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Abstract. It is shown that an infinite Hankel matrix of a finite rank
(or a finite Hankel matrix) admits a generalized Vandermonde decompo-
sition H = V"DV, where V is a generalized Vandermonde matrix, and
D is a block diagonal matrix. The full structure of this decomposition
was first fully discussed by Vandevoorde [9], but the development here is
based solely on linear algebra considerations, specifically the use of the
Jordan Canonical Form.

1 Introduction

We consider an infinite-dimensional Hankel matrix of a finite rank r

ho hi hy h3
hi hy hs hy .-

Hyo= 1| hy hsy ha hs .- |, (1)
hs hs hs he .-

where the entries {hy }%2 , are complex-valued scalars. In signal processing, these
scalars represent a signal generated by a sum of a finite number of exponentials

hi =Y Afdy, for k=0,1,2,--. (2)
=1

The goal is to find the underlying modes A; and weights d; corresponding to
this signal, when the signal is corrupted by noise. In the theory of orthogonal
polynomials, the entries h; represent moments with respect to an inner product
or pseudo inner product. If this pseudo inner product is a weighted sum over
a finite set of knots: (f,g) = >°/_; f(\)g(\)dy, then hy = (1,z*). The goal in
this case is to determine the knots and weights of the inner product from the
moments.

If all the modes A; are distinct, then equation (2) is equivalent to the Van-
dermonde decomposition of the original Hankel matrix: H,, = V.. DV, where
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Voo = : : :2 (3)
1 AT /\3’ e T X 00

In this paper, we derive the general structure of the Vandermonde decomposition
of Hy, in the case of multiple modes using only linear algebra considerations,
and discuss the case of finite dimensional Hankel matrices. We begin with some
preliminaries, then show how the general structure of the decomposition can be
derived using the Jordan canonical form, and conclude with a discussion of the
finite dimensional case.

Regarding infinite Hankel matrices of finite rank, we have the following the-
orem from Gantmacher [4, vol. 2, p207]:
Theorem 1. Let H., be an infinite Hankel matrix of rank r. Then the entries
of H, satisfy an r-term recurrence of the form (for k =r,r+1,---):

hy = ar_1hg_1 +a,_shp_s +--- + aohp—,. (4)

Furthermore, the modes \; generating the entries in (2) are the roots of the
polynomial of degree r:

PA) EN —a, N — =g, (5)

and the leading r x r principal submatrix of H., has full rank r. []
It is also well known that (4) is a difference equation whose general solution
[ho, b1, ha, -] is a linear combination of solutions of the form [6, p. 33]:

(1A A A )

(T A A A )

(LN A N ) =(0 1 2% 3% )
2
sa (L N A A )=(0 0 1 3n )
l (6)
my—1 . : : .
(mllfl)!ddx"%(l Al Alz Al3 ):(0 0 0 1 (1Z)Al )7
l

where m; is the multiplicity of A; as a root of (5). In (6), the general (j + 1)-st
entry in the (i + 1)-st solution (for 4,5 = 0,1,---) is

1 d i _Jo ifi>j

AN T LN T i<,
where (Z) = WL), is the binomial coefficient. This naturally leads one to expect
that the generalization of the Vandermonde decomposition H,, = VI DV, will
consist of a confluent Vandermonde matrix [5] whose rows have the form in (6).
That still leaves open the structure arising in D. This we develop in the next
section.



2 General Vandermonde Decomposition

Assume the matrix Ho, of equ. (1) has rank r. Let H, consist of the first r rows
of Hy,, which from Theorem 1 has full rank r. Denote the first column of H,
by hg 2 (hg -+ hy_1)". Then the difference equation (4) can be written in
matrix form

Hy=(hy Chy C%hg )00

where
0 1
0 1
Cé
0 1
Gp a1 a2 -+ Gp-2 (Ar—1

is the companion matrix corresponding to the polynomial (5). The eigenvalues
of C are the roots of (5), and we denote them by A;, each of multiplicity m,,
fori =1,---,s, where m; + --- + myz; = r. The Jordan form of C' will have the
form J = diag{.J1,---, Js} where J; is shorthand for J, = J,,, xm, (M) (viz. the
my X my Jordan block corresponding to eigenvalue ;).

