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Nonlinear Multi-Objective Flux Balance 
Analysis of the Warburg Effect  

 
Yi Zhang* and Daniel Boley 

Abstract—Due to its implication in cancer treatment, the Warburg Effect has received extensive in silico investigation. Flux 
Balance Analysis (FBA), based on constrained optimization, was successfully applied in the Warburg Effect modelling. Yet, the 
assumption that cell types have one invariant cellular objective severely limits the applicability of the previous FBA models. 
Meanwhile, we note that cell types with different objectives show different extents of the Warburg Effect. To extend the applicability 
of the previous model and model the disparate cellular pathway preferences in different cell types, we built a Nonlinear Multi-
Objective FBA (NLMOFBA) model by including three key objective terms (ATP production rate, lactate generation rate and ATP 
yield) into one objective function through linear scalarization. By constructing a cellular objective map and iteratively varying the 
objective weights, we showed disparate cellular pathway preferences manifested by different cell types driven by their unique 
cellular objectives, and we gained insights about the causal relationship between cellular objectives and the Warburg Effect. In 
addition, we obtained other biologically consistent results by using our NLMOFBA model. For example, augmented with the 
constraint associated with inefficient mitochondria function or limited substrate, NLMOFBA predicts cellular pathways supported 
by the biology literature. Collectively, NLMOFBA can help build a complete understanding towards the Warburg Effect in different 
cell types. 
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1 INTRODUCTION
Background. Cancer cells use fermentation pathway in 

addition to respiration pathway for energy (ATP) produc-
tion albeit fermentation pathway lowers the ATP yield (i.e. 
the number of ATP generated per substrate consumed). 
This phenomenon, first proposed by German biochemist 
Otto H. Warburg in 1920s, was named the Warburg Effect 
(Warburg, 1956). Warburg Effect is commonly observed in 
cancer cells and healthy proliferating cells (Liberti and 
Locasale, 2016; Sun et al., 2019). Generally, healthy nonpro-
liferating cells do not show the Warburg Effect (Vander 
Heiden et al., 2009), but there are exceptions such as stri-
ated muscle cells and Sertoli cells (Oliveira et al., 2014; 
Schuster et al., 2015b). 

Due to the significance of the Warburg Effect in cancer, 
many computational models were proposed to explain the 
complicated cause of the Warburg Effect (Schuster et al., 
2015b; Shan et al., 2018; Shestov et al., 2014). One tech-
nique, flux balance analysis (FBA), is a constrained optimi-
zation technique generally based on linear programming 
(Himmel & Bomble, 2020; Orth et al., 2010). FBA assumes 
that cells, subjected to cellular and environmental con-
straints, have optimization objectives resulted from the 
evolutional pressure. In FBA, the cellular objective is ex-
pressed as the objective function while the constraints are 
expressed as a set of equality and inequality relations. Dif-
ferent from the dynamic simulation using coupled ordi-
nary differential equations, FBA is only concerned with the 

steady state chemical fluxes inside a biological network. As 
a result, FBA requires little information about the enzyme 
kinetics and metabolite concentrations for simulation. 
Prior attempts to simulate the Warburg Effect by FBA in-
clude the use of a large-metabolic network with >3000 re-
actions and a minimal model including three key reactions 
(Möller et al., 2018; Schuster et al., 2015a; Shlomi et al., 
2011). Although powerful, the minimal model by Schuster 
et al. (2015a) is only applicable if the cells have one single 
objective to maximize the ATP production rate (i.e. the to-
tal number of ATPs generated from the available cellular 
resource and substrates).  

In fact, cell types can have multiple objectives, and dif-
ferent cell types may have different sets of objectives (Bar-
clay, 2017; Oh et al., 2009; Pfeiffer et al., 2001; Pfeiffer & 
Bonhoeffer, 2002; Vera et al., 2003). Certain cell types (e.g. 
healthy proliferating cells and straited muscle cells) de-
mand a high ATP production rate for their growth or func-
tioning (Barclay, 2017; Vander Heiden et al., 2009). From 
the perspective of the evolutionary game theory, cell types 
have the objective to maximize the ATP production rate 
when they are competing against other cells for the limited 
energy resource (Pfeiffer et al., 2001; Pfeiffer & Bonhoeffer, 
2002). For example, cancer cells could have the objective to 
maximize the ATP production rate when invading the 
healthy cells. ATP yield is another common energy aspect 
of cellular pathways (Libretexts, 2020). ATP yield charac-
terizes the cost-effectiveness of energy production while 
ATP rate characterizes the amount of energy production. 
Game theory suggests that some cell types (e.g. healthy 
nonproliferating cells) maximize the ATP yield when coop-
erating with each other to use the limited substrate in the 
most   efficient   manner   (Pfeiffer et al.,   2001;   Pfeiffer  & 
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Fig. 1. A high-level explanation of the paper. (a) We collapse a large metabolic network pertinent to the Warburg Effect to a minimal one by only 
selecting the central pathways. The minimal metabolic network is used throughout this paper. (b) We vary the extents of three cellular objectives 
(ATP rate, lactate rate, ATP yield) to model different cell types. For each cell type, we take a linear combination of its cellular objectives as the 
objective function of the corresponding optimization problem, and we find the optimal solution by our computation model NLMOFBA to determine 
the Warburg Effect extent. By following these steps, we explain different extents of the Warburg Effect in different cell types. (c) Using 
NLMOFBA, we also model more biological conditions and their impact on the Warburg Effect. Note that each part of Fig.1 corresponds to 
certain section(s) in this paper, and the section numbers are shown.  
 
Bonhoeffer, 2002). Another objective is the production of 
lacate, which is an important molecule involved in many 
cellular processes (Archetti, 2014; Gatenby 1995).  

We also note that different cell types show different ex-
tents of the Warburg Effect (Sun et al., 2019; Vander Heiden 
et al., 2009; Warburg, 1956). Clearly, cancer cells and 
healthy proliferating cells are more likely to show the War-
burg Effect than healthy nonproliferating cells. Thus, in 
this work, we seek the answer to the following theoreotical 
biology question: can different Warburg Effect extents in 
diverse cell types be explained by different cellular objec-
tives? There are some works aiming to correlate the War-
burg Effect to cell objectives. For example, Archetti (2014) 
and Gatenby (1995) explained the Warburg Effect in cancer 
cells by stating that cancer cells gain growth advantages by 
generating lactate to “toxify” the healthy cells. Also, the 
demand for abundant lactate was used to explain the ob-
served Warburg Effect in Sertoli cells (Oliveira et al., 2014). 

Here, we attempt to connect the Warburg Effect to three 
cell objectives (i.e. ATP production rate, ATP yield, and lac-
tate production rate) by augmenting the previous minimal 
model (Möller et al., 2018; Schuster et al., 2015a). 

