∑

i,j=1

cicj∆φ (xi, xj) = −
n
∑

i,j=1

cicjφ

(

xi + xj
2

)

≤ 0 ,

where the other terms vanish since

∑

i,j

cicjφ(xi) =

(

∑

i

ciφ(xi)

)





∑

j

cj



 = 0 ,

and so on. Since −∆φ (x, y) is CPD, from Theorem 1

it follows that
√

∆φ (·, ·) is a metric with an isometric
embedding φ(x).

For the ‘only if’ part, let
√

∆φ ((, x) , y) be a
metric. From Theorem 1, we know that there exists

a CPD kernel C(x, y) such that ∆φ (x, y) = −C(x, y) +
1
2 (C(x, x) + C(y, y)), so that

φ

(

x+ y

2

)

= C(x, y)−1
2
(C(x, x)+C(y, y))+

1

2
(φ(x)+φ(y)) .

Then, for ci, [i]
n
1 with

∑

i ci = 0, and xi, [i]
n
1 ∈ Θ, we

have

∑

i,j

cicjφ

(

xi + xj
2

)

=
∑

i,j

cicjC(xi, xj) ≥ 0 ,

so that φ is a CPD kernel.

While the above result can be useful, and CPD
functions are indeed convex, it is unclear as to which
convex functions φ will lead to CPD kernels and as
a consequence impart metric property to

√

∆φ (x, y).
Hence it is crucially important to exactly characterize
the class of convex functions that lead to CPD kernels.
This is obtained by the following result [3, 4, 5].

Theorem 5 The additive kernel k(x, y) = g(x + y) is
conditionally positive definite, if and only if g(x) =
log
∫

r
exp(〈x, r〉)dµ(r) for a uniquely determined in-

finitely divisible measure µ.

The theorem implies that g(x) has to be the cumulant
or log-partition function of any infinitely divisible dis-
tribution. From a harmonic analysis perspective g(x) is
the log of the (multivariate) Laplace transform of such
a distribution [4, 5].

Proof. For the ‘if’ part, we know that µ is infinitely
divisible, and, by Devinatz’s theorem [12] G(s) =
∫

r
exp(〈r, s〉)dµ(r) is the moment generating function

of µ with g(s) = logG(s) being the cumulant, and
S = dom(G). Let F (t) =

∫

r
exp(i〈r, t〉)dµ(r) be the

characteristic function. Now, the characteristic function
of the base measure dm(r) = exp(〈r, s〉)dµ(r) is given by
H(t) =

∫

r
exp(i〈t, r〉)dm(r) =

∫

r
exp(i〈r, t − is〉)dµ(r),

where the integral is convergent and analytic as a
function of (t − is), t ∈ Rn, s ∈ S [21, Theorem
2.7.1]. In other words, F (t) has an analytic extension
to Rn − iS ⊂ Cn. As a result, following [14] G(s) =
F (−is). Since µ is infinitely divisible, the characteristic
function of µβ , the β-fold convolution of µ where
β ≥ 0, is simply Fβ(t) = F (t)β , from Theorem 2.
Let Gβ(s) =

∫

r
exp(〈r, s〉)dµβ(r) be the corresponding

Laplace transform. Now, the characteristic function
of the base measure dmβ(r) = exp(〈r, s, )〉dµβ(r) is
given by Hβ(t) =

∫

r
exp(i〈t, r〉)dmβ(r) =

∫

r
exp(i〈r, t−

is〉)dµβ(r), where, as before, the integral is convergent
and analytic as a function of (t − is), t ∈ Rn, s ∈ S.
In other words, Fβ(t) has an analytic extension to



Rn−iS ∈ Cd. As a result, following Theorem 2, Gβ(s) =
Fβ(−is) = F (−is)β = G(s)β . Since Gβ(s) is the
Laplace transform of a probability measure, following
[12] G(x + y)β is positive semi-definite ∀β ≥ 0 so that
g(x+ y) = logG(x+ y) is CPD from Theorem 1.