Define
VE(v Jlv (JT)v o (T ),
where v = (e[lml]T e e[lms] T) is a vector partitioned conformally with J
and e[lml] =(1 0 -- O)T is the m; dimensional unit coordinate vector. For

example, if the roots were 2, 3, 1, with multiplicities 1, 1, 3, respectively, then
J, v,V would be

2000 0 o 1 124 8 16
o[3[0 0 0 1 1392781

J=]5ole[llo |, v=|1|,V=T1111
olofo 11 0 0123 4
ofo]jo o ]. 0 00 ]. 3 6

Then we have by the definition of V:
voT =(v JTv (JT)*v - (JD)r-tv)cT

= (JTV, BRI (JT)Tilv, (a01+"'+ar71J7ﬂ71)TV)

= (ST, e (YL (7)) ONY

=J"V,

where the line (x) follows from the fact that .J satisfies the characteristic equa-
tion of C: p(J) = 0 (the Cayley-Hamilton Theorem). Thus we have the Jordan
decomposition of C = VT JV =T It is necessary to justify the nonsingularity of
V; one way is to note that the \;’s are distinct and each row of V' is one of the
general solutions (6) to the difference equation (4), and hence V has r linearly
independent rows.



We can now express H, in terms of the Jordan canonical decomposition
cvt =vTyJ.
H,=(hy Chy C?hy ---) (8)
=Vi(w Jw J?w ---),

where w = V-"hy. We claim that there exists a block diagonal matrix D =
diag{D,,---, Dy} [partitioned conformally with J] satisfying the two conditions

(a) Dv=w )
(b) DJT = JD,
so that
H.x., =VT(Dv JDv J?Dv --- J'"'Dv)
=VID(v J'v (JT)iv - (JD)rlv) (10)

=VTDV.

Here H, «, denotes the leading r x r principal submatrix of H.

We now construct the matrix D to satisfy the conditions (9). Since D and
J are both block diagonal with conformal blocks, and also conformal with the
partitioning of v, it suffices to look at the I-th block D;, for each I = 1,---,s.

We partition w!' = (w; -+ wy) conformal with v and J. The condition (9a)

determines the first column of each D;: Dle[lm’] = w;. The condition (9b) means
that DlJlT = J;D;, which is equivalent to

Di(Jy =MD" = (Ji = M) Dy (11)

But the matrix (J; — A I) has the special form of a nilpotent “shift-up” matrix
N whose (i, j)-th entry is given by

o (1ifi=j-1
L= Mullij = Nij = {0 otherwise (12)
for i,j = 2,---,my. This means that [D]; j_1 = [D;]i—1,; for i,5 = 1,---,my.

Furthermore, the last row of (11) [right side] is zero, so [D;]; ; = 0 for i = m; and
j =2,---,my. So we conclude that the conditions Dv = w and DJ” = JD imply
that D, is upper antitriangular and Hankel, and furthermore such a D; satisfying
these two conditions exists and is uniquely defined by these two conditions. This
can be illustrated with an example representing a 3 x 3 D;:

Dy Dy Dis 0 00 010 Dy Dy Dis
Dy Dyy Dos 1 0 0]=10 01 Dy Dyy  Dss
D3y D3y Dagg 0 10 0 0O D3y D3y Dagg
which means that
D1 Dy D3 Dy D> D3
Dyy Dyy Dos | =1| Dy Ds O
D3y D3y Dss Dy 0 0

is Hankel and upper anti-triangular.
Hence we have the following;:



Theorem 2. Suppose H,, is an infinite matrix of rank r, and let \1,---, A,
be the roots of the r-term difference equation generating the entries of H,
where each \; has multiplicity m;, l = 1,---,s. Then H,, admits a generalized
Vandermonde decomposition H., = VO:’;DVOO where Vi, is the r x oo confluent
Vandermonde matrix

(1]

Vo = :
[s]

B X 00

where each block row Vo[é] has m; rows with the form

IR VIR D D VR At
0 1 2\ 3) 4N (M)A
0 0 1 3\ 6 - ("™7hHamT?o
vO= 0 0 0 1 A e (AT . (13)
00 0 0 1 (A
00 0 0 0 1

mp X oo

and D is a block diagonal matrix whose l-th diagonal block is m; x my (partitioned
conformally with V') and is Hankel and upper anti-triangular. The (i+1,j+1)-st

entry of Vo[é] is given by

0 ifi>j
l _
[Vo[o]]i+17j+1 - { (z)/\jfz ifi S ]

fori=0,---,my—1landj=0,1,---.
Proof: The decomposition of the leading r X r principal submatrix H,.y, =
VTDV where V= (v J'v (JT)2v .. (JT)""'v), follows from the above

discussion. Defining the r x oo matrix Voo = (v JTv (JT)?v --.), equation

(8) leads to:
H.=V"'(Dv JDv J?’Dv --.)
=V"'(Dv DJ'v D@J")?v -..)
=VTDV,.

Because of the symmetry of H., we have

I vT
cnry v
Hy = (CT)2r VDV, = VT j2r DV, =V, TDV.



