
A General Vandermonde Factorization of aHankel Matrix?Daniel Boley1, Franklin Luk2, David Vandevoorde21 University of Minnesota, Minneapolis MN 55455, USA2 Rensselaer Polytechnic Institute, Troy NY 12180, USAAbstract. It is shown that an in�nite Hankel matrix of a �nite rank(or a �nite Hankel matrix) admits a generalized Vandermonde decompo-sition H = V TDV , where V is a generalized Vandermonde matrix, andD is a block diagonal matrix. The full structure of this decompositionwas �rst fully discussed by Vandevoorde [9], but the development here isbased solely on linear algebra considerations, speci�cally the use of theJordan Canonical Form.1 IntroductionWe consider an in�nite-dimensional Hankel matrix of a �nite rank rH1 = 0BBB@ h0 h1 h2 h3 . . .h1 h2 h3 h4 . . .h2 h3 h4 h5 . . .h3 h4 h5 h6 . . .. . . . . . . . . . . . . . .1CCCA ; (1)where the entries fhkg1k=0 are complex-valued scalars. In signal processing, thesescalars represent a signal generated by a sum of a �nite number of exponentialshk = rXl=1 �kl dl; for k = 0; 1; 2; � � � : (2)The goal is to �nd the underlying modes �l and weights dl corresponding tothis signal, when the signal is corrupted by noise. In the theory of orthogonalpolynomials, the entries hl represent moments with respect to an inner productor pseudo inner product. If this pseudo inner product is a weighted sum overa �nite set of knots: hf; gi = Prl=1 f(�l)g(�l)dl, then hk = h1; xki. The goal inthis case is to determine the knots and weights of the inner product from themoments.If all the modes �l are distinct, then equation (2) is equivalent to the Van-dermonde decomposition of the original Hankel matrix: H1 = V T1DV1 where? This research was partially supported by NSF Grant CCR-9405380.



D 4=diag(d1; � � � ; dr) andV1 4= 0BB@ 1 �1 �21 � � �1 �2 �22 � � �... ... ... � � �1 �r �2r � � �1CCAr�1 (3)In this paper, we derive the general structure of the Vandermonde decompositionof H1 in the case of multiple modes using only linear algebra considerations,and discuss the case of �nite dimensional Hankel matrices. We begin with somepreliminaries, then show how the general structure of the decomposition can bederived using the Jordan canonical form, and conclude with a discussion of the�nite dimensional case.Regarding in�nite Hankel matrices of �nite rank, we have the following the-orem from Gantmacher [4, vol. 2, p207]:Theorem 1. Let H1 be an in�nite Hankel matrix of rank r. Then the entriesof H1 satisfy an r-term recurrence of the form (for k = r; r + 1; � � �):hk = ar�1hk�1 + ar�2hk�2 + � � �+ a0hk�r: (4)Furthermore, the modes �l generating the entries in (2) are the roots of thepolynomial of degree r:p(�) 4= �r � ar�1�r�1 � � � � � a0�0; (5)and the leading r � r principal submatrix of H1 has full rank r.It is also well known that (4) is a di�erence equation whose general solution[h0; h1; h2; � � �] is a linear combination of solutions of the form [6, p. 33]:( 1 �l �2l �3l � � � ) = ( 1 �l �2l �3l � � � )dd�l ( 1 �l �2l �3l � � � ) = ( 0 1 2�l 3�2l � � � )12! d2d�2l ( 1 �l �2l �3l � � � ) = ( 0 0 1 3�l � � � )... ...1(ml�1)! dml�1d�ml�1l ( 1 �l �2l �3l � � � ) = ( 0 � � � 0 1 �ml1 ��l � � � ) ; (6)where ml is the multiplicity of �l as a root of (5). In (6), the general (j + 1)-stentry in the (i+ 1)-st solution (for i; j = 0; 1; � � �) is1i! did�il �jl = �0 if i > j�ji��j�il if i � j;where �ji� = j!i!(j�i)! is the binomial coe�cient. This naturally leads one to expectthat the generalization of the Vandermonde decomposition H1 = V T1DV1 willconsist of a con
uent Vandermonde matrix [5] whose rows have the form in (6).That still leaves open the structure arising in D. This we develop in the nextsection. 2



