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Abstract—Sparse models have proven to be extremely suc-
cessful in image processing and computer vision. However, a
majority of the effort has been focused on sparse representation
of vectors and low-rank models for general matrices. The success
of sparse modeling, along with popularity of region covariances,
has inspired the development of sparse coding approaches for
these positive definite descriptors. While in earlier work [1], the
dictionary was formed from all, or a random subset of, the
training signals, it is clearly advantageous to learn a concise
dictionary from the entire training set. In this paper, we propose
a novel approach for dictionary learning over positive definite
matrices. The dictionary is learned by alternating minimization
between sparse coding and dictionary update stages, and different
atom update methods are described. A discriminative version of
the dictionary learning approach is also proposed, which simul-
taneously learns dictionaries for different classes in classification
or clustering. Experimental results demonstrate the advantage
of learning dictionaries from data both from reconstruction and
classification viewpoints. Finally, a software library is presented
comprising C++ binaries for all the positive definite sparse coding
and dictionary learning approaches presented here.

Index Terms—Sparse coding, dictionary learning, positive
definite matrices, region covariance descriptors, optimization.

I. INTRODUCTION

Sparse coding methods transform a given signal into a set of
sparse coefficients with the help of a dictionary or basis set.
In the vector domain, pre-defined dictionaries are available
which can be constructed using analytical expressions - for
e.g.: Fourier, DCT, wavelets, etc. However, for applications
involving only specific classes of signals, it is more interest-
ing to use a domain-specific dictionary rather than universal
dictionaries.

This paper addresses the issue of learning a data-driven
dictionary from a training set of positive definite matrices.
The dictionary learning problem is formulated, analogous to
similar approaches in vector dictionary learning. An alternat-
ing minimization approach to learn the dictionary is presented,
and iterative gradient and Newton methods for updating the
dictionary atoms are derived. When the dimensions of the data
become too large, we propose an efficient matrix conjugate
gradient approach to compute the Newton direction.
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A. Related Work

This work was primarily motivated by the use of region co-
variance descriptors are features in computer vision and image
processing. Region Covariance Descriptors (RCDs) were first
introduced by Tuzel et al. [2] as a novel region descriptor for
object detection and texture classification. These descriptors
by construction are positive definite1. Our earlier work on
sparse coding for positive definite matrices [1] naturally led
to the development of learning techniques for positive definite
dictionaries.

Related work involving similar sparse decompositions of
positive definite matrices are given below: In [3], Guo et al.
take the covariance descriptors to the tangent space, by the
logarithm map and perform vector sparse coding in this Eu-
clidean space. The resultant algorithm gives good performance
for action recognition in video. Wang and Vemuri [4] also
learn sparse representations over positive definite matrices in
the tangent space, via the logarithm and exponential maps. In
a similar approach, Sra and Cherian [5] learn a generalized
dictionary of rank-1 positive semidefinite atoms to sparsely
represent covariance descriptors. However, the authors in the
above two approaches use the Frobenius norm as the error
metric. Pfander et al. [6] decompose a general matrix as
a sparse linear combination of a dictionary of matrices by
multiplying all the involved matrices on a known vector
reducing the matrix problem to a known vector problem
with well-established guarantees. Wang et al. [7] present the
Common Component Analysis problem, where the authors
learn a common low-dimensional subspace for a set of high-
dimensional covariance matrices.

More recently, Harandi et al. [8] use the symmetric Stein
divergence [9] to embed the Riemannian manifold into a
Reproducing Kernel Hilbert Space (RKHS). They proceed to
derive new sparse coding and dictionary learning techniques
under this divergence. This is the most closely related work
to ours, but with the use of a different divergence to measure
the reconstruction error.

The rest of this paper is organized as follows: In Section II,
we give a brief overview of our positive definite sparse
coding approach from [1]. In Section III, we present the
dictionary learning formulation, and proceed with optimization
algorithms to the learn the dictionary from data. Section IV
presents a variation of the dictionary learning technique in-
corporating similarity between atoms of dictionaries from

1singular descriptors are regularized by adding a small multiple of the
identity matrix
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different classes, so as to learn a discriminative dictionary
for classification and clustering applications. In Section V we
present experimental results with synthetic and real texture
data. Section VI describes the software library released as
part of this work, and we present our conclusions and future
directions in Section VII.

II. POSITIVE DEFINITE SPARSE CODING

Given a known dictionary consisting of K n × n positive
definite matrices A = {Ai}Ki=1, where each Ai ∈ Sn++ is
referred to as a dictionary atom, and a signal S ∈ Sn++,
positive definite sparse coding [1] aims to represent S as a
linear combination of the dictionary atoms, i.e.,

S = x1A1 + x2A2 + . . .+ xKAK =

K∑
i=1

xiAi, (1)

where x = (x1, x2, . . . , xK)T is the coefficient vector. With a
slight abuse of notation, we will henceforth represent the sum∑K

i=1 xiAi as Ax for the sake of convenience2.
This reconstruction is achieved by minimizing the following

sparse coding objective:

min
x≥0

Dld (Ax, S) + λ ‖x‖1 (2a)

s.t. Ax � 0, (2b)

where Dld(·, ·) is the Logdet divergence, given by:

Dld(X,Y ) = tr
(
XY −1

)
− log det

(
XY −1

)
− n, (3)

and λ is the regularization parameter influencing the sparsity
of x.