The specific structure of each block row Vo[é] can be derived from the following.
The (j + 1)-st column of V& is [VA]. ;41 = (JT)iel™ where

5 |
o¥t o
(Y = (2) A RY Nl
(mljfl)AgimH_l (mljf2) )\{*ml+2 (mljfB) )\{*ml+3 e A{
and e[lm’] =(1 0 0 --- 0)" (an my-vector), where if Aj = 0 we use the

convention that 0° = 1, 0¥ = 0 for any k& # 0. The formula for the powers of
the Jordan block (JlT)j can be verified by applying the binomial theorem to
Jl = (N+XNI)7 =%, (J)NX] ", where N is the nilpotent matrix (12). []

3 Finite Dimensional Hankel Matrix

Let H,.y, be an order r nonsingular Hankel matrix:

ho  hi hs o heo
h1 ho h3 h,
Hyo=| © & 1
hes het By oo hageg
heov he heyr oo b

If we can find an r term recurrence of the form (2) generating the hy, then we
have the Vandermonde decomposition (10) for this finite dimensional Hankel
matrix. Any such recurrence can be completely determined by choosing an extra
parameter v = hg,_; by means of the “Yule-Walker” equations (originally found
in Prony [8]):

ho hy ha o hy ap h.
hi ha hs s hy ay hr+1
S @ = (14)
hr72 hrfl hr e h2r73 h2r72
hy—1 h, hr+1 o hopo Ar—1 Y

for the coefficients of the r term recurrence. Since H,.y, is assumed to be nonsin-
gular, we find that there is a one-parameter family of r-term recurrence relations
and hence a one-parameter family of » X r Vandermonde decompositions. A fur-
ther analysis of this family is as follows. Consider the system of equations

ho hl hg e hr,1 bo Co hr 0
ha ha hs t h, b1 C1 hr+1 0
A e =1 (1)
hr72 hrfl hr e h2r73 h2r—2 0
hrfl hr hr+1 e h2r72 brfl Cr—1 0 1



and define the two polynomials (not identically zero)
b(z) =a" —b,_1z" ' — - = b

and
c(z) = —c, 12" " = —¢p.

Then the polymomial p(z) of equ. (5) corresponding to the solution of (14) can
be written as p(x) = b(x) + yc(z), where 7 denotes a free parameter. Suppose
we are given a value A to which we wish to set one root of p(z). If ¢(A) # 0, we
can achieve this by setting v := —b(\)/e(X). But ¢(A) = 0 only at up to r — 1
distinct locations. So we have proved the following result.
Theorem 3. Let H,«, be a nonsingular r xr Hankel matrix. Then H,. ., admits
a family of r x r Vandermonde decompositions of the form (10) parametrized by
a single complex-valued parameter v = hs,._1 which can be chosen arbitrarily.
Furthermore, given any complex A (except for up to r — 1 isolated points in the
complex plane) there exists a Vandermonde decomposition such that one of the
block rows (13) of the Vandermonde matrix is generated by A (i.e., A is a root
of the polynomial (5)). []

We illustrate this result with the following example, where the roots are 2,
3, 1 with respective multiplicities 1, 1, 3:

6 & 17 43 114
8 17 43 114 310
17 43 114 310 863 =vTpv =
43 114 310 863 2453
114 310 863 2453 7088

1l 1|1 o o 2[0lo 00 1 2 4 816
21 311 1 o olllo 0o 1 3 927 81
= 4 91 2 1 0lo|321 111 11
82711 3 3 00|21 0 o 1 2 3 4
16/81| 1 4 6 olo|l oo o o 1 3 6

Now we briefly consider the case of an n x n Hankel matrix which is singular.
In this case we can embed this matrix in an r x r nonsingular Hankel matrix.
This can be done by extending the “signal” {hy};",*. There are many choices for
such an extension, and an open question is how to choose the extension to obtain
the smallest possible rank r,;, that suffices to construct such an embedding. We
remark that we use the term embedding loosely, since it is possible that r < n,
which occurs when the leading r x r principal submatrix of H, x, has full rank
r = rank{H, «n}. In fact, we have the following result
Theorem 4. If the leading r X r principal submatrix of an n x n Hankel matrix
H is nonsingular, where r is the rank of H, then H admits the Vandermonde
decomposition H = (Vyxn)" DyxVixn, where the matrices have the indicated
dimensions.
Proof: Let H,y, denote the leading r x r principal submatrix, and let v =
Hyr41 = Hyy1p = hor—1. It suffices to show that all the entries {hk},2€162
satisfy the r-th order difference equation (4) for k = r,...,2n — 2. Because then



it would follow from Theorem 1 that H is the leading principal submatrix of an
infinite dimensional Hankel matrix H,, of rank r, and hence we could obtain
the Vandermonde decomposition of H as the leading part of the decomposition
of H.