For the ‘only if’ part, since G(x+ y)β = exp(g(x+
y)) is a PD kernel following Theorem 1, from Dev-
inatz’s theorem [12] it follows that ∀β > 0, there ex-
ists a non-negative measure µβ such that G(s)

β =
∫

x
exp(〈x, s〉)dµβ(x). Then, from [14], it follows that

the characteristic function Fβ(t) of µβ can be obtained
using a simple plug-in Fβ(t) = G(it)β . Choosing β = 1
and β = n, we note that Fn(t) = G(it)n = F (t)n so that
the characteristic function of µn is the n-fold product
of that of µ. This holds for all n, µ.

Since the cumulant is always convex, we have

Corollary 1
√

∆φ (·, ·) is a metric if φ is the cumulant
of an infinitely divisible distribution.

We now focus on constructing examples of such con-
vex functions. It is well known that the characteristic
function Fµ(t) of infinitely divisible measures µ on Rn

can be expressed in closed form by the Levy-Khintchine
(L-K) formula [26, 20]. A careful analysis based on a re-
cent result [14] shows that one can obtain the moment-
generating function Lµ(s) = Fµ(−is),4 and further the
cumulant function φ(s) = logLµ(s) is given by
(4.6)

φ(s) =
1

2
〈s,As〉+〈γ, s〉+

∫

r

(e〈s,r〉−1−〈s, r〉 �
D(r))dν(r)

where A is a d × d positive definite matrix, γ ∈ Rd,
and ν is a Levy measure on Rd satisfying ν(0) = 0
and

∫

r
min(||r||2, 1)dν(r) < ∞. In fact, for any choice

of the triplet (A, γ, ν), the corresponding φ(s) will be
such that φ(x + y) is a CPD kernel. We illustrate the
utility of the above characterization by showing the JB
divergence corresponding to φ(x) = − log x is a metric.

Lemma 3 For φ(x) = − log x,
√

∆φ (x, y) is a metric
for x, y ∈ R++, where

(4.7) ∆φ (x, y) = log

(

x+y
2√
xy

)

.

In other words, the log of the ratio of the arithmetic
and geometric mean of two positive numbers satisfy the
triangle inequality.

4There are several variants of the L-K formula, we are using

one from [26] to illustrate the point.

Proof. It is well known [26] that the Gamma distribu-
tion

p(x;α, β) = xα−1
βαe−βx

Γ(α)
= eβ(−x)−α(− log β)

xα−1

Γ(α)
,

where α, β > 0 is infinitely divisible. From an infinite
divisibility perspective, the scale parameter α denotes
the number (amount) of convolutions of the measure
with itself. For a fixed α, we note that the cumulant
function φ(β) = − log β. Then, since φ(x) = − log x
satisfies the condition of Theorem 5, from Corollary 1
it follows that

√

∆φ (·, ·) is a metric.

While the above characterization is exhaustive and
theoretically appealing, it does not give a way to con-
struct such functions. We now describe two approaches
to construct such convex functions. The first family of
functions is based on a special class of infinitely divisi-
ble measures called stable measures [17, 24] which have
the following stability property: if a set of i.i.d. random
variables have a stable distribution, then a linear combi-
nation of these variables will have the same distribution
possibly with different shift and scale parameters. A
complete characterization of the characteristic function
F (t) of such measures is given as follows:

Theorem 6 ([17]) For a distribution µ on R to be
stable it is necessary and sufficient that its characteristic
function F (t) satisfies
(4.8)

logF (t) =







iγt− |ct|α
(

1− iβ t
|t| tan(πα/2)

)

α 6= 1
iγt− |ct|

(

1 + iβ t
|t|
2
π
log(|t|)

)

α = 1 ,

for the ranges −1 ≤ β ≤ 1, c ≥ 0, 0 < α ≤ 2, γ ∈ R.

The corresponding closed forms for their measures are
known only for a few examples such as Gaussian (α = 2)
and Cauchy(α = 1, β = 1). Since the F (s) has an
analytic extension to the complex plane, following [14],
one can construct a family of suitable convex functions
φ(s) based on the following plug-in procedure φ(s) =
logL(s) = logF (−is). We illustrate the utility of such
a construction using the following result.

Lemma 4 For φ(x)=x log x,
√

∆φ (x, y) is a metric.