In our earlier work on positive definite sparse coding [1], the
dictionaries were constructed by sampling from the data. How-
ever, when sufficient data is available, learning a dictionary
tailored to this class of samples yields a much better sparse
reconstruction of the data. Hence, in this work, we propose
new dictionary learning techniques to learn dictionaries of
positive definite atoms

III. POSITIVE DEFINITE DICTIONARY LEARNING

A. Dictionary Learning Formulation

Given a training set S = {Sj}Nj=1, Sj ∈ Sn++, the problem
of learning the dictionary A = {Ai}Ki=1, Ai ∈ Sn++ can be
formulated as:

Dictionary Learning:

min
A,X

N∑
j=1

Dld (Axj , Sj) + λ ‖xj‖1 (4a)

s.t. xj ≥ 0 for j = 1, . . . , N (4b)
Ai � 0 for i = 1, . . . ,K (4c)
‖Ai‖2F ≤ 1 for i = 1, . . . ,K (4d)

2This can be distinguished from the regular Ax matrix-vector multiplication
through the calligraphic notation of A.

Here xj denotes the j-th column of coefficient matrix X . As
mentioned in Section II, the atoms should be normalized by
their Frobenius norm. However, the constraint ‖Ai‖2F = 1 is
non-convex, and therefore we have relaxed the constraint to
be convex ‖Ai‖2F ≤ 1.

The dictionary learning problem (4) is non-convex in
(A, X), and therefore there is no unique minimizer (A∗, X∗).
However, the problem is convex in one argument given the
other fixed, as is also the case in the vector dictionary learning
problem. This naturally leads to an alternating minimization
approach to arrive at a stationary point of the optimization
problem.

B. Approach: Alternating Minimization

Similar to other dictionary learning algorithms [10], we
approach this problem through alternating minimization, re-
peating the following steps:
(a) Given S and A fixed, solve for X .
(b) Given S and X fixed, solve for A.
Although this approach does not guarantee reaching a univer-
sal minimizer, we are guaranteed to reach a local minimum
of the objective function in (4) [11]. The first step mentioned
above is simply the sparse coding of the training set S, which
we will refer to as the sparse coding step of the dictionary
learning procedure. The second step involves updating the
dictionary atoms while keeping the sparse coefficients fixed,
which we denote as the dictionary update step. The training
data is sampled to initialize the dictionary A0.

Motivated by the K-SVD algorithm by [10], the dictionary
update is performed sequentially, updating one atom Ai ∈ A at
a time, keeping the sparsity structure of X fixed, but allowing
the corresponding non-zero coefficients of Ai to change in
value. At iteration k of the dictionary learning procedure
(denoted in the superscript), the atom Ak−1

i is updated to
Ak

i , given
{
Ak

1 , A
k
2 , . . . , A

k
i−1, A

k−1
i+1 , . . . A

k−1
K

}
and Xk. The

dictionary atoms are updated using a gradient projection
method, where the constraint set for Ai is defined by Ai � 0
and normAiF

2 ≤ 1. Convergence of block coordinate de-
scent type methods where each iteration comprises a gradient
projection step is discussed in [12].

Algorithm 1 Dictionary Learning
Input: Data S = {Sj}Nj=1, dictionary size K, sparsity param-

eter λ
Output: A = {Ai}Ki=1

k = 0
Initialize A0 sampled from S
repeat
k ← k + 1
Given S and Ak−1, compute the sparse coefficients Xk

for i = 1 to K do
Update atom Ak−1

i to Ak
i , along with the correspond-

ing coefficients in Xk (Algorithm 2)
end for

until convergence
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C. Atom Update

In this section, we present the optimization subroutine to
update atom Ai in the dictionary update step. Let ωi be the
active set, ωi = {j|j ⊆ {1, . . . , N}, xij 6= 0}, i.e., the subset
of signals which use atom Ai.

The reconstruction Ŝj of each Sj , j ∈ ωi can be decom-
posed into the constant and variable components under the
optimization of Ai:

Ŝj =
∑
i′ 6=i

xi′jAi′ + xijAi = Ŝ
(i)
j + xijAi. (5)

Ŝ
(i)
j is the reconstruction of Sj without the contribution of Ai.
The sub-problem of (4) to optimize atom Ai keeping all

other atoms fixed, is given by:

min
Ai�0

∑
j∈ωi

Dld

∑
i′ 6=i

xi′jAi′ + xijAi, Sj

 (6)

Expanding Equation (6) and retaining only the terms rele-
vant to Ai, we get:

min
Ai�0

∑
j∈ωi

xijtr (AiS
−1
j

)
− log det

∑
i′ 6=i

xi′jAi′ + xijAi


Denoting the above objective function as f(Ai) and taking

the gradient w.r.t. Ai,

∇f(Ai) =
∑
j∈ωi

xijS
−1
j − xij

(
Ŝ
(i)
j + xijAi

)−1
. (7)

We propose iterative descent methods such as gradient descent
and Newton descent below.