To take different cell objectives into account in our 
model,  we  resort  to  multi-objective  optimization.  Multi-
objective optimization is widely applied to many domains 
such as economics. There are many methods to solve multi-
objective optimization, and they can be generally divided 
to four categories: no-preference, priori, posteriori, and in-
teractive. A common method, scalarizing, belongs to priori 
methods, and it combines multiple objectives into a single 
objective in an optimization problem. In this work, we spe-
cifically leverage linear scalarization which takes a linear 
combination of the weighted objectives as one objective 
function (Gunantara, 2018). In addition, we systematically 
vary the weights of different cellular objectives to investi-
gate the cellular pathway preferences of disparate cell 

2



PREPRINT           (ZHANG & BOLEY, 2021) 
  

 

types. This approach is similar to varying weights in the 
loss function of soft margin classification (Cortes & Vapnik, 
1995). Note that the ATP yield objective term is nonlinear. 
Thus, we denote our model as Nonlinear Multi-Objective 
FBA (NLMOFBA). The nonlinear ATP yield renders the en-
tire objective function nonconvex. Compared to convex op-
timization, nonconvex optimization is generally more chal-
lenging to solve.  

Our contribution: Our work makes four major contri-
butions. First, we adopt multi-objective optimization ap-
proach to investigate the Warburg Effect, and overcome the 
limitation of relevant works that assume a single cell type 
and a single objective. By doing so, we successfully associ-
ate different Warburg Effect extents to different cellular ob-
jectives. Second, we solve the associated nonconvex opti-
mization problem via a customized searching method with 
reduced computational cost. Third, we derive and prove 
an interface equation that captures the impact of different 
cellular parameters on cell behaviors. Last, our model can 
output many key biological results consistent with the lit-
erature, including the complicated ones.   

Outline. The remaining paper is organized as the fol-
lows: Section 2 introduces the metabolic network, the non-
linear programming system and the implementation de-
tails of NLMOFBA; in Section 3.1, we construct a cellular 
objective map for selected cell types; in Section 3.2, we run 
NLMOFBA to unveil the cellular pathways in different cell 
types; in Section 3.3 and 3.4, we investigate the impact of 
key cellular parameters on the modelling results; in Section 
3.5 and 3.6, we use NLMOFBA to reproduce key biological 
results of the Warburg Effect; and in Section 4, we show 
that NLMOFBA results are consistent with the established 
Warburg Effect theory. A high-level understanding of this 
paper is shown in Fig. 1.  

2 METHODS 
2.1 Minimal Metabolic Network 

We first collapse a large metabolic network to a mini-
mal one for modelling the Warburg Effect (see Fig. 1 upper 
right corner for the minimal metabolic network). Note that 
the main goal of this paper is to provide a theoretical ex-
planation of the Warburg Effect instead of rigorously mod-
eling the detailed cellular mechanisms. According to Oc-
cam’s razor, in theoretical work, the simplest explanation 
is usually the best one to interpret complicated phenome-
non. In addition, the minimal metabolic network used in 
this work was previously proposed by theoretical biology 
experts (Möller et al., 2018; Schuster et al., 2015a), and we 
mainly render their idea applicable to the scenarios with 
multiple cell types and multiple objectives by leveraging 
more complicated computation. Furthermore, we find at 
least two specific advantages of using the minimal meta-
bolic network in this work. First, the impact of parameter 
selection and constraint setting on the model output is 
more obvious; thus, the model has high interpretability, 
which is particularly important in theoretical biology aim-
ing to explain a phenomenon. Second, a smaller metabolic 
network leads to faster execution of the computation pro-
gram with high time complexity. Thus, the use of the 

minimal metabolic network in our work is well justified. 
In our minimal metabolic network, there are simply 

glycolysis reaction, fermentation reaction, and respiration 
reaction. The glycolysis reaction refers to the conversion 
from glucose to pyruvate. The fermentation reaction refers 
to the conversion from pyruvate to lactate. The respiration 
reaction refers to the complete oxidation of pyruvate 
through the tricarboxylic acid (TCA) cycle. Respiration 
pathway or fermentation pathway includes the corre-
sponding reaction plus the glycolysis reaction.   

Symbols 𝑣!, 𝑣", and 𝑣# denote the reaction rates of gly-
colysis, fermentation, and respiration respectively. Stoichi-
ometries of all reactants and products are set in a way such 
that the stoichiometry coefficient of pyruvate is always 1. 
This is different from the convention used by Schuster et 
al. (2015a), who kept the stoichiometry coefficient of glu-
cose at 1.  

2.2 Nonlinear Programming 
Section 2.2 provides the final version of the nonlinear 

programming problem, followed by the derivation of the 
objective function, and the explanation of the constraints.  

 
Final nonlinear programming system: 

 

 
Objective function derivation. Three cellular objec-

tives are maximizing ATP production rate, maximizing lac-
tate production rate and maximizing ATP yield (Archetti, 
2014; Barclay, 2017; Gatenby, 1995; Libretexts, 2020; 
Oliveira et al., 2014; Pfeiffer & Bonhoeffer, 2002; Pfeiffer et 
al., 2001; Vander Heiden et al., 2009). Combining three ob-
jectives results in the initial form of the objective function: 
 
Maximize: 
                      𝑎𝑛!𝑣$%& + 𝑏𝑛"𝑣'()*(*+ + 𝑐𝑛#𝑌$%&.                           (6)                                                     
 
Symbols 𝑎, 𝑏, and 𝑐 are the respective objective weights 
of	𝑛!𝑣$%& (ATP production rate objective term),	𝑛"𝑣'()*(*+ 
(lactate production rate objective term), and 𝑛#𝑌$%& (ATP 
yield objective term). Symbols 𝑣$%&, 𝑣'()*(*+, and 𝑌$%& are 
ATP production rate, lactate production rate and ATP yield 

 
Minimize:  

𝐹,-.+)*/0+ = −32𝑎𝑣! − (𝑏 − 30𝑎)𝑣" + 210(1 − 𝑎 − 𝑏)
𝑣"
𝑣!

 

                                                         (objective function) (1) 
 
Subject to: 
 
                𝛼!𝑣! + 𝛼"𝑣" + 𝛼#(𝑣! − 𝑣") ≤ 𝒯  

       (total enzyme resource constraint) (2) 
 
                         𝑣! ≥ 0      (nonnegative glycolysis rate) (3) 
                                 
                        𝑣" ≥ 0 (nonnegative fermentation rate) (4)     
 
                   𝑣! − 𝑣" ≥ 0 (nonnegative respiration rate) (5) 
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respectively. They are determined by:  
 
                             𝑣$%& = 𝑚!𝑣! +𝑚#𝑣#                                   (7)                                                                      
        
                                    𝑣'()*(*+ = 𝑣"                                           (8)                                                                  
  
                        𝑌$%& =

			0!"#
(0$/")

= 2(𝑚! +𝑚#𝑣#/𝑣!).                  (9)                      
 
Fermentation does not generate ATP. Thus,	𝑣$%& is the 

sum of the ATP generated from glycolysis and respiration 
(see (7)). 𝑚! and 𝑚# quantify the ATP production, and they 
are kept at 1 and 15 respectively because one glucose gen-
erates 2 and approximately 30 ATP via glycolysis and res-
piration respectively (Shlomi et al., 2011; Yetkin-Arik et al., 
2019). Lactate generation rate is equal to the fermentation 
rate because only fermentation generates lactate (see (8)). 
ATP yield is the ATP produced per glucose consumed (see 
(9)). 𝑛!, 𝑛", and 𝑛# are constant coefficients to render the 
maximal possible changes of three objective terms roughly 
similar in magnitude in the base case (Section 3.2):    

 
   𝑛!max	(∆𝑣$%&) ≈ 𝑛"max	(∆𝑣'()*(*+) ≈ 𝑛#max	(∆𝑌$%&)   (10)                              
 
Constants 𝑛!, 𝑛" and 𝑛# are set to 2, 1, and 7 respectively, 
and these values are used throughout the paper. The con-
stant coefficients render the simulation results more mean-
ingful.  