Proof. From Theorem 4.8 for α = 1, setting γ = c =
π
2 , β = −1, based on the plug-in procedure from [14],
for s > 0 we get

φ(s) = logF (−is) = γs− cs− csβ 2
π
log s = s log s .

Since all stable distributions are infinitely divisible,
φ(x+y) is CPD, and hence

√

∆φ (x, y) is a metric.



An important consequence of the above result is an
elementary proof of the fact that the Jensen-Shannon
divergence is the square of a metric [9, 16].

Corollary 2 Let p, q ∈ Rd
+ and m = (p+q)/2. If I(·||·)

denotes the I-divergence, ∆(p, q) = 1
2I(p||m)+ 12I(q||m)

is the square of a metric.

Proof. A direct calculation shows that for φ(x) = x log x

∆(p, q) =
∑d

j=1∆φ (pj , qj). The result follows from the
fact that the sum of CPD kernels is always CPD.

The second approach to construct CPD functions is
based an alternative characterization of infinitely divis-
ible distributions. This method provides a connection
between the necessary and sufficient conditions stated in
lemma 2 and those identified by Chen et al. recently [10]
for the special case of univariate convex functions. 5

Theorem 7 ([22]) Let µ be a distribution in R such
that Lµ(θ) =

∫

x
exp(〈θ, x〉)dµ(x) and Θ = {θ : L(θ) <

∞} is non empty. Then µ is infinitely divisible if and
only if there exists a unique positive measure ρ such that
for all θ ∈ Θ

∂2

∂θ2
logLµ(θ) = Lρ(θ) =

∫

x

exp(〈θ, x〉)dρ(x).

Now, given any positive measure ρ such that Lρ(θ) is
doubly integrable to give φ(θ), and φ(θ) is the cumulant
function of some measure, then

√

∆φ (·, ·) will be a
metric. We illustrate the point with an example.

Example 1 The Laplace transform of the unit ramp
ρ(x) = xu(x) is given by Lρ(s) = 1/s2. A double
integral gives the function φ(s) = − log s (ignoring affine
terms). Since φ(s) = − log s is the cumulant of the
Gamma distribution with α = 1, the corresponding
√

∆φ (·, ·) is a metric.

Example 2 We give an alternative proof of the fact
that the Jensen-Shannon divergence is square of a
metric. Consider the moment generating function of

a Gamma distribution L(s) =
(

λ
λ−s

)τ

. Integrating

twice we obtain
∫∫

L(s)d(s) = λτ s2−τ

(2−τ)(1−τ) + As. The

interesting case is when τ = {1, 2}. lim
τ→1

s2−τ

(2−τ)(1−τ) =

lim
τ→1

s
2−τ

s1−τ

1−τ = s log(s) because the limit of second term

is log(s). Taking A = 0 and τ = 1 or 2, we obtain that

5Chen et al. [10] identify the necessary and sufficient condition

for triangle inequality to be ∂2

∂θ2
Lρ(θ) ≥ 0 which is equivalent to

the convexity criteria on Lρ(θ) above.

φ(s) = s log(s). Since it has already been shown (see
Lemma 4) that s log s is the log cumulant of a stable
measure, it is conditionally positive definite.

Another way of constructing these metrics is to
derive new ones from known CPD functions by applying
transformations that preserve the metric property. A
place to look for such transformations are convexity
preserving ones, however it is not sufficient to preserve
convexity alone. The property of infinitely divisibility
too needs to be preserved. We list a couple of examples.
(1) Conic combination of known CPD functions, i.e.
functions of the form

∑

i αiφi(·) where αi > 0 are
CPD. Furthermore if φn =

∑n
i=0 αiφi(·) is such that

limn→∞ φn(·) = ψ(·), then ψ(·) is also CPD.
(2) Exponentiation, i,e, exp(−βφ(·)) for β > 0. The
resulting function is positive definite and hence CPD.

Applying these transformation we can show:

Example 3 For λ, l, τ, σ2 ≥ 0 the following are CPD
functions: − log

(

1− σ2

2λs
2
)

, − log
(

1− l
λ
(es − 1)

)

,

− log
(

1 + |s|
λ

)

, l
(

e−|s| − 1
)

. These can be derived by

the composition of infinitely divisible distributions with
distribution on positive integers.