2 General Vandermonde DecompositionAssume the matrix H1 of equ. (1) has rank r. Let Hr consist of the �rst r rowsof H1, which from Theorem 1 has full rank r. Denote the �rst column of Hrby h0 4= (h0 � � � hr�1 )T . Then the di�erence equation (4) can be written inmatrix form Hr = (h0 Ch0 C2h0 � � � )(r�1)where C 4= 0BBBBBBB@ 0 10 1. . . . . .. . . . . .0 1a0 a1 a2 � � � ar�2 ar�1
1CCCCCCCAis the companion matrix corresponding to the polynomial (5). The eigenvaluesof C are the roots of (5), and we denote them by �l, each of multiplicity ml,for l = 1; � � � ; s, where m1 + � � � +ms = r. The Jordan form of C will have theform J = diagfJ1; � � � ; Jsg where Jl is shorthand for Jl = Jml�ml(�l) (viz. theml �ml Jordan block corresponding to eigenvalue �l).De�ne V 4= (v JTv (JT )2v � � � (JT )r�1v ) ;where vT = � e[m1]T1 � � � e[ms]T1 � is a vector partitioned conformally with Jand e[ml]1 = ( 1 0 � � � 0 )T is the ml dimensional unit coordinate vector. Forexample, if the roots were 2, 3, 1, with multiplicities 1, 1, 3, respectively, thenJ;v; V would beJ = 0BBBB@2 0 0 0 00 3 0 0 00 0 1 1 00 0 0 1 10 0 0 0 11CCCCA ; v = 0BBBB@11100 1CCCCA ; V = 0BBBB@1 2 4 8 161 3 9 27 811 1 1 1 10 1 2 3 40 0 1 3 6 1CCCCA :Then we have by the de�nition of V :V CT = (v JTv (JT )2v � � � (JT )r�1v )CT= ( JTv; � � � ; (JT )r�1v; (a0I + � � �+ ar�1Jr�1)Tv )= ( JTv; � � � ; (JT )r�1v; (JT )rv ) (*)= JTV; (7)where the line (*) follows from the fact that J satis�es the characteristic equa-tion of C: p(J) = 0 (the Cayley-Hamilton Theorem). Thus we have the Jordandecomposition of C = V TJV �T . It is necessary to justify the nonsingularity ofV ; one way is to note that the �l's are distinct and each row of V is one of thegeneral solutions (6) to the di�erence equation (4), and hence V has r linearlyindependent rows. 3



We can now express Hr in terms of the Jordan canonical decompositionCV T = V TJ : Hr = (h0 Ch0 C2h0 � � � )= V T (w Jw J2w � � � ) ; (8)where w 4= V �Th0. We claim that there exists a block diagonal matrix D =diagfD1; � � � ; Dsg [partitioned conformally with J ] satisfying the two conditions(a) Dv = w(b) DJT = JD; (9)so that Hr�r = V T (Dv JDv J2Dv � � � Jr�1Dv )= V TD (v JTv (JT )2v � � � (JT )r�1v )= V TDV: (10)Here Hr�r denotes the leading r � r principal submatrix of H1.We now construct the matrix D to satisfy the conditions (9). Since D andJ are both block diagonal with conformal blocks, and also conformal with thepartitioning of v, it su�ces to look at the l-th block Dl, for each l = 1; � � � ; s.We partition wT = (w1 � � � ws ) conformal with v and J . The condition (9a)determines the �rst column of each Dl: Dle[ml]1 = wl. The condition (9b) meansthat DlJTl = JlDl, which is equivalent toDl(Jl � �lI)T = (Jl � �lI)Dl: (11)But the matrix (Jl � �lI) has the special form of a nilpotent \shift-up" matrixN whose (i; j)-th entry is given by[Jl � �lI ]i;j = Ni;j = �1 if i = j � 10 otherwise ; (12)for i; j = 2; � � � ;ml. This means that [Dl]i;j�1 = [Dl]i�1;j for i; j = 1; � � � ;ml.Furthermore, the last row of (11) [right side] is zero, so [Dl]i;j = 0 for i = ml andj = 2; � � � ;ml. So we conclude that the conditionsDv = w andDJT = JD implythat Dl is upper antitriangular and Hankel, and furthermore such a Dl satisfyingthese two conditions exists and is uniquely de�ned by these two conditions. Thiscan be illustrated with an example representing a 3� 3 Dl:0@D11 D12 D13D21 D22 D23D31 D32 D331A0@ 0 0 01 0 00 1 01A = 0@ 0 1 00 0 10 0 01A0@D11 D12 D13D21 D22 D23D31 D32 D331Awhich means that 0@D11 D12 D13D21 D22 D23D31 D32 D331A = 0@D1 D2 D3D2 D3 0D3 0 0 1Ais Hankel and upper anti-triangular.Hence we have the following: 4