By (7), (8), (9) and the constant values, we update the 
objective function in (6) with:  

 
Maximize: 
                      2𝑎(𝑣! + 15𝑣#) + 𝑏𝑣" + 7𝑐(2 +

#50%
0$
).               (11)                                      

 
We keep the sum of 𝑎, 𝑏, and	𝑐 at 1. Thus, 𝑐 is: 

 
                                     𝑐 = 1 − 𝑎 − 𝑏                                             (12)                                                          
 
Because of the steady state assumption in FBA, the fluxes 
of pyruvate are always balanced (i.e. 𝑣! = 𝑣" + 𝑣#). Thus, 
𝑣# is: 
 
                                       𝑣# = 𝑣! − 𝑣"                                     (13)                                                                   
   
After replacing 𝑐 and 𝑣# in (11) by (12) and (13), we update 
the objective function in (11) with:  
 
Maximize:   

          32𝑎𝑣! + (𝑏 − 30𝑎)𝑣" − 210(1 − 𝑎 − 𝑏)
0&
0$

               
   (14) 

                          +14(1 − 𝑎 − 𝑏)(1 + 15).                             
 
The last term is a constant when 𝑎 and 𝑏 are specified. 
Thus, the last term does not impact the optimal values of 
𝑣! (denoted as 𝑣!,,7*) and 𝑣" (denoted as 𝑣",,7*). After elim-
inating the constant term and converting the objective 
function to its minimization form, we obtain the final ver-
sion of the objective function in (1).  

Constraints. Constraint (2) is due to the limited total 

cellular enzyme resource 𝒯 (Müller et al., 2014). Symbols 
𝛼!, 𝛼" and 𝛼# denote the enzyme cost of 𝑣!, 𝑣" and 𝑣# re-
spectively. Variable 𝑣# is replaced by 𝑣! − 𝑣" due to the py-
ruvate mass balance. The value of 𝛼# should be much 
higher than 𝛼! and 𝛼" because respiration involves many 
steps (Möller et al., 2018; Schuster et al., 2015a). Also, using 
a large 𝛼# is consistent with the fact that glycolysis occurs 
10-100 times faster than does respiration (Liberti and 
Locasale, 2016).  

Constraints (3), (4), and (5) are used to capture the irre-
versibility of three reactions. Reversible fermentation is un-
common, and thus not considered in this work. It was in-
corporated into a single-objective FBA model by Möller et 
al. (2018).                                    

2.3 NLMOFBA Implementation  
Nonlinear Multi-Objective Flux Balance Analysis  

(NLMOFBA) pseudocode is provided below.  
 
NLMOFBA Pseudocode: 
 

 
 

To model different cell types, we vary 𝑎 and 𝑏 in the 
objective function, and 𝑐 is determined by (12). Our imple-
mentation could result in negative 𝑐. When it occurs, we 
mark the corresponding objective function as “invalid” 
and skip the iteration. We call the figures with the objective 
weights as their axes “objective maps” (e.g. Fig. 2 and 4). 

For each valid objective function, the optimal point 
(𝑣!,,7*,	𝑣",,7*) is determined by solving the corresponding 
nonlinear programming problem. The objective function in 
(1) is nonconvex over the feasible region unless 𝑐 = 0 
(proof in Appendix Section II-1). To solve the nonconvex 
optimization problem, we search for the optimum over the 
feasible region exhaustively through discretization. Alt-
hough robust, exhaustive search is computationally expen-
sive, especially when the feasible region has a high dimen-
sion. The feasible region in our problem is two-dimen-
sional. Exhaustively searching the two-dimensional feasi-
ble region results in a time complexity of 𝑂(𝑛"), where 𝑛 is 
the number of discretization points used for each dimen-
sion. Considering the two outer loops required by the 
multi-objective approach, the exhaustive search will make 
the program computationally expensive.  

Through the mathematical analysis of this specific 
problem, we obtain the following result: 
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TABLE 1 

SYMBOL INTERPRETATIONS 

 
 

TABLE 2 
PARAMETER SETTINGS IN FIGURES AND SECTIONS 

 
The notation A:B:C denotes an array from A to C with increments of B. 

 
 
Result 1. The optimal point (𝑣!,,7*,	𝑣",,7*) is always at the 
boundary of the feasible region unless 89'()*+,-.*

80&
= 0 at 

(𝑣!,,7*,	𝑣",,7*) (See Appendix Section II-2 for the proof). 
 

Thus, it is sufficient to search the boundary of the feasi-
ble region for (𝑣!,,7*,	𝑣",,7*)  when 89'()*+,-.*

80&
≠ 0. Exhaust-

ively searching the one-dimensional feasible region 
boundary reduces the time complexity to 𝑂(𝑛), where 𝑛 is 
the number of discretization points used for one dimen-
sion. Note that we can further reduce the computational 
cost based on Result 2: 

Result 2. The optimal point (𝑣!,,7*,	𝑣",,7*) is always on the 
right side of the feasible region (example of feasible region 
in Fig. 3) unless 𝑎 = 0 and	𝑣" = 0 (See Appendix Section II-
3 for the proof). 

 
We do not use Result 2 because it does not impact the 

time complexity of the program. However, Result 2 will be 
useful when we derive the interface equation in Section 3.4.  

Thus, we discretize the feasible region boundary, and 
we search for the minimal 𝐹,-.+)*/0+ over the discretized 
points and the corner points of the feasible region. Next, 
we check the uniqueness of the optimal point (𝑣!,,7*,	𝑣",,7*) 
along the feasible region boundary. If there is only one 
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optimal  point   along   the   feasible   region   boundary  
and 89'()*+,-.*

80&
  is nonzero at (𝑣!,,7*,	𝑣",,7*), we know imme-

diately that the optimal point is unique over the entire fea-
sible region by Result 1. We also fill the objective map with 
the locations of (𝑣!,,7*,	𝑣",,7*) in the feasible region for all 
valid objective weight combinations.  

Some search methods such as golden-section search are 
generally more accurate (Press, William H., 2007). But in 
this specific study, the discretization-based search method 
is sufficient to result in the exact values of the optimal so-
lutions.  