5 Clustering Algorithms

In this section, we consider clustering problems based
on GSB and JB divergences. We focus on the k-means
family of clustering problems, and demonstrate that
algorithms with provable guarantees can be established
for all cases, based on existing results [1].

5.1 Clustering with GSB Divergences We first
consider the k-means problem using any GSB diver-
gence, where given n data points X = {xi, [i]n1 ,∈ Rd},
the goal is to find a clustering C and a corresponding
set of k meansM = {µh, [h]k1 ∈ Rd} such that

(5.9) J1(C) =
n
∑

i=1

min
h

dgsbφ (xi, µh)

is minimized. Generalizing the elegant kmeans++
algorithm [1], we propose GSB++, which has the
same structure, while using GSB divergences instead
of squared Euclidean distance. GSB++ builds the
initial cluster centers sequentially following probabilis-
tic farthest-first. At any point during the initializa-
tion, if M is the current set of means, let D(x) =

minµ∈M dgsbφ (x, µ). With this notation, GSB++ is pre-
sented as Algorithm 1.

Lemma 5 Let CGSB be the final clustering obtained
from GSB++, and let J∗1 be the optimal value of the



Algorithm 1 GSB++

Choose initial cluster center µ1 uniformly at random from
X .
Choose the next center µh = x ∈ X , h = 2, . . . , k with
probability D(x)

∑

x∈X D(x)
. Where D(x) is the maximum GSB

distance of x from the previous clusters.
Let f(xi) be any finite-dimensional isometric embedding
as in Lemma 1.
repeat

For i = 1, . . . , n, assign xi to Ch∗ if h∗ =
argminh ||f(xi)− f(µh)||
For h = 1, . . . , k, compute f(µh) =

1
|Ch|

∑

x∈Ch
f(x)

until convergence

objective function. Then

E[J1(CGSB)] ≤ 8(log k + 2)J∗1 .

Proof. Note that the original kmeans++ argument goes
through if the squared Euclidean distance ||x − y||2 is
replaced by any kernelized distance K(x, x)+K(y, y)−
2K(x, y) = ||Φ(x) − Φ(y)||2. Kernel-kmeans++ fol-
lows directly from kmeans++. From Lemma 1, since
dgsbφ (x, y) = ||f(x)−f(y)||2, the initialization in GSB++
itself guarantees being within 8(log k+2)-times the opti-
mal. The iterative steps can only improve the objective
function, maintaining the guarantee.

5.2 Clustering with JB Divergences The k-
means clustering problem with JB divergence can be
posed as one of obtaining a clustering C so as to mini-
mize the objective function

(5.10) J∆(C) =
n
∑

i=1

min
h
∆φ (xi, µh) .

The above problem has two important challenges. First,
for a given cluster Ch, the problem of mean estimation,
i.e., minµh

∑

xi∈Ch ∆φ (xi, µh) does not have a closed
form solution. A brute force approach would be to solve
the following non-linear equation iteratively:

∇φ(µ) =
∑

i

∇φ
(

xi + µ

2

)

,

but that can be computationally problematic. Second,
although we know that

√

∆φ (x, y) = ‖Φ(x)−Φ(y)|| for
some Φ, we do not know Φ(x) or K(x, y) = 〈Φ(x),Φ(y)〉
is. In particular, even though we have

∆φ (x, y) =
1

2
φ(x) +

1

2
φ(y)− φ((x+ y)/2)(5.11)

= K(x, x) +K(y, y)− 2K(x, y) ,(5.12)

we cannot conclude that K(x, y) = 1
2φ((x+y)/2), since

φ need not be positive (semi)definite.
To solve the clustering problem, we propose two

algorithms: (i)Kernel-JB++ (Algorithm 2) and (ii)
Variational-JB++ (Algorithm 3). Both avoid com-
puting the cluster means µh explicitly using different
techniques. Kernel-JB++ uses updates similar to kernel
kmeans [13], but rather than requiring a kernel as its in-
put, requires a specification of a JB divergence. On the
other hand, Variational-JB++ uses a variational char-
acterization of the mean to avoid computing the cluster
mean. The advantage that variational JB clustering has
over Kernel-JB++ is that it updates are linear in the
number of data-points, whereas for kernel-JB++ they
are quadratic. Thus Variational-JB++ is more suit-
able for large scale problems.