Theorem 2. Suppose H1 is an in�nite matrix of rank r, and let �1; � � � ; �sbe the roots of the r-term di�erence equation generating the entries of H1,where each �l has multiplicity ml, l = 1; � � � ; s. Then H1 admits a generalizedVandermonde decomposition H1 = V T1DV1 where V1 is the r �1 con
uentVandermonde matrix V1 = 0B@V [1]1...V [s]1 1CAr�1where each block row V [l]1 has ml rows with the form
V [l]1 = 0BBBBBBBBBB@

1 �l �2l �3l �4l � � � �ml�1l � � �0 1 2�l 3�2l 4�3l � � � �ml�11 ��ml�2l � � �0 0 1 3�l 6�2l � � � �ml�12 ��ml�3l � � �0 0 0 1 4�1l � � � �ml�13 ��ml�4l � � �0 0 0 0 1 � � � �ml�14 ��ml�5l � � �... ... ... ... ... . . . ... ...0 0 0 0 0 � � � 1 � � �
1CCCCCCCCCCAml�1 ; (13)

andD is a block diagonal matrix whose l-th diagonal block isml�ml (partitionedconformally with V ) and is Hankel and upper anti-triangular. The (i+1; j+1)-stentry of V [l]1 is given by[V [l]1 ]i+1;j+1 = �0 if i > j�ji��j�i if i � j;for i = 0; � � � ;ml � 1 and j = 0; 1; � � �.Proof: The decomposition of the leading r � r principal submatrix Hr�r =V TDV where V 4= (v JTv (JT )2v � � � (JT )r�1v ), follows from the abovediscussion. De�ning the r�1 matrix V1 4= (v JTv (JT )2v � � � ), equation(8) leads to: Hr = V T (Dv JDv J2Dv � � � )= V T (Dv DJTv D(JT )2v � � � )= V TDV1:Because of the symmetry of H1, we haveH1 = 0BB@ I(CT )r(CT )2r... 1CCAV TDV1 = 0BB@ V TV T JrV TJ2r... 1CCADV1 = V1TDV1:5



The speci�c structure of each block row V [l]1 can be derived from the following.The (j + 1)-st column of V [l]1 is [V [l]1 ]:;j+1 = (JTl )je[ml]1 where(JTl )j = 0BBBBB@ �jl�j1��j�1l �jl 0�j2��j�2l �j1��j�1l �jl... ... ... . . .� jml�1��j�ml+1l � jml�2��j�ml+2l � jml�3��j�ml+3l � � � �jl
1CCCCCA :and e[ml]1 = ( 1 0 0 � � � 0 )T (an ml-vector), where if �j = 0 we use theconvention that 00 = 1, 0k = 0 for any k 6= 0. The formula for the powers ofthe Jordan block (JTl )j can be veri�ed by applying the binomial theorem toJjl = (N + �lI)j =Pi �ji�N i�j�il , where N is the nilpotent matrix (12).3 Finite Dimensional Hankel MatrixLet Hr�r be an order r nonsingular Hankel matrix:Hr�r = 0BBBB@ h0 h1 h2 � � � hr�1h1 h2 h3 � � � hr... ... ... . . . ...hr�2 hr�1 hr � � � h2r�3hr�1 hr hr+1 � � � h2r�2

1CCCCAIf we can �nd an r term recurrence of the form (2) generating the hk, then wehave the Vandermonde decomposition (10) for this �nite dimensional Hankelmatrix. Any such recurrence can be completely determined by choosing an extraparameter 
 = h2r�1 by means of the \Yule-Walker" equations (originally foundin Prony [8]):0BBBB@ h0 h1 h2 � � � hr�1h1 h2 h3 � � � hr... ... ... . . . ...hr�2 hr�1 hr � � � h2r�3hr�1 hr hr+1 � � � h2r�2
1CCCCA0BBBB@ a0a1a2...ar�1