The program is implemented in MATLAB. Fraction of 
fermentation 𝑓:+;<+=*(*/,= is used to quantify the Warburg 
Effect. 𝑓:+;<+=*(*/,= is defined as:  

 
                                  𝑓:+;<+=*(*/,= =

0&,'0,
0$,'0,

                               (15)                                               
 
Note that 𝑣!,,7* is the sum of 𝑣",,7* and 𝑣#,,7*. Thus, 
𝑓:+;<+=*(*/,= = 1 indicates that cells use 100% fermentation. 
𝑓:+;<+=*(*/,= = 0 indicates that cells use 100% respiration. 
Any in-between values indicate that cells use mixed 
respiro-fermentation. ATP production rate, lactate produc-
tion rate and ATP yield at the optimal solution can be de-
termined by plugging 𝑣!,,7*, 𝑣",,7* and 𝑣#,,7* into (7), (8), 
and (9).  

2.4 Simulate More Biological Conditions 
We separately simulate two additional biological con-

ditions. 
Although the proposal that the Warburg Effect is com-

pletely caused by the malfunction of mitochondria has 
been disproved, less efficient mitochondria function is still 
one of the leading contribution factors that lead to the War-
burg Effect (Harris & Johnson, 2019). The most obvious ef-
fect of the inefficient mitochondria function can be simu-
lated by placing an upper bound on the rate of respiration, 
which occurs in the mitochondria matrix of eukaryotic 
cells. Mathematically, it is 

 
                                             𝑣# ≤ 𝑋#                                       (16)                                                      
 
where 𝑋# is the upper bound of 𝑣#. The variable 𝑣# is re-
placed by 𝑣! − 𝑣" during the implementation due the py-
ruvate mass balance.  

Low glucose availability occurs in many cellular envi-
ronments [4]. Thus, we investigate the impact of the glu-
cose availability on the Warburg Effect. Limited glucose 
availability places an upper bound 𝑉>'?),@+ on 𝑣!: 

 
                                           𝑣! ≤ 𝑉>'?),@+                                   (17)                                                        

2.5 Parameter Value Selection  
In most cases, we use the parameter values from the 

previous papers (i.e. Möller et al., 2018; Schuster et al., 
2015a, 2015b), all of which provide justifications about the 
selection of these values. To make this paper self-con-
tained, we also include justifications when these 

parameters appear. Interpretations of all symbols are in Ta-
ble 1. Parameter settings of figures are described in their 
associated text, and also summarized in Table 2. 

3 RESULTS 
3.1 Cellular Objective Map 

The fundamental FBA assumption is that cells have op-
timization objectives because of evolution (Orth et al., 
2010). NLMOFBA is motivated by the fact that different 
cells could have dissimilar objectives due to their varying 
cellular structures and biological purposes in living enti-
ties. Here, we propose an approximated cellular objective 
map for four selected cell types (cancer cells, healthy pro-
liferating cells, healthy nonproliferating cells and Sertoli 
cells) (Fig. 2) to facilitate the remaining discussion.  

Cancer cells have heavy objectives of lactate and ATP 
production rates (Archetti, 2014; Gatenby, 1995; Pfeiffer & 
Bonhoeffer, 2002; Pfeiffer et al., 2001). Thus, their objective 
weight combinations are likely to stay in the region where 
𝑎 + 𝑏 > 0.8 (or equivalently 𝑐 < 0.2). Little evidence sug-
gests that general healthy proliferating cells and healthy 
nonproliferating cells are “interested” in producing lactate. 
Thus, their objective weight combinations should stay 
within the region where 𝑏 < 0.1. Healthy proliferating cells 
have a heavy objective of ATP production rate 
(Stouthamer, 1973; Vander Heiden et al., 2009). Thus, their 
objective weight combinations are likely to stay in the re-
gion where 𝑎 > 0.5. Healthy nonproliferating cells have a 
heavy objective of ATP yield (Pfeiffer & Bonhoeffer, 2002; 
Pfeiffer et al., 2001). Thus, their objective weight combina-
tions are likely to stay in the region where 𝑐 > 0.5. Sertoli 
cell is an atypical healthy nonproliferating cell. It has a 
heavy objective of lactate production (Oliveira et al., 2014). 
Thus, its objective weight combinations are likely to stay in 
the region where 𝑏 > 0.5. 

Note that the objective weights 𝑎, 𝑏 and 𝑐 are used to 
represent the relative importance of different objectives. 
Their absolute values are meaningless. Also, the objective 
map could have more dimensions if extra objectives are in-
corporated. In addition, more cell types can find their loca-
tions on the map given information about their objectives. 
 
3.2 Base Case 
      The nonlinear programming problem is listed at the be-
ginning of Section 2.2. The parameter setting of the base 
case is: 𝛼! = 𝛼" = 0.5,  𝛼# = 10 and 𝒯 = 200. The feasible 
region is shown in Fig. 3. The level curves corresponding 
to four objective weight combinations (𝑎 = 𝑏 = 0.5, 𝑐 = 0; 
𝑎 = 𝑏 = 0.33, 𝑐 = 0.34;	𝑎 = 𝑏 = 0.15, 𝑐 = 0.7; 𝑎 = 𝑏 = 0, 
𝑐 = 1) are in Appendix (Fig. S1). 

NLMOFBA in Section 2.3 is implemented. 𝑓:+;<+=*(*/,= 
values and the locations of the optimal points in the feasi-
ble region are determined for all valid objective weight 
combinations (Fig. 4).  

With the base case parameter setting, the heavy lactate 
production objective (i.e.  𝑏 > 0.5 or equivalently	𝑏 > 𝑎 + 𝑐 
) drives cells to use 100% fermentation, and cells with light
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Fig. 2. Cellular objective map for selected cell types. Healthy prolifer-
ating cells and healthy nonproliferating cells are abbreviated by HPC 
and HNPC respectively. The objective weight 𝑐 of each point can be 
determined by 1 − 𝑎 − 𝑏. The level curves of 𝑐 have a slope of −1. 
The locations of three cell type examples in Fig. 1 are shown in Fig. 
2.  

 

 
 

 
Fig. 3. Feasible region for the constrained optimization with the base 
case parameter setting.  Dashed arrows denote the constraint direc-
tions. 
 

                                              (a)	𝑓123425676895                                                                       (b) Locations of the optimal points  

                                                            
 

Fig. 4. (a) 𝑓123425676895 for all valid objective weight combinations. Grey grids (𝑓123425676895 = 0) and black grids (𝑓123425676895 = 1) indicate 100% 
respiration and 100% fermentation respectively. White grids indicate the invalid region where 𝑐 < 0. Selected levels of 𝑐 (𝑐 = 0, 0.5, or 1) are 
indicated by the grey dashed lines/dot. (b) Locations of the optimal points in the feasible region (Fig. 3) for all valid objective weight combina-
tions. On the following cellular objective maps, 𝑓123425676895 and locations of the optimal points will be included in one figure.  
 
lactate production objective (𝑏 < 0.5 or equivalently	𝑎 +
𝑐 > 𝑏) use 100% respiration.  