5.2.1 Kernel Kmeans for JB Clustering Recall
that the mapping Φ : Θ 7→ H induced by ∆φ (·, ·) is not
known, neither is the kernel K(x, y) = 〈Φ(x),Φ(y)〉.
However, we know that the PD kernel K(x, y) is iso-
metric to the CPD kernel C(x, y) = 1

2φ((x + y)/2)
so that ∆φ (x, y) = K(x, x) + K(y, y) − 2K(x, y) =
1
2φ(x)+

1
2φ(y)−φ((x+y)/2). Now, we note that one can

run kernel kmeans [13] without knowing K by simply
using any other PD kernel K̃ which is isometric to K,
i.e., K(x, x)+K(y, y)− 2K(x, y) = K̃(x, x)+ K̃(y, y)−
2K̃(x, y). In particular, from the same initialization,
kernel kmeans using K and K̃ will lead to the same fi-
nal clustering. However, we cannot run kernel kmeans
directly with the CPD kernel C(x, y) = 1

2φ((x + y)/2)
since kernel kmeans require the kernel to be PD. Hence,
we focus on the question: is it possible to derive a iso-
metric PD kernel K̃ from a CPD kernel C? The follow-
ing remarkable result answers precisely this question:

Theorem 8 Let S be a non-empty set. Let C(·, ·) :
S × S 7→ R be any symmetric CPD kernel and a
kernel K(·, ·) : S × S 7→ R be defined by K(x, y) =
C(x, y)−C(x, a)−C(y, a)+C(a, a) for some fixed a ∈ S.
Then K is positive semidefinite and isometric w.r.t C.

Proof. Berg et al., [4] proves that C(x, y) − C(x, a) −
C(y, a)+C(a, a) is positive semidefinite if C is CPD. It
easily verified thatK(x, y), defined as above, leads to an
isometric distance, by substituting the value of K(x, y)
in the expression K(x, x) +K(y, y)− 2K(x, y).

The point a acts as the origin in the sense that
K(x, a) = 0,∀x and its choice is arbitrary. In our
current context, for any a ∈ Θ, we note that

K̃(x, y) =
1

2

{

φ(
x+ y

2
)− φ(x+ a

2
)− φ(y + a

2
) + φ(a)

}

(5.13)



Algorithm 2 Kernel-JB++

Choose initial cluster center µ1 uniformly at random from
X .
Choose the next center µh = x ∈ X , h = 2, . . . , k with
probability ∆(x)

∑

x∈X ∆(x)
. Where ∆(x) is the maximum JB

distance of x from the previous clusters.
Let C(0) be the initial clustering, t = 0
Compute n× n kernel matrix K̃ using (5.13)
Run kernel kmeans [13] till convergence with K̃ initialized
with C(0)

is positive definite and isometric to both C and K so
that ∆φ (x, y) = K̃(x, x) + K̃(y, y) − 2K̃(x, y). Based
on the above construction, we propose KernelJB++
(Algorithm 2) which uses K̃ as the kernel for kernel
kmeans [13]. The algorithm chooses the initial clusters
based on probabilistic farthest-first. At any point
during the initialization, ifM is the current set of cluster
means, let ∆(x) = minµ∈M ∆φ (x, µ).

Lemma 6 Let CKJB be the final clustering obtained
from Kernel-JB++, and let J∗∆ be the optimal value of
the objective function. Then

E[J∆(CKJB)] ≤ 8(log k + 2)J∗∆ .

Proof. First, note that the initialization leads to a
clustering C(0) which satisfies the bound since the
kmeans++ argument goes through for kernel-kmeans,
even if we do not know the kernelK(x, y) but have a way
of computing the squared distance ‖Φ(x) − Φ(y)‖2 =
K(x, x) + K(y, y) − 2K(x, y). For JB++, the squared
distance is simply ∆φ (x, y).