Algorithm 2 Atom Update

Input: Ai,
{
xij , Sj , Ŝj | j ∈ ωi

}
Output: Ai,

{
xij , Ŝj | j ∈ ωi

}
repeat

Compute descent direction ∆Ai using (9) or (14)
Choose stepsize α by line search s.t. Ai + α∆Ai � 0
Anew

i ← Ai + α∆Ai

Ŝj ← Ŝj + xij (Anew
i −Ai) ∀j ∈ ωi

t = max
{
‖Anew

i ‖F , 1
}

Ai ← Anew
i /t

xij ← t xij ∀j ∈ ωi

until convergence

1) Gradient Descent: The gradient of the objective f(Ai)
is given by:

∇f(Ai) =
∑
j∈ωi

xij

(
S−1j − Ŝ−1j

)
. (8)

The gradient descent direction ∆Ag
i is given by the negative

of the gradient:

∆Ag
i =

∑
j∈ωi

xij

(
Ŝ−1j − S−1j

)
. (9)

The gradient descent update algorithm is, therefore,

Ak
i ← Ak−1

i + α∆Ag
i s.t. Ak

i � 0, (10)

with stepsize α ≥ 0 determined using line search techniques.
The stepsize should also satisfy the constraint that the updated
atom Ak

i is positive semi-definite.
Two possibilities are to use the the exact line search or

the backtracking (Armijo) line search. In practice, we see that
these two methods do not provide much improvement in the
objective function in each atom update iteration. Instead, we
use the Barzilai-Borwein (BB) step sizes [13]:

αk
BB1 =

〈
Ak

i −A
k−1
i ,∇f

(
Ak

i

)
−∇f

(
Ak−1

i

)〉∥∥∇f (Ak
i

)
−∇f

(
Ak−1

i

)∥∥2
F

, (11)

αk
BB2 =

∥∥Ak
i −A

k−1
i

∥∥2
F〈

Ak
i −A

k−1
i ,∇f

(
Ak

i

)
−∇f

(
Ak−1

i

)〉 , (12)

for iteration k. The BB stepsize choice yields a much stronger
net decrease in the objective function value compared to exact
or backtracking line searches.

2) Newton Descent: Taking the second derivative of the
gradient (8), we get the expression for the Hessian:

∇2f(Ai) =
∑
j∈ωi

(
xijŜ

−1
j

)
⊗
(
xijŜ

−1
j

)
(13)

The Newton descent direction ∆AN
i is obtained by solving:

∇2f(Ai) ∆AN
i = −∇f(Ai)∑

j∈ωi

x2ijŜ
−1
j ∆AN

i Ŝ
−1
j =

∑
j∈ωi

xij

(
Ŝ−1j − S−1j

)
(14)

The Newton descent update algorithm is, therefore,

Ak
i ← Ak−1

i + α∆AN
i s.t. Ak

i � 0, (15)

with stepsize α ≥ 0.
The Newton direction computation involves solving an n2×

n2 system of linear equations, given by:∑
j∈ωi

(
xijŜ

−1
j

)
⊗
(
xijŜ

−1
j

)
︸ ︷︷ ︸

n2×n2

vec
(
∆AN

i

)

= vec

∑
j∈ωi

xij

(
Ŝ−1j − S−1j

) . (16)

Let us denote this positive definite system as Ax = b, with
A =

∑
j∈ωi

(
xijŜ

−1
j

)
⊗
(
xijŜ

−1
j

)
, x = vec

(
∆AN

i

)
, and

b = vec
(∑

j∈ωi
xij

(
Ŝ−1j − S−1j

))
.

Explicitly forming A and solving the system is an expensive
operation, even with decomposition methods. The cost of
directly solving for the Newton direction has a cost of O

(
n6
)
,

where n denotes the dimension of the dictionary atoms.
In most of our applications pertaining to region covariance
descriptors, n is very small (∼ 5 − 10), and therefore this is
still acceptable in practice.

When n is much larger, we can take advantage of the fact
that although solving for Ax = b with an explicit A is
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expensive, it is relatively inexpensive to apply the operator
A on a given x. This is due to the fact that A is composed
of a sum of Kronecker products. This enables us to use
iterative methods like conjugate gradient to directly solve
Equation (14).

D. Matrix Conjugate Gradient

In this section, we present a conjugate gradient method to
directly solve (14) for the Newton descent direction. Writing
the general form3 of Equation (14),

M∑
i=1

AiXA
T
i = B. (17)

The matrix conjugate gradient algorithm to iteratively solve
Equation (17) for X is given in Algorithm 3.