Cells with a heavy lactate production objective always 
prefer the fermentation pathway because only fermenta-
tion reaction generates lactate. By contrast, cells with a 
heavy ATP yield objective always prefer the respiration 
pathway because respiration maximizes the ATP yield. The 
effect of ATP production rate objective on the cellular op-
erating modes depends on the parameter setting. Möller et 
al. (2018) showed that the respiration pathway is preferred 
to maximize the ATP production rate when the following 
condition holds: 

 
                                         <$

<$A<%
< B$AB&

B$AB%
.                                 (18)                                                    

 
If (18) holds, respiration pathway maximizes ATP rate and 
ATP yield simultaneously. In other words, the objectives of  
ATP rate and ATP yield are nonconflicting. If (18) becomes 
the other way, fermentation becomes the preferred path-
way to maximize the ATP production rate. In this case, ATP 

production rate and ATP yield become conflicting. If (18) 
becomes an equality relation, Constraint (2) becomes par-
allel to the level curves of the ATP production rate (see (7)). 
100% respiration, 100% fermentation and any mixed 
respiro-fermentation points bound by (2) result in the max-
imal ATP production rate. One way for this to happen is to 
change 𝛼# from 10 to 15.5 while keeping the other parame-
ters unchanged. The resulting feasible region and the level 
curves of the ATP production rate corresponding to this 
parameter setting are in Appendix (Fig. S2). Thus, given 
limited cellular enzyme resource, the preferred pathway to 
maximize the ATP production rate is highly dependent on  
the cellular enzyme costs and numbers of generated ATP 
of reactions. 

Inequality (18) holds in the base case. Thus, both objec-
tives of ATP production rate and ATP yield drive cells to 
use the respiration pathway. The results corresponding to 
the conflicting objectives of ATP production rate and ATP 
yield will be discussed in Section 3.3.   

In  the  base  case,  100%  use  of  fermentation  always  
7
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                                             (a) Feasible region when 𝛼: = 25                                      (b) 𝑓123425676895 and optimum locations 

                
 
Fig. 5. (a) Feasible region for the base case variant where the objectives of ATP yield and ATP production are conflicting. Dashed line repre-
sents Constraint (2) when 𝛼: = 10. It rotates to become BC as 𝛼: increases from 10 to 25. (b) 𝑓123425676895  obtained for all valid objective 
weight combinations when objectives of ATP yield and ATP production rate are conflicting. The black grids enclosed by the grey quadrilateral 
represent the expanded fermentation region due to the change in 𝛼:. Locations of the optimal points in the feasible region are also shown. 
 
occurs at point C (𝑣!,,7* = 200, 𝑣",,7* = 200, 𝑣#,,7* = 0) of 
the feasible region (Fig. 3). Most optimal solutions leading 
to 100% respiration are at point B (𝑣!,,7* = 19.05, 𝑣",,7* = 0, 
𝑣#,,7* = 19.05) (Fig. 3). Point B and point C are bounded by 
the total cellular enzyme resource constraint. When 𝑎 = 0 
and 𝑏 ≤ 0.5, all points along the line AB (Fig. 3) are optimal 
and they are not bounded by the total cellular resource 
constraint. For these objective weight combinations, ATP 
yield outweighs the lactate production rate in the objective 
function. Any point along the line AB will maximize the 
ATP yield, and there is no incentive to maximize the ATP 
production rate because 𝑎 = 0.  
 
3.3 Base Case Variant 

In this section, we investigate a base case variant where 
objectives of ATP production rate and ATP yield are con-
flicting (i.e. Inequality (18) changes the direction). One way 
for this to happen is to increase 𝛼# from 10 to 25 while 
maintaining values of other parameters in the base case. 𝛼# 
is an intrinsic cellular parameter, and different cell types 
could have different 𝛼# values. Besides the objective, dif-
ferent values of the intrinsic cellular parameters can also be 
used to distinguish among cell types. The parameter set-
ting of the base case variant is 𝛼! = 𝛼" = 0.5, 𝛼# = 25 and 
𝒯 = 200. Changing 𝛼# alters the feasible region (Fig. 5a). 
The 𝑓:+;<+=*(*/,= and optimum locations are determined for 
all valid objective weight combinations (Fig. 5b). 

When the objectives of ATP yield and ATP production 
rate are conflicting, the fermentation region in Fig. 5b ex-
pands significantly relative to the region in Fig. 4a because 
the fermentation pathway becomes the preferable pathway 
to maximize the ATP production rate. As always, cells with 
a heavy lactate production objective prefer to use the fer-
mentation pathway. Thus, only cells with a heavy ATP 
yield objective use the respiration pathway.  

 

3.4 Vary the Key Parameters 
Besides 𝛼#, other intrinsic cellular parameters 𝛼!, 𝛼", 

and 𝒯 could also vary in different cell types. Varying cellu-
lar parameters results in the change of the interface be-
tween the fermentation and respiration regions on the cel-
lular objective map (e.g. the interfaces between the grey 
and black regions in Fig. 4a and Fig. 5b). As we have al-
ready seen, changing 𝛼# from 10 to 25 alters the interface 
(Fig. 4a and Fig. 5b). We derive the general interface equa-
tion (See Appendix Section II-4 for the derivation). 

 
 

𝑎 = K B$𝒯AB%𝒯A"!5(B$AB%)(B$AB&)
#5B$𝒯A#"B&𝒯D"B%𝒯D"!5(B$AB%)(B$AB&)

L 𝑏  
  (19) 

            				− "!5(B$AB%)(B$AB&)
#5B$𝒯A#"B&𝒯D"B%𝒯D"!5(B$AB%)(B$AB&)

	           
 
Using the interface equation, we investigate the impact of 
varying 𝛼!, 𝛼", 𝛼#, and 𝒯 on the interfaces of fermentation 
and respiration regions (Fig. 6). We confirm the validity of 
the interface equation by running NLMOFBA for all the 
parameter settings used in Fig. 6.   

Increasing 𝛼#, decreasing 𝛼!, or decreasing 𝛼" renders 
the fermentation pathway more preferable to maximize the 
ATP production rate (Fig. 6a, 6b and 6c). Varying 𝛼!,	𝛼" or 
𝛼# has a similar effect on the expansion trend of the fer-
mentation region. Increasing 𝒯 always results in the expan-
sion of the fermentation region (Fig. 6d and 6e). Varying 𝒯 
has different effects on the expansion trend of the fermen-
tation region when ATP objectives are conflicting and non-
conflicting. 