1CCCCA = 0BBBB@ hrhr+1...h2r�2
 1CCCCA (14)for the coe�cients of the r term recurrence. Since Hr�r is assumed to be nonsin-gular, we �nd that there is a one-parameter family of r-term recurrence relationsand hence a one-parameter family of r� r Vandermonde decompositions. A fur-ther analysis of this family is as follows. Consider the system of equations0BBBB@ h0 h1 h2 � � � hr�1h1 h2 h3 � � � hr... ... ... . . . ...hr�2 hr�1 hr � � � h2r�3hr�1 hr hr+1 � � � h2r�21CCCCA
0BBBB@ b0 c0b1 c1b2 c2... ...br�1 cr�11CCCCA = 0BBBB@ hr 0hr+1 0... ...h2r�2 00 11CCCCA (15)6



and de�ne the two polynomials (not identically zero)b(x) = xr � br�1xr�1 � � � � � b0and c(x) = �cr�1xr�1 � � � � � c0:Then the polymomial p(x) of equ. (5) corresponding to the solution of (14) canbe written as p(x) = b(x) + 
c(x), where 
 denotes a free parameter. Supposewe are given a value � to which we wish to set one root of p(x). If c(�) 6= 0, wecan achieve this by setting 
 := �b(�)=c(�). But c(�) = 0 only at up to r � 1distinct locations. So we have proved the following result.Theorem 3. Let Hr�r be a nonsingular r�r Hankel matrix. Then Hr�r admitsa family of r� r Vandermonde decompositions of the form (10) parametrized bya single complex-valued parameter 
 = h2r�1 which can be chosen arbitrarily.Furthermore, given any complex � (except for up to r� 1 isolated points in thecomplex plane) there exists a Vandermonde decomposition such that one of theblock rows (13) of the Vandermonde matrix is generated by � (i.e., � is a rootof the polynomial (5)).We illustrate this result with the following example, where the roots are 2,3, 1 with respective multiplicities 1, 1, 3:0BBBB@ 6 8 17 43 1148 17 43 114 31017 43 114 310 86343 114 310 863 2453114 310 863 2453 70881CCCCA = V TDV =
= 0BBBB@ 1 1 1 0 02 3 1 1 04 9 1 2 18 27 1 3 316 81 1 4 61CCCCA0BBBB@2 0 0 0 00 1 0 0 00 0 3 2 10 0 2 1 00 0 1 0 0 1CCCCA0BBBB@ 1 2 4 8 161 3 9 27 811 1 1 1 10 1 2 3 40 0 1 3 61CCCCANow we brie
y consider the case of an n�n Hankel matrix which is singular.In this case we can embed this matrix in an r � r nonsingular Hankel matrix.This can be done by extending the \signal" fhkg2n�2k=0 . There are many choices forsuch an extension, and an open question is how to choose the extension to obtainthe smallest possible rank rmin that su�ces to construct such an embedding. Weremark that we use the term embedding loosely, since it is possible that r < n,which occurs when the leading r � r principal submatrix of Hn�n has full rankr = rankfHn�ng. In fact, we have the following resultTheorem 4. If the leading r� r principal submatrix of an n�n Hankel matrixH is nonsingular, where r is the rank of H , then H admits the Vandermondedecomposition H = (Vr�n)TDr�rVr�n, where the matrices have the indicateddimensions.Proof: Let Hr�r denote the leading r � r principal submatrix, and let 
 =Hr;r+1 = Hr+1;r = h2r�1. It su�ces to show that all the entries fhkg2n�2k=0satisfy the r-th order di�erence equation (4) for k = r; : : : ; 2n� 2. Because then7