Algorithm 3 Matrix Conjugate Gradient
Input: {Ai}Mi=1, B
Output: X∗
X0 = 0n×n
R0 = B −

∑M
i=1AiX0A

T
i

P0 = R0

k = 0
repeat
αk = 〈 Rk , Rk 〉

〈 Pk ,
∑M

i=1 AiPkAT
i 〉

Xk+1 = Xk + αkPk

Rk+1 = Rk − αk

∑M
i=1AiPkA

T
i

βk = 〈 Rk+1 , Rk+1 〉
〈 Rk , Rk 〉

Pk+1 = Rk+1 + βkPk

k ← k + 1
until convergence
X∗ = Xk+1

We compare the direct inversion approach and the ma-
trix conjugate gradient approach for computing the Newton
direction during actual dictionary update iterations for syn-
thetic datasets of varying dimensions n. The matrix conjugate
gradient is implemented in MATLAB without any further
code optimization. The time taken to explicitly construct A is
also included in the computation time of the direct approach.
The dimensions n is varied from 5 to 50 in steps of 5.
The computation times for dimension n are averaged over
25n trials. In all comparisons, the returned solution from the
conjugate gradient method Xcg is within 10−5 relative error
of the direct solution X∗.

The average speedup obtained by using the matrix con-
jugate gradient algorithm over the direct inversion method
is presented in Figure 1, along with 1σ standard deviation
bars. The horizontal line at speedup of 1 shows the cross-over
point when the conjugate gradient method overtakes the direct
inversion approach in computation time. For n ≤ 15, it is
faster to directly solve for x than using iterative methods. For
n ≥ 20, the matrix conjugate gradient method gives significant
speedups in solving systems of the presented structure.

3The notations Ai, X,B in this section are different from the variables of
the dictionary learning problem.
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Fig. 1. Average speedup of matrix conjugate gradient vs. direct Ax = b
linear system solution for computation of the Newton descent direction. 1σ
bars are also shown.

E. Comparison of Atom Update Techniques

We compare the gradient and Newton atom update tech-
niques in terms of their effectiveness in optimizing the dic-
tionary learning objective function. A set of K 5 × 5 posi-
tive definite atoms A0 were synthesized. N k-sparse vectors
{xj}Nj=1 were sampled, where N = 100 and k = 2, and
signals S = {S1, . . . , SN} were constructed. The dictionary
learning was run for a maximum of 15 iterations, and the net
reduction in the objective function was compared.

We used dictionary sizes of K = {10, 15, 20, 25, 30}, and
the results were averaged over 25 random trials. The choice
of K covers three different scenarios - K < M , K = M , and
K > M , where M = n(n+ 1)/2 - undercomplete, complete,
and overcomplete cases.

Four atom update techniques were compared:
1) gradient descent with backtracking line search
2) gradient descent with BB stepsize (11)
3) gradient descent with BB stepsize (12)
4) Newton descent
The different techniques were initialized with the same

random dictionary. The objective function values f(Â) at the
end of the learning procedure relative to the initial objective
f(A0) are estimated as an indicator of the quality of the local
minimum attained in each learning procedure. This is shown
in Figure 2(a). The Newton update method performs the best,
as is expected, but the BB stepsize methods greatly improve
upon the gradient descent with backtracking line search.

We also test the number of atoms correctly recovered in
the learned dictionary in each update technique. The learned
atoms Âi are matched with the ground truth atoms A∗j using a

coherence threshold of µ = tr
(
Âi, A

∗
j

)
≥ 0.95. The Newton

dictionary update approach performs the best at recovering
the ground truth dictionary atoms, followed by the gradient
approaches using Barzilai-Borwein step sizes.

We recommend using the Newton updates for smaller
matrices, i.e., n ≤ 10, and the gradient approach with BB
step size selection for larger dimensions. The matrix conjugate
gradient can be used to speed up the Newton updates in cases
of larger n as well.

F. Time Complexity

1) Sparse Coding: The MAXDET problem that forms the
fundamental part of the sparse coding step [1] has a time
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Fig. 2. Comparison of atom update methods: (a) Objective function values
f(Â) at the end of the learning procedure relative to the initial objective
f(A0) and (b) Fraction of recovered atoms with a coherence threshold of
µmin = 0.95. Size of the dictionary K is varied in {10, 15, 20, 25, 30} and
the results are averaged over 25 different random trials.

complexity of O(K2n2) per Newton iteration [14], with a
worst-case complexity of O(

√
n) Newton iterations at each

step in the interior point algorithm. In this work, we use a
coordinate descent approach which updates one coordinate of
x at a time, and repeats this over all the coordinates until
convergence. This has a time complexity of O(Kn3) per
iteration over all the coordinates. The n3 term comes from the
computation of matrix inverses, generalized eigenvalues and
their sums. Since n is pretty small in most of our applications,
and the size of the dictionary is large, our specialized approach
and implementation yields faster run times. The coordinate
descent approach is used in our software implementation
presented in Section VI, where the sparse coding times for
practical problem sizes of (n,K) are shown.