 
3.5 Inefficient Mitochondria Function 

As reasoned in Section 2.4, inefficient mitochondria 
function is modelled by placing an upper bound 𝑋# on 𝑣#. 
The  corresponding  nonlinear  programming  problem  is  

8
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                                                           (a) Vary 𝛼;                                                                                         (b) Vary 𝛼< 

             
 
 
                                                           (c) Vary 𝛼:                                                                   (d) Vary 𝒯 (nonconflicting ATP objectives) 

                 
 
 
                                 (e) Vary 𝒯 (conflicting ATP objectives) 

         
 
 

Fig. 6. Interface investigation by (a) varying  𝛼; while keep-
ing 𝛼< = 0.5, 𝛼: = 10, and 𝒯 = 200; (b) varying 𝛼< while 
keeping 𝛼; = 0.5, 𝛼: = 10, and 𝒯 = 200; (c) varying 𝛼: 
while keeping 𝛼; = 0.5, 𝛼< = 0.5, and 𝒯 = 200; (d) varying 
𝒯 while keeping 𝛼; = 0.5, 𝛼< = 0.5, and 𝛼: = 10; and (e) 
varying 𝒯 while keeping 𝛼; = 0.5, 𝛼< = 0.5, and 𝛼: = 25. 
The objectives of ATP yield and ATP production are non-
conflicting in Fig. 6d and conflicting in Fig. 6e. Fermentation 
regions are always on the right sides of the interfaces.  
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                                      (a) Feasible region with Constraint (16)                                       (b)	𝑓123425676895 and optimum locations 

         
 
Fig. 7. (a) Feasible region after placing an upper bound on 𝑣:. (b) 𝑓123425676895 and locations of the optimal points in the feasible region.  
 
                                      (a) Quadrilateral feasible region                                                              (b) Triangular feasible region 

              
 
                               (c)	𝑓123425676895 and optimum locations                                                            (d) Selected 𝑓123425676895 

          
 

Fig. 8. (a) and (b) Possible feasible regions. (c) 𝑓123425676895 and locations of the optimal points in the feasible region for different healthy cells 
subjected to different glucose availabilities. d) 𝑓123425676895 for selected objective weight sets.  
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composed of (1), Constraints (2), (3), (4), (5), and (16). We 
set 𝑋# at 10. Base case values of other parameters in Section 
3.2 are used (𝛼! = 𝛼" = 0.5, 𝛼# = 10, and 𝒯 = 200). The 
feasible region, 𝑓:+;<+=*(*/,= values, and locations of the op-
timal points in the feasible region are in Fig. 7.  

Compared to Fig. 4a, imposing an upper bound on 𝑣# 
results in the expansion of 100% fermentation region and 
the formation of a large mixed respiro-fermentation region 
in Fig. 7b. Mixed respiro-fermentation occurs when the op-
timal solution is point J in Fig. 7a. 
 
3.6 Limited Glucose Availability  

Glucose, the most important energy substrate, could be 
limited in some cellular environments (Schuster et al., 
2015a; Vander Heiden et al., 2009). To simulate this effect, 
we place an upper bound 𝑉>'?),@+ on 𝑣! (Constraint (17)). 
The corresponding nonlinear programming problem is 
composed of (1), Constraints (2), (3), (4), (5), and (17). We 
investigate the behavior of healthy proliferating cells and 
healthy nonproliferating cells when subjected to different 
glucose availabilities by varying 𝑉>'?),@+ from 1 to 201. Gen-
erally, healthy cells (proliferating or nonproliferating) have 
little incentive to maximize the lactate production. Thus, 
we keep 𝑏 at 0. Proliferating cells have heavy ATP rate ob-
jective while nonproliferating cells have heavy ATP yield 
objective. Thus, we vary 𝑎 from 0.5 to 1, and set 𝑐 = 1 − 𝑎 
to capture the behaviors of proliferating and nonproliferat-
ing cells. Other parameter values are from the base case 
variant in Section 3.3: 𝛼! = 𝛼" = 0.5, 𝛼# = 25, and 𝒯 = 200. 
ATP yield and ATP rate are conflicting objectives with this 
parameter setting. 

Depending on the value of 𝑉>'?),@+, the feasible region 
can be either a quadrilateral or a triangle (Fig. 8a and 8b). 
𝑓:+;<+=*(*/,= and optimum locations corresponding to dif-
ferent glucose availabilities and objective functions are in 
Fig. 8c. Data points corresponding to two selected objective 
weight sets (𝑎 = 0.7, 𝑏 = 0, 𝑐 = 0.3; 𝑎 = 1, 𝑏 = 0, 𝑐 = 0) 
(grey lines in Fig. 8c) are plotted in Fig. 8d to show the pre-
cise 𝑓:+;<+=*(*/,= values.  

A heavy ATP yield objective (𝑐 > 0.42 or equivalently 
𝑎 < 0.58) drives the cells to use the respiration pathway re-
gardless of the glucose availability. The optimal solution 
for 100% respiration is at point B or H in Fig. 8a and 8b. A 
heavy ATP production rate objective (𝑐 < 0.42 or equiva-
lently 𝑎 > 0.58) leads to interesting cellular behaviors de-
pendent on 𝑉>'?),@+. Severely limited glucose availability 
(𝑉>'?),@+ < 7.84) forces cells to use 100% respiration. Mod-
erate glucose availability drives cells to use 100% respira-
tion or mixed respiro-fermentation, depending on the ex-
act values of the objective weights. Mixed respiro-fermen-
tation corresponds to point F in Fig. 8a. Abundant glucose 
(𝑉>'?),@+ > 200) enables cells to use 100% fermentation.  

4 DISCUSSION 
Previously, Schuster et al. (2015) and Möller et al. (2018) 

proposed a minimal model that explains the origin of the 

Warburg Effect from the energy perspective (i.e. ATP). To 
accomplish this, they varied cellular parameters (e.g. 𝛼#) 
and kept the same objective function of maximizing the 
ATP production rate. In this work, we extend the applica-
bility of their model to multiple cell types by using the 
multi-objective optimization approach. Different cell types 
also show different extents of the Warburg Effect (Sun et 
al., 2019; Vander Heiden et al., 2009; Warburg, 1956). Lev-
eraging our NLMOFBA model, we show that such phe-
nomena can be explained by different cellular objectives.  
Concretely, NLMOFBA connects the cellular pathway pref-
erence with the cellular objectives by overlaying the cellu-
lar operating modes on the cellular objective map. When 
investigating the impact of cellular objectives, we fix other 
cellular parameters whenever possible. Thus, in these case 
studies, the variations of the cellular behaviors are only 
due to different cells’ objectives captured by the computa-
tion model. Our model indicates that healthy nonprolifer-
ating cells almost always use respiration because of their 
objective to maximize the ATP yield, and Sertoli cells al-
most always use fermentation because of their objective to 
maximize the lactate production rate (Fig. 4, 5 and 6). Be-
cause of the ATP rate objective, cancer cells and healthy 
proliferating cells could use either respiration or fermenta-
tion, depending on the parameter settings and their exact 
objective weight combinations (Fig. 4, 5 and 6). Thus, we 
successfully show that the cellular objective can explain the 
Warburg Effect in different cell types (Liberti and Locasale, 
2016; Oliveira et al., 2014; Sun et al., 2019; Vander Heiden 
et al., 2009; Warburg, 1956).  