it would follow from Theorem 1 that H is the leading principal submatrix of anin�nite dimensional Hankel matrix H1 of rank r, and hence we could obtainthe Vandermonde decomposition of H as the leading part of the decompositionof H1.Let hk�1 denote the k-th column of H , as an extension to the notation h0denoting the �rst column of H . The �rst r columns are linearly independent butnot the �rst r + 1 columns, sohk = ar�1hk�1 + ar�2hk�2 + � � �+ a0hk�r (16)holds for k = r, where the a's are the solution to (14). We claim that (16) holdsalso for k = r + 1: certainly this is true for the �rst n� 1 rows of (16) becauseof the Hankel structure. Since the last row is a linear combination of the �rstn � 1, the linear relation (16) must also hold for the last row. Repeating thesame argument, (16) must hold for k = r+2; r+3; : : : ; n� 1. This implies thatthe di�erence equation (4) must apply for k = r; r + 1 : : : ; 2n� 2.We can conclude that the length rmin of the shortest recurrence generating theentries of H (and hence the order of the resulting Vandermonde decomposition)will be less than or equal to n if r is the rank of H and the leading r�r principalsubmatrix of H is nonsingular. Otherwise r > n. We illustrate these situationswith the following:0@ 0 0 00 0 10 1 01A has rmin = 4, and 0@ 0 1 01 0 00 0 01A has rmin = 2:4 Smallest Rank One Perturbation To Reduce RankAs an illustration of the theory presented above, we address the question of�nding the smallest rank-one change to a nonsingular Hankel matrix that willreduce its rank. Speci�cally, we address the following problem:Problem P1. Given an r � r non-singular Hankel matrix H , �nd a Hankelmatrix eH such that rank( eH) = r � 1, rank(H � eH) = 1, and kH � eHk is aminimum.We remark that this problem di�ers from that of �nding the nearby Han-kel matrix of lower rank by means of the algorithm of Cadzow [3] in that thedi�erence matrix H � eH may not be rank one, and generally has full rank.Suppose there is a solution to Problem P1. Since bH 4= (H� eH) is also a Hankelmatrix, it must admit a Vandermonde decomposition, and since bH has rank one,this Vandermonde decomposition must take on a very special form: bH = bV T bdbVwhere bV = � 1 b� b�2 � � � b�r�1 � consists of a single row generated by b�, andbd is a scalar.Now consider the polynomials b(x), c(x) derived from the system (15). Ifc(b�) 6= 0, we can �nd a unique value for the scalar 
 such that p(b�) = b(b�)+
c(b�),8



which leads to a Vandermonde decomposition of the original matrix H in whichb� appears as one of the roots:H = V TDV = 0BBBBBBB@ � � � 1b�...b�r�2b�r�1 � � �1CCCCCCCA0B@ . . . d . . .1CA0B@ ...1 b� � � � b�r�2 b�r�1... 1CA :(17)We can write the rank-one change as bH = V T bDV , using the same V as in (17)and with bD = diagf0; : : : ; 0; bd; 0 : : : ; 0g. Then the singularity ofeH = H � bH = V T (D � bD)Vimplies that b� must correspond to the scalar diagonal block d = bd of D (i.e. itmust be a simple root of (5)). Therefore, the decomposition of the reduced-rankmatrix eH will consist of the other r � 1 rows of V and the corresponding r � 1rows and columns of D, derived from the roots other than b�. This in turn impliesthat the leading (r � 1) � (r � 1) principal submatrix of eH is nonsingular, byTheorem 2.Conversely, let eH be the solution to problem P1 and suppose that the leading(r � 1) � (r � 1) principal submatrix of eH is nonsingular. Then we can obtainthe Vandermonde decomposition of H = eH + bH by just taking the direct sumof the decompositions of eH and bH. Speci�cally: if eH = eV T eDeV and bH = bV T bdbVare Vandermonde decompositions of order r � 1 and 1, respectively, thenH = � eV TbV T �� eD bd�� eV bV � (18)is a Vandermonde decomposition of the original H of order r.So we have demonstrated that either there is a value of the parameter 
which will produce a Vandermonde decomposition (18) from which a solution toProblem P1 may be extracted, or the solution to Problem P1 will either fail toexist or will have a singular leading (r � 1)� (r � 1) principal submatrix.5 ConclusionsWe have derived the general form of a Vandermonde decomposition for an in�-nite Hankel matrix of �nite rank and of a �nite dimensional nonsingular Hankelmatrix. We have discussed some choices when decomposing a singular �nite-dimensional Hankel matrix, and showed how this theory leads to a partial so-lution to the \smallest rank-one change" problem. These latter two situationsdeserve further study and analysis. A later paper will report on a fast algorithmto compute this decomposition which has been developed by Vandevoorde [9]and brie
y described in [1], based on the Lanczos techniques in [7, 2].9
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