Let hi_; denote the k-th column of H, as an extension to the notation hg
denoting the first column of H. The first r columns are linearly independent but
not the first r + 1 columns, so

hy =a,_ihy_1 +ar—shp_s +-- -+ aghy_, (16)

holds for k = r, where the a’s are the solution to (14). We claim that (16) holds
also for k = r + 1: certainly this is true for the first n — 1 rows of (16) because
of the Hankel structure. Since the last row is a linear combination of the first
n — 1, the linear relation (16) must also hold for the last row. Repeating the
same argument, (16) must hold for k =r +2,r+3,...,n — 1. This implies that
the difference equation (4) must apply for k =r,r+1...,2n —2.[]

We can conclude that the length rpyi, of the shortest recurrence generating the
entries of H (and hence the order of the resulting Vandermonde decomposition)
will be less than or equal to n if r is the rank of H and the leading r x r principal
submatrix of H is nonsingular. Otherwise » > n. We illustrate these situations
with the following:

0 0 0 01 0
0 0 1 has rmin = 4, and 1 0 0] has rmn = 2.
01 0 0 0 O

4 Smallest Rank One Perturbation To Reduce Rank

As an illustration of the theory presented above, we address the question of
finding the smallest rank-one change to a nonsingular Hankel matrix that will
reduce its rank. Specifically, we address the following problem:

Problem P1. Given an r X r non-singular Hankel matrix H, find a Hankel
matrix H such that rank(H) = r — 1, rank(H — H) = 1, and |[H — H|| is a
minimum.

We remark that this problem differs from that of finding the nearby Han-
kel matrix of lower rank by means of the algorithm of Cadzow [3] in that the
difference matrix H — H may not be rank one, and generally has full rank.

Suppose there is a solution to Problem P1. Since H = (H —H) is also a Hankel
matrix, it must admit a Vandermonde decomposition, and since H has rank one,
this Vandermonde decomposition must take on a very special form: H=VTdv
where V = (1 XAz gt ) consists of a single row generated by /):7 and
d is a scalar.

Now consider the polynomials b(z), ¢(z) derived from the system (15). If
C(X) # 0, we can find a unique value for the scalar -y such that p(X) = b(X)—l—'yc(X),



which leads to a Vandermonde decomposition of the original matrix H in which
A appears as one of the roots:

1

~

A
H=VIpv =1 ... : d 1},_,7\}72}71

/A\’I’-72
erl
(17)
We can write the rank-one change as H = VTlAjV, using the same V' as in (17)
and with D = diag{0, . ..,0, d,0. .,0}. Then the singularity of

ﬁ:Hfﬁ:VﬂDf@V

implies that \ must correspond to the scalar diagonal block d = dof D (i.e. it
must be a simple root of (5)). Therefore, the decomposition of the reduced-rank
matrix H will consist of the other r — 1 rows of V and the corresponding r — 1
rows and columns of D, derived from the roots other than A. This in turn implies
that the leading (r — 1) x (r — 1) principal submatrix of H is nonsingular, by
Theorem 2. ~

Conversely, let H be the solution to problem P1 and suppose that the leading
(r — 1) x (r — 1) principal submatrix of H is nonsingular. Then we can obtain
the Vandermonde decomposition of H = H+H by just taking the direct sum
of the decompositions of H and H. Specifically: if H = VIDV and H = VIdV
are Vandermonde decompositions of order » — 1 and 1, respectively, then

H:(gﬁ)@ J>(v 7) (18)

is a Vandermonde decomposition of the original H of order r.

So we have demonstrated that either there is a value of the parameter vy
which will produce a Vandermonde decomposition (18) from which a solution to
Problem P1 may be extracted, or the solution to Problem P1 will either fail to
exist or will have a singular leading (r — 1) x (r — 1) principal submatrix.

5 Conclusions

We have derived the general form of a Vandermonde decomposition for an infi-
nite Hankel matrix of finite rank and of a finite dimensional nonsingular Hankel
matrix. We have discussed some choices when decomposing a singular finite-
dimensional Hankel matrix, and showed how this theory leads to a partial so-
lution to the “smallest rank-one change” problem. These latter two situations
deserve further study and analysis. A later paper will report on a fast algorithm
to compute this decomposition which has been developed by Vandevoorde [9]
and briefly described in [1], based on the Lanczos techniques in [7, 2].
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