Besides being capable of modelling multiple cell types, 
NLMOFBA can also output other biologically significant 
results consistent with the biology literature. For example, 
Fig. 7b is consistent with the fact that the compromised mi-
tochondria function could result in the Warburg Effect 
(Harris & Johnson, 2019). Fig. 8c is supported by the obser-
vation that some cells use respiration when glucose is se-
verely limited, but they switch to mixed respiro-fermenta-
tion or fermentation when glucose becomes more available 
(Vander Heiden et al., 2009). In this computation model, 
increasing glucose availability is mathematically equiva-
lent to an upregulation of glycolytic enzymes. Both 
changes can be modeled by raising the upper bound on the 
glycolysis rate. Thus, Fig. 8c can also be supported by an-
other established theory that an upregulation of glycolytic 
enzymes could lead to the Warburg Effect (Asare-Were-
hene et al., 2019). Besides being significant in modelling the 
Warburg Effect, our multi-objective optimization approach 
can also be leveraged in modelling other cellular phenom-
ena.  

Finally, this paper provides a general guideline to incor-
porate the nonlinear ATP yield term into FBA and avoid 
the high computational cost associated with nonconvex 
optimization. This is especially useful when a more com-
plicated metabolic network and more reaction rates are in-
volved.  

5    CONCLUSION 
We proposed NLMOFBA, a multi-objective 
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optimization model that explains the impact of cellular ob-
jectives on the Warburg Effect in different cell types. In ad-
dition, using NLMOFBA, we obtained other important re-
sults that are generally consistent with the biology litera-
ture. We expect that our model can help readers under-
stand the complicate Warburg Effect. One future direction 
is to include more reactions (e.g. glutaminolysis) so that the 
model can produce more biological results and guide the 
experimental research. Also, it will be interesting to inves-
tigate the impact of other cellular objectives such as bio-
mass production on the cellular pathway preference.  
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APPENDIX 
 

APPENDIX I 
SUPPORTING FIGURES 

 
 
 
 

               (a) 𝑎 = 𝑏 = 0.5, 𝑐 = 0                                 (b)	𝑎 = 𝑏 = 0.33, 𝑐 = 0.34; 

  
              (c) 𝑎 = 𝑏 = 0.15, 𝑐 = 0.7                                (d)	𝑎 = 𝑏 = 0, 𝑐 = 1; 

 
 
Fig. S1. Level curves of the objective function (in (1)) for four sets of objective weights: 
(a) 𝑎 = 𝑏 = 0.5, 𝑐 = 0; (b) 𝑎 = 𝑏 = 0.33, 𝑐 = 0.34; (c)	𝑎 = 𝑏 = 0.15, 𝑐 = 0.7; and (d) 𝑎 =
𝑏 = 0, 𝑐 = 1. Shaded region is the base case feasible region.  
 

 
 
 
 
 

 



 
 

Fig. S2. Level curves of ATP production rate 𝑣!"# (in (7)). 𝛼$ = 𝛼% = 0.5,  𝛼& = 15.5 and 
𝒯 = 200. Note that the maximal 𝑣!"# (= 200) occurs along the entire feasible region 
right boundary, which is parallel to the level curves.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPENDIX II 
PROOF AND DERIVATION 

 
1 Proof of Nonconvexity 
 
Result. The objective function 
 

𝐹'()*+,-.* = −32𝑎𝑣$ − (𝑏 − 30𝑎)𝑣% + 210(1 − 𝑎 − 𝑏)
𝑣%
𝑣$

 

 
is generally nonconvex over the feasible regions. 
 
Proof. 
 
Theorem 1. A twice differentiable function is convex if and only if its hessian matrix is 
positive semidefinite.  
 
The objective function 𝐹'()*+,-.* is twice differentiable when 𝑣$ ∈ (0,∞). 
 
Theorem 2. A symmetric matrix is positive semidefinite if and only if all of its 
eigenvalues are nonnegative.  
 

First, we find the hessian matrix of the objective function: 
 

𝐻 =

⎣
⎢
⎢
⎢
⎡𝑑

%𝐹'()*+,-.*
(𝑑𝑣$)%

,
𝑑%𝐹'()*+,-.*
𝑑𝑣$𝑑𝑣%

𝑑%𝐹'()*+,-.*
𝑑𝑣%𝑑𝑣$

,
𝑑%𝐹'()*+,-.*
(𝑑𝑣%)% ⎦

⎥
⎥
⎥
⎤
= 	 A420(1 − 𝑎 − 𝑏)𝑣%𝑣$

/&, −210(1 − 𝑎 − 𝑏)𝑣$/%

−210(1 − 𝑎 − 𝑏)𝑣$/%, 0
B 

 
Denote 𝐻 as: 
 

𝐻 = C
𝜑, 𝛾
𝛾, 0F 
 

Two eigenvalues of 𝐻 are: 
 

𝜆$ =
𝜑 +H𝜑% + 4𝛾%

2  
 

𝜆% =
𝜑 − H𝜑% + 4𝛾%

2  
 
Since 𝜑, 𝜑%, and 4𝛾% are all non-negative, we know: 



 
𝜆$ ⩾ 0 

 
𝜆% ⩽ 0 

 
Also, we know: 
 

𝜆% = 	0 if and only if 4𝛾% = 4(−210(1 − 𝑎 − 𝑏)𝑣$/%)% = 0 
 
Since 𝑣$/% ≠ 0, 
 

4𝛾% = 0 if and only if 𝑐 = 1 − 𝑎 − 𝑏 = 0 
 
Based on Theorem 1 and 2, we conclude that the objective function is nonconvex over 
the feasible region unless  𝑐 = 0. If 𝑐 = 0, the nonlinear ATP yield term in the objective 
function vanishes and our model becomes linear programming, which is always 
convex.                                                                                                                                      o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2 Proof of Result 1 
 
Result 1. The minimum of the objective function 
 

𝐹'()*+,-.* = −32𝑎𝑣$ − (𝑏 − 30𝑎)𝑣% + 210(1 − 𝑎 − 𝑏)
𝑣%
𝑣$

 

 
always occurs at the boundary of the feasible region unless 01!"#$%&'($

0.)
= 0 at 

(𝑣$,'3,,	𝑣%,'3,). 
 
Proof. 
 

𝑑𝐹'()*+,-.*
𝑑𝑣%

= −(𝑏 − 30𝑎) + 210(1 − 𝑎 − 𝑏)	𝑣$/$ 

 
At any fixed 𝑣$, 01!"#$%&'($

0.)
 is a constant. If 01!"#$%&'($

0.)
≠ 0, 𝐹'()*+,-.* increases or 

decreases linearly along the 𝑣% direction. Thus, if 01!"#$%&'($
0.)

≠ 0 at the optimal point 
(𝑣$,'3, , 𝑣%,'3,), the optimal point is always on the boundary of the feasible region.  If  
01!"#$%&'($

0.)
= 0 at (𝑣$,'3, , 𝑣%,'3,), there could be infinitely many optimal solutions inside 

the feasible region.                                                                                                               o 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 Proof of Result 2 
 
Result 2. The minimum of the objective function 
 

𝐹'()*+,-.* = −32𝑎𝑣$ − (𝑏 − 30𝑎)𝑣% + 210(1 − 𝑎 − 𝑏)
𝑣%
𝑣$

 

 
is always on the right side of the feasible region unless 𝑎 = 0 and	𝑣% = 0. 
 