2) Dictionary Learning: The dictionary learning approach
has a time complexity of O(n3Lmax) per atom update for the
gradient descent methods, and the Newton descent has a time
complexity of O(n6Lmax) since it involves solving an n2×n2
system of equations. Lmax denotes the maximum number of
inner iterations within each atom update step (Usually this
is small in practice: ≤ 5 for initial iterations and just 1 or
2 for later iterations). The rest of the computation in each
atom update step is subsumed by complexity of computing
the descent direction.

IV. DISCRIMINATIVE DICTIONARY LEARNING

Sparse models have been used extensively to classify or
cluster data. Learning dictionaries for each class indepen-
dently without information from the other classes can be
compared to generative modeling, which may not be able to
classify or cluster data with sufficient accuracy when different
classes share features. Such a scenario calls for the use of
discriminative modeling, where the learning should promote
discrimination between the sparse models of each class. In
other words, the dictionary learned for a certain class should
provide good reconstruction for the signals from that class,
and poor reconstruction for signals that do not belong to that
class. Conversely, a signal from a certain class should be
reconstructed best by a dictionary of the same class, compared
to all other class dictionaries.

In the vector sparse modeling literature, [15], [16] have used
different formulations to solve the dictionary learning problem
while increasing the discriminative power of the learned
dictionaries. [15] use a logistic loss term in their objective
function that penalizes for misclassification of signals. In
[16], however, the discrimination is learned in terms of the
incoherence between atoms of different class dictionaries. We
follow the latter approach in learning discriminative positive
definite dictionaries.

Sparse coding has been applied to classification problems
in many domains. Here we present applications where we
use the tensor sparse coding for classification. Let us de-
note the number of classes by C. The typical approach to
classifying signals with dictionaries is to maintain separate
dictionaries for each class A1,A2, . . . ,AC . The test signal
S is sparse-coded independently over each dictionary to get
the coefficients x1,x2, . . . ,xC respectively. The different class
reconstructions are computed as Ŝc = Acxc, c = 1, . . . , C,
and the test signal is assigned the label c∗ of the class which
gives the closest approximation:

label c∗ = arg min
c

Dld

(
Ŝc, S

)
. (18)

Throughout this work, this will be the classification approach
used.
A. Atom Coherence

Before we proceed any further, we define a fundamental
property of dictionaries of positive definite atoms, coherence,
by extension from vector dictionaries.

The inner product in a positive definite matrix space is given
by 〈Ai, Aj〉 = tr (AiAj).

Definition 1. The coherence between two symmetric positive
(semi-)definite dictionary atoms Ai and Aj is given by

µ (Ai, Aj) = 〈Ai, Aj〉 = tr (AiAj) , (19)

where 〈·, ·〉 denotes the inner product in matrix space.
Therefore if the atoms are normalized to unit Frobenius norm
as mentioned in the previous section, we have the following
bounds on the coherence measure (by Cauchy-Schwarz in-
equality):

0 ≤ µ (Ai, Aj) ≤ 1,

Ai, Aj ∈ Sn+, ‖Ai‖F = ‖Aj‖F = 1. (20)
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For non-trivial Ai and Aj :
• µ (Ai, Aj) = 0 if and only if they are low-rank (semi-

definite) and their eigenspaces are disjoint.
• µ (Ai, Aj) = 1 if and only if Ai = Aj .
This can be further extended to define the average coherence

between two dictionaries A (of size KA) and B (of size KB)
by

Q (A,B) =
1

KAKB

KA∑
i=1

KB∑
j=1

〈Ai, Bj〉 . (21)

B. Formulation & Approach

Given training data from C different classes, we will attempt
to learn the dictionary for each class c = 1, . . . , C. The sizes of
the training data from each class c is given by Nc. The training
data from class c is specified as S(c) =

{
S
(c)
j

}
, j = 1, . . . , Nc,

and the dictionary learned to model this data is denoted by
A(c) =

{
A

(c)
i

}
, i = 1, . . . ,Kc, Kc being the dictionary size

for class c.
The discriminative power of the dictionaries is induced by

including a term which promotes incoherence between the
dictionaries of different classes - i.e., between each class c
dictionary A(c) and all other dictionaries A(c′), c′ 6= c. This
is motivated by the work of [16] in learning discriminative
dictionaries for classification and clustering. Similar to their
work, we will use our definition of atom coherence from
Section IV-A and penalize for the coherence between atoms
from dictionaries of different classes.