5.2.2 Variational Kmeans for JB Clustering
For every iteration the kernel kmeans algorithm isO(n2)
which can be slow for large datasets. We now present
an alternative which is similar to traditional kmeans
where each iteration isO(n). We start with a variational
characterization of ∆φ (x, y) in terms of
(5.14)

LCh({si}, µ) =
1

2

∑

xi∈Ch
dφ(xi, si) +

1

2

∑

xi∈Ch
dφ(µ, si) .

Lemma 7 For any clustering Ch, and any µ, si ∈ Θ,
we have

∑

xi∈Ch ∆φ (xi, µ) ≤ LCh({si}, µ). Further,
∑

xi∈Ch ∆φ (xi, µ) = min{si} LCh({si}, µ).
Proof. For any xi, µ, si ∈ Θ, following [2, Proposition 1],
1
2dφ(xi, si) +

1
2dφ(µ, si) is minimized by si =

1
2 (xi + µ),

and the minimum is ∆φ (xi, µ). Summing over all xi ∈
Ch, we have

∑

xi∈Ch ∆φ (xi, µ) ≤ LCh({si}, µ). Noting
that the inequality holds with equality for si =

1
2 (xi+µ)

completes the proof.

Algorithm 3 Variational-JB++

Choose initial cluster center µ
(0)
1 uniformly at random

from X ,
Choose the next center µ

(0)
h = x ∈ X , h = 2, . . . , k with

probability ∆(x)
∑

x∈X ∆(x)
. Set t = 0

repeat

For i = 1, . . . , n, assign xi to Ch∗ if h∗ =

argminh∆φ

(

xi, µ
(t)
h

)

(5.11)

For h = 1, . . . , k, update

s
(t+1)
i =

xj + µ
(t)
h

2
, ∀xi ∈ Ch(5.15)

µ
(t+1)
h = ∇φ−1

(
∑

xi∈Ch
∇φ(s

(t+1)
i )

|Ch|

)

(5.16)

t = t+ 1

until convergence

Recall that a key challenge in running kmeans-type
iterations for JB divergences was that the optimal clus-
ter prototype cannot be computed in closed form. The
above result gives a variational approach to computing
the cluster prototypes. We present Variational-JB++
in Algorithm 3 based on this approach. In particular,
Variational-JB++ uses the same initialization strategy
as kmeans++, and then uses one-pass variational up-
dates over individual si and µh for each cluster, which
is guaranteed to improve the objective till convergence.

Lemma 8 Let CV JB be the final clustering obtained
from Variational-JB++, and let J∗∆ be the optimal value
of the objective. Then E[J∆(CV JB)] ≤ 8(log k + 2)J∗∆.

Proof. As before, the initialization leads to a clus-
tering C(0) which satisfies the bound. We need
to show that the iterative updates give a non-
increasing objective function. Since the cluster
assignment step improves the objective, we fo-
cus on the variational step. For any cluster Ch,
∑

xi∈Ch ∆φ

(

xi, µ
(t+1)
h

)

(a)
= LCh

(

{s(t+1)i }, µ(t+1)h

)

(b)

≤ LCh

(

{s(t+1)i }, µ(t)h
) (c)

≤ LCh

(

{s(t)i }, µ
(t)
h

)

(d)
=

∑

xi∈Ch
∆φ

(

xi, µ
(t)
h

)

where (a), (d) follow from

Lemma 7, (b) follows since that µ(t+1) minimizes

LC({s(t+1)i }, µ), and (c) follows since s(t+1)i minimizes
LCh({si}, µ(t)).

6 Conclusion

In this paper we introduce two families of Hilbert
space embeddable metrics that can be generated from



Bregman divergences. On one hand these give the
practitioner a fertile ground to search for metrics well
suited for their application. On the other hand the
finite embedabilty of the GSB family, and the kernel
isometry property of the JB family allows them to
be seamlessly incorporated into existing data mining
algorithms. In addition, the variational representation
of Bregman divergence allows the representation of non-
linear cluster boundaries but with a linear complexity
per iteration. On the theory side it establishes a
connection between Bregman divergences and results
concerning cumulants of infinitely divisible measures.
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