Proof. 
 

𝑑𝐹'()*+,-.*
𝑑𝑣$

= −32𝑎 − 210(1 − 𝑎 − 𝑏)𝑣%𝑣$/% 

 
Quantities 𝑎, 1 − 𝑎 − 𝑏, 𝑣%, and 𝑣$/% are nonnegative. We know: 
 

𝑑𝐹'()*+,-.*
𝑑𝑣$

⩽ 0 

 
01!"#$%&'($

0.*
= 0 if and only if at least one of the two following conditions holds: 

 
1. 𝑎 = 0,	𝑏 = 1, and 𝑐 = 0  
 
2. 𝑎 = 0 and 𝑣% = 0 
 
If none of two conditions holds, 01!"#$%&'($

0.*
< 0. 𝐹'()*+,-.* decreases as 𝑣$ increases. As a 

result, at each 𝑣%, the minimum of 𝐹'()*+,-.* always occurs on the right side of the 
feasible region. If 𝑎 = 0,	𝑏 = 1, and 𝑐 = 0, the cells aim to maximize the lactate 
production only. The optimal solution corresponding to this objective weight 
combination always occurs at the intersection of Constraint (2) and Constraint (5) (point 
C in Fig. 3). Point C is the intersection of the left and right sides of the feasible region, 
and it is also on the right side. Thus, unless 𝑎 = 0 and 𝑣% = 0, the optimal point is 
always on the right side of the feasible region.                                                                      o 
 
 
 
 
 
 
 
 
 



4 Derivation of the Interface Equation 
 
Interface equation: 
 

𝑎 = M 4*𝒯64+𝒯6%$7(4*64+)(4*64))
&74*𝒯6&%4)𝒯/%4+𝒯/%$7(4*64+)(4*64))

N 𝑏 − %$7(4*64+)(4*64))
&74*𝒯6&%4)𝒯/%4+𝒯/%$7(4*64+)(4*64))

  
 
Derivation. The derivation of the interface equation relies on the assumption that cells 
are either using 100% fermentation or using 100% respiration. To ensure that this 
assumption is valid in the cases investigated by us, all the interfaces in Fig. 6 are 
verified by running NLMOFBA.  
At the interface, the uses of 100% respiration and 100% fermentation result in the same 
objective value. Thus, we have: 
 

𝐹'()*+,-.*,$77%	<*=>*?,@-'? = 𝐹'()*+,-.*,$77%	=*A3-=@,-'? 
 
Result 2 indicates that the optimum is at the right boundary of the feasible region if 𝑎 ∈
(0, 1]. Since the right boundary of the feasible region is the total cellular enzyme 
resource, we know all cellular resource will be depleted when 𝑎 ∈ (0, 1]. 

If cells use 100% respiration and deplete the cellular enzyme resource, we obtain: 
 

P
𝑣$ = 𝑣&																																
𝑣% = 0																																		
𝛼$𝑣$ + 𝛼%𝑣% + 𝛼&𝑣& = 𝒯

 

 
Solve the system of equations and we get: 
 

                                                        P
𝑣$ = 𝒯/(𝛼$+𝛼&)
𝑣% = 0																			
𝑣& = 𝒯/(𝛼$+𝛼&)

 

 
Plug the expression of 𝑣$, 𝑣% and 𝑣& into the objective function and we get:  
 

𝐹'()*+,-.*,$77%	=*A3-=@,-'? = −
32𝑎𝒯
𝛼$+𝛼&

 

 
If cells use 100% fermentation and deplete the cellular enzyme resource, we obtain:  
 

																																																															P
𝑣$ = 𝑣%																																
𝑣& = 0																																		
𝛼$𝑣$ + 𝛼%𝑣% + 𝛼&𝑣& = 𝒯

  

 
Solving this system of equations results in: 
 



                                       																			P
𝑣$ = 	𝒯/(𝛼$+𝛼%)																	
𝑣% = 𝒯/(𝛼$+𝛼%)																		
𝑣& = 0																																						

                                         (A1) 

 
Plug the expression of 𝑣$, 𝑣% and 𝑣& into the objective function and we get: 
 

𝐹'()*+,-.*,$77%	<*=>*?,@,-'? = −
32𝑎𝒯
𝛼$+𝛼%

−
(𝑏 − 30𝑎)𝒯
𝛼$+𝛼%

+ 210(1 − 𝑎 − 𝑏) 

 
By equating 𝐹'()*+,-.*,$77%	=*A3-=@,-'? and 𝐹'()*+,-.*,$77%	<*=>*?,@,-'?, we get: 
 

− &%@𝒯
4*64+

= − &%@𝒯
4*64)

− ((/&7@)𝒯
4*64)

+ 210(1 − 𝑎 − 𝑏)   
 

After rearranging this equation, we get the interface equation: 
 

𝑎 = M 4*𝒯64+𝒯6%$7(4*64+)(4*64))
&74*𝒯6&%4)𝒯/%4+𝒯/%$7(4*64+)(4*64))

N 𝑏 − %$7(4*64+)(4*64))
&74*𝒯6&%4)𝒯/%4+𝒯/%$7(4*64+)(4*64))

  
 

So far, we have shown that the interface equation is valid if 𝑎 ∈ (0, 1]. If 𝑎 = 0, 
cells may not deplete all the cellular enzyme resource. If 𝑎 = 0, 𝐹'()*+,-.* becomes: 

 
																																														𝐹'()*+,-.*,@B7 = −𝑏𝑣% + 210(1 − 𝑏)

.)

.*
                                      (A2) 

 
If cells use 100% respiration, the variable 𝑣% is 0. Thus, the value of 
𝐹'()*+,-.*,$77%	=*A3-=@,-'?,@B7 is 0 regardless of 𝑣$. If cells use 100% fermentation, we know 
𝑣% ≠ 0. Result 2 tells us that when 𝑎 = 0 and 𝑣% ≠ 0, the cellular enzyme resource is 
depleted. We have derived (A1) when the cellular enzyme resource is depleted, and 
cells use 100% fermentation. Plug the expressions of 𝑣$ and 𝑣% in (A1) into (A2), we get  
 

𝐹'()*+,-.*,$77%	<*=>*?,@,-'?,@B7 = −
𝑏𝒯

𝛼$+𝛼%
+ 210(1 − 𝑏) 

 
After equating 𝐹'()*+,-.*,$77%	=*A3-=@,-'?,@B7 and 𝐹'()*+,-.*,$77%	<*=>*?,@,-'?,@B7, we get 
 

−
𝑏𝒯

𝛼$+𝛼%
+ 210(1 − 𝑏) = 0 

 
After rearranging this equation, we get: 
 

𝑏 =
210(𝛼$+𝛼%)

𝒯 + 210(𝛼$+𝛼%)
 



 
The point ( %$7(4*64))

𝒯6%$7(4*64))
, 0) is on the interface equation. Thus, the interface equation is 

valid for 𝑎 ∈ [0, 1] and 𝑏 ∈ [0, 1]. 
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