The discriminative dictionary learning problem is given by:

min
A(1),...,A(C)

C∑
c=1

 1

Nc

Nc∑
j=1

min
x ≥ 0

A(c)x � 0

Dld

(
A(c)x, S

(c)
j

)
+ λ ‖x‖1

+ η
∑
c′ 6=c

Q
(
A(c),A(c′)

) (22a)

A
(c)
i � 0,

∥∥∥A(c)
i

∥∥∥2
F
≤ 1, i = 1, . . . ,Kc, c = 1, . . . , C (22b)

This coherence term is convex (in fact, linear) in one
argument, given the other fixed. Therefore, while updating the
class c dictionary A(c), all other class dictionaries are fixed.
The alternating minimization between the sparse coding and
dictionary update stages is the same as in the usual dictionary
learning approach.

Writing out the coherence term Q in (22),∑
c′ 6=c

Q
(
A(c),A(c′)

)
=
∑
c′ 6=c

1

KcKc′

Kc∑
i=1

Kc′∑
i′=1

tr
(
A

(c)
i A

(c′)
i′

)

=

Kc∑
i=1

tr
(
A

(c)
i M (c)

)
where M (c) =

1

Kc

∑
c′ 6=c

 1

Kc′

Kc′∑
i′=1

A
(c′)
i′

 .
While updating the dictionary from class c, the factor M (c)

encompasses the influence of all the other class dictionary
atoms. This is independent of the atom number i in dictionary

Algorithm 4 Discriminative Dictionary Learning

Input: Data S(c) =
{
S
(c)
j

}Nc

j=1
, c = 1, . . . , C, dictionary size

K, sparsity parameter λ, incoherence parameter η

Output: A(c) =
{
A

(c)
i

}K

i=1
, c = 1, . . . , C

k = 0
for c = 1 to C do

Initialize A(c)
0 sampled from S(c)

end for
repeat
k ← k + 1
for c = 1 to C do

Given S(c) and A(c)
k−1, compute the sparse coefficients

X
(c)
k

end for
for c = 1 to C do

Given S(c), X
(c)
k , and other class dictionaries{

A(1)
k , . . . ,A(c−1)

k ,A(c+1)
k−1 , . . . ,A(C)

k−1

}
, compute the

updated dictionary A(c)
k

end for
until convergence

A(c). The linear penalty tr
(
A

(c)
i M (c)

)
merely adds an ηM (c)

term to the gradient expression for the dictionary learning
problem in Equation (8).

The Hessian from the dictionary learning problem in Equa-
tion (13) does not change since the coherence term Q is linear.

The discriminative atom update in Algorithm 4 can be
performed using either the gradient descent or Newton descent
methods in Section III-C.

V. EXPERIMENTS

A. Dictionary Representation Error

In this experiment, we show a comparison of sparse re-
construction performance with randomly sampled dictionaries,
dictionaries learned using K-means, and dictionaries learned
using our proposed learning approach. We use the Newton
method for the atom update in our dictionary learning ap-
proach. 10 different texture images from mosaics #1 and #2
of the Brodatz texture dataset [17] are chosen, and from each
texture image, N = 225 blocks of size 32× 32 are extracted.
Covariance descriptors of size 5 × 5 are computed using the
features I, |Ix|, |Iy|, |Ixx|, and |Iyy|.

For varying dictionary sizes K = 5, 10, 15, 20, 25, and 30,
dictionaries are constructed by randomly sampling from the
covariance descriptors in each class. These random dictionar-
ies are used as the initialization for the K-means procedure and
the dictionary learning approach, both of which are run for 25
iterations. The average reconstruction errors for the covariance
descriptors for the initial dictionaries, the K-means dictionaries
and the dictionaries learned using our proposed approach
are shown in Figure 3, for varying values of dictionary size
K. The results are averaged across the 10 different texture
images. As is expected, learning a dictionary does better at
reconstruction performance than random sampling. Further,
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our proposed approach produces a dictionary that yields a
better reconstruction than K-means clustering. This is similar
to the comparison to K-means for reconstruction performance
shown in [8].
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Fig. 3. Comparison of average reconstruction error with dictionaries learned
using K-means and our proposed dictionary learning approach, along with the
initial random dictionaries, for various dictionary sizes (n = 5, λ = 0).

B. Classification with Positive Definite Dictionaries
1) Texture Classification: We apply the classification ap-

proach described by Equation (18) to classify the 12 different
Brodatz texture mosaics [17]. This dataset comprises five 5-
class, two 16-class, two 10-class, and three 2-class classifi-
cation problems. We show classification accuracies for both
a randomly initialized dictionary sampled from the data, and
dictionaries learned from the data. A dictionary of size K = 5
was used for each class, with λ = 0.01. The results averaged
over 10-fold cross-validation are shown in Table I. As can be
seen from the results, the learned dictionaries perform better
at classifying the textures compared to randomly initialized
dictionaries. Average accuracies for KNN classification with
K = 5 is also shown for a baseline comparison. Note
that KNN needs to retain all the training data, whereas in
our approach, a compact trained dictionary represents all the
training knowledge.

Mosaic Random Dictionary Learned Dictionary KNN (K = 5)

1(5) 99.11 % 100.00 % 100.00 %

2(5) 91.73 % 93.51 % 98.04 %

3(5) 85.41 % 96.00 % 97.87 %

4(5) 82.68 % 94.75 % 98.40 %

5(5) 87.11 % 89.86 % 98.58 %

6(16) 83.67 % 90.17 % 94.72 %

7(16) 73.81 % 86.14 % 94.86 %

8(10) 85.69 % 93.87 % 97.29 %

9(10) 75.82 % 87.11 % 94.85 %

10(2) 99.78 % 100.00 % 100.00 %

11(2) 99.11 % 100.00 % 100.00 %

12(2) 97.33 % 98.89 % 100.00 %

TABLE I
AVERAGE CLASSIFICATION ACCURACY OF BRODATZ TEXTURES WITH

10-FOLD CROSS-VALIDATION.

2) Cancer Tissue Classification: Early diagnosis of any
disease is quintessential for effective treatment. This is no less
true in the diagnosis and treatment of cancer. For a surgical
pathologist, the most time-consuming aspect of the diagnostic
process involves arduously scrutinizing tissue slides under a
microscope for the evidence of disease. As a result, even a
skilled pathologist is able to diagnose only a few patients
every day. However, it is possible to expedite this process
through computer-assisted diagnosis. Towards this end, we
apply the positive definite dictionary learning algorithms to-
wards classification of tissue image regions as cancerous or
benign. We use region covariance descriptors to characterize
the image blocks extracted from the tissue, since the distinction
between the two classes of healthy vs. cancerous tissue is
based on the architecture or texture. Our work on using region
covariances for this classification, along with vector sparse
dictionary learning, has been published earlier in [18] and [19]
where we deal with endometrial and prostate cancer tissue
images respectively.

We show results with positive definite dictionary learning
with the endometrial tissue images from [18]. Sample images
from the healthy and endometrioid carcinoma tissue classes,
the description of the covariance features used are shown in
Figure 4. A combination of spatial and intensity features, with
a block size of 200x200 pixels at 5x resolution was seen to
give the best performance in [18]. The features used were

φ(x, y) =
[
I, Ix, Iy,

√
I2x + I2y , x, y,

√
x2 + y2, tan−1(y/x)

]
.

We choose 4 images each from the healthy and carcinoma
classes, and sample 200 blocks from each image. We use this
set of 1600 covariance descriptors and perform 4-fold cross-
validation - using 1 image from each class for testing and
keeping the remaining 3 for training.

(a) (b)

Fig. 4. Samples from the healthy (left) and cancerous (right) images.

In each fold, we use the 8 × 8 training covariances to
learn tensor dictionaries of varying sizes, and classify the
test features by the usual least reconstruction error approach.
The parameter λ was set to 0.001. We compare with learned
dictionaries constructed by randomly sampling the training
data. We also compare the performance with a baseline K-NN
classifier (with K = 5 chosen by cross-validation). The results
are shown in Table II for different values of the dictionary size
K.

The dictionary learning procedure helps in improving the
accuracy of dictionary-based classification, compared to ran-
domly choosing data points for the model. We beat the baseline
K-nearest-neighbor classification, while just maintaining only
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Algorithm Accuracy

5-NN 94.31 %

Te
ns

or
D

ic
tio

na
ri

es
K Random Learned

4 90.75 % 92.75 %

8 92.25 % 93.25 %

16 92.44 % 93.31 %

20 93.13 % 93.88 %

28 93.88 % 94.63 %

32 94.50 % 95.38 %

TABLE II
AVERAGE CLASSIFICATION ACCURACY WITH 4-FOLD CROSS-VALIDATION

BETWEEN HEALTHY AND ENDOMETRIOID CANCER TISSUE IMAGE
PATCHES.

a few atoms derived from the data - a 32-atom dictionary
stores only about 5% of the number of matrices as the K-NN
classifier.

C. Discriminative Dictionary Learning and Mutual Coherence

1) Synthetic Data: To demonstrate that discriminative dic-
tionary learning reduces the mutual coherence between class
dictionaries, we run this approach on synthetic data generated
from known dictionaries. A dictionary of size K atoms is
constructed for each of M classes (with n = 5, K = 5).
N = 100 samples per class are generated by constructing
N T -sparse vectors and multiplying with the dictionary. The
support and coefficients of the sparse vectors are chosen
uniformly at random.

Figure 5 shows the average coherence between atoms of
different class dictionaries for M = 2, 3, and 4 classes, for
different values of the regularization parameter η. As η in-
creases, the between-class coherence decreases. This decrease
is more significant when more classes are present.
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Fig. 5. Mutual coherence between class dictionaries for different number
of classes and varying values of η, averaged over 10 iterations (1σ bars are
shown). Each dictionary is of size K = 5 atoms, with parameter λ = 0.

2) Texture Data: Another example demonstrating the effect
of η on mutual coherence as well as on the classification
accuracy is shown next. We take the two texture images
from Brodatz mosaic #12 [17] and sample 100 blocks of
size 32× 32 from each image. Covariance descriptors of size
5 × 5 are computed using the features I, |Ix|, |Iy|, |Ixx|, and
|Iyy|. We then learn discriminative dictionaries of size K = 5
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Fig. 6. (a) Mutual coherence between class dictionaries and (b) classification
accuracy for 2 Brodatz texture images. λ = 0.1,K = 5, N1 = N2 = 100,
20 training iterations, averaged over 10 trials (1σ bars shown). Coherence
drops as η increases, but beyond a certain point accuracy starts to deteriorate.

atoms each for the two classes, with varying values for the
incoherence regularizer η.

Figure 6(a) shows the mutual coherence between the dic-
tionaries after 20 training iterations. All trials were initialized
using the same set of initial dictionaries, the mutual coherence
between which is shown in the dotted line. As η increases,
the net effect is to reduce the coherence between the class
dictionaries. However, as can be seen in the accuracy plot of
Figure 6(b), the accuracy increases when η increases from 0,
but only up to a certain point. Beyond that, the effect of over-
emphasizing the mutual incoherence between the dictionaries
affects the reconstruction performance and results in a drop
in classification accuracy. Similar trends can be observed in
other experiments as well. Empirically, suitable values for η
were found to be close to the average of reconstruction error
terms in Equation (22).

D. Discriminative Dictionary Learning for Classification

1) Discriminative Texture Classification: We apply the dis-
criminative dictionary learning algorithm from Algorithm 4
to classify two example textures from the Brodatz texture
mosaics dataset [17]. Each of these examples have 5 different
texture classes. The different types of dictionaries used were:

1) Randomly sampled from the data
2) Learned from the data independently in each class (de-

noted as DL)
3) Learned from the data discriminatively with the coher-

ence penalty (denoted as DDL)
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Fig. 7. Comparison of accuracy between randomly initialized dictionaries
(random) and dictionaries learned with (DDL) and without (DL) the discrim-
inative penalty. The corresponding textures are shown on the left.

We chose a dictionary size of K = 4, and varied the
sparsity regularizer λ. The value of η was set to be 0.1. The
improvement of accuracy in the texture classification is shown
in Figure 7. The learned dictionary improves the classification
performance, and the discriminative training proves a further
boost to the accuracy, sometimes substantially.

Classification Approach Accuracy

K-NN (K = 6) 82.50 %

Vectorized Log-covariance [3] 83.89 %

DL (K = 15) 83.43 %

DDL (K = 15) 83.78 %

DL (K = 30) 84.01 %

DDL (K = 30) 84.59 %

DL (K = 60) 85.75 %

DDL (K = 60) 86.37 %

TABLE III
CLASSIFICATION ACCURACY ON THE KTH DATASET.

2) Action Recognition with the KTH Dataset: We apply the
discriminative dictionary learning approach to classify actions
from the KTH dataset from [20]. There are 6 different actions
performed about 4 times each by 25 subjects (for a total
of 598 sequences). We use the 12 × 12 covariance feature
representation from [3], using the optical flow of the video

frames.
We use the 8 training and 9 test subjects indicated in

the dataset, and test our discriminative dictionary learning
approach. We compare this with the baseline K-nearest-
neighbors classification (best K = 6), as well as the
vectorized-log-covariance sparse coding approach from [3]
(best sparsity k = 2 with our implementation). We only
compare with these two methods using optical flow-based
region covariance descriptors, and the classification accuracy
is shown in Table III. DL implies dictionary learning without
discrimination (η = 0), and DDL denotes discriminative
dictionary learning (η = 0.1). λ was set to 0.1. Note that in
the first two approaches, the entire training data is available to
the classifier during test time, which is not the case in our
approach. The learned dictionary models the features from
the different classes, and the discriminative term improves the
overall classification accuracy.

VI. SOFTWARE

As part of this work, we present a software suite entitled
the Tensor Sparse Library4, comprising C++ binaries for the
algorithms presented here, namely:
• Sparse coding
• Sparse classification
• Dictionary learning
• Discriminative dictionary learning
The sparse coding algorithms are implemented using a

coordinate descent approach which works much faster than
interior point methods using generic solvers for our problem
sizes. We use the Eigen library [21] with OpenMP in our
sparse coding and dictionary learning implementation. For a
typical dimension of n = 5 with region covariances, and for
reasonable dictionary sizes K ≤ 50 the sparse coding takes
under 1 millisecond using our implementation.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a new formulation for dictionary learning
over positive definite matrices, and different approaches to
learn these dictionaries given training data. A discriminative
variant of dictionary learning for learning dictionaries of mul-
tiple classes simultaneously is also presented, for classification
and clustering applications. Experimental results demonstrate
the performance of the dictionary learning algorithms as
well as the applicability to real-world texture data. Finally, a
software library has been release comprising C++ binaries for
all the positive definite sparse coding and dictionary learning
approaches presented here.
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