
Document Categorization and Query Generationon the World Wide Web Using WebACEDaniel Boley, Maria Gini, Robert Gross,Eui-Hong (Sam) Han, Kyle Hastings, George Karypis,Vipin Kumar, Bamshad Mobasher, and Jerome MooreyDepartment of Computer Science and Engineering,University of Minnesota

Arti�cial Intelligence Review, 1999, to appear

AbstractWe present WebACE, an agent for exploring and categorizing documents on the World Wide Webbased on a user pro�le. The heart of the agent is an unsupervised categorization of a set of documents,combined with a process for generating new queries that is used to search for new related documentsand for �ltering the resulting documents to extract the ones most closely related to the starting set.The document categories are not given a priori. We present the overall architecture and describe twonovel algorithms which provide signi�cant improvement over Hierarchical Agglomeration Clustering andAutoClass algorithms and form the basis for the query generation and search component of the agent. Wereport on the results of our experiments comparing these new algorithms with more traditional clusteringalgorithms and we show that our algorithms are fast and scalable.yAuthors are listed alphabetically.



1 IntroductionThe World Wide Web is a vast resource of information and services that continues to grow rapidly. Powerfulsearch engines have been developed to aid in locating unfamiliar documents by category, contents, or subject.Relying on large indexes to documents located on the Web, search engines determine the URLs of thosedocuments satisfying a user's query. Often queries return inconsistent search results, with document referralsthat meet the search criteria but are of no interest to the user.While it may not be currently feasible to extract in full the meaning of an HTML document, intelligentsoftware agents have been developed which extract semantic features from the words or structure of anHTML document. These extracted features are then employed to classify and categorize the documents.Clustering o�ers the advantage that a priori knowledge of categories is not needed, so the categorizationprocess is unsupervised. The results of clustering could then be used to automatically formulate queries andsearch for other similar documents on the Web, or to organize bookmark �les, or to construct a user pro�le.In this paper, we present WebACE, an agent for document categorization and exploration that operateson Web documents. A novel part of the paper is the description of two new clustering algorithms based ongraph partitioning, that provide a signi�cant improvement in performance over the traditional HierarchicalAgglomeration Clustering (HAC) and AutoClass algorithms used in information retrieval. Many traditionalalgorithms break down as the size of the document space, and thus the dimensionality of the correspondingfeature space, increases. High dimensionality is characteristic of the type of information retrieval applicationswhich are used to �lter and categorize hypertext documents on the World Wide Web. In contrast, ourpartitioning-based algorithms do not rely on a speci�c choice of a distance function and do scale up e�ectivelyin a high dimensional space.In addition, the proposed algorithms formed basis for the query generation engine of WebACE. Usingthe generated queries, WebACE can search for similar documents on the Web. The retrieved documents canbe �ltered and classi�ed into existing clusters using the structures discovered in the clustering phase.After a short description of the architecture of WebACE in Section 3, we describe the clustering algorithmsin Section 4. In Section 5, we report on the results obtained on a number of experiments using di�erentmethods to select sets of features from the documents, and show that our partitioning-based clusteringmethods perform better than traditional distance based clustering. We also analyze the complexity of thetwo clustering algorithms and show they are scalable. In Section 6, we show how to use words obtained fromclusters of documents to generate queries for related documents on the Web.2 Related WorkThe heterogeneity and the lack of structure that permeates much of the information sources on the WorldWide Web makes automated discovery, organization, and management of Web-based information di�cult.Traditional search and indexing tools of the Internet and the World Wide Web such as Lycos, Alta Vista,WebCrawler, MetaCrawler, and others provide some comfort to users, but they do not generally providestructural information nor categorize, �lter, or interpret documents. A recent study provides a comprehensiveand statistically thorough comparative evaluation of the most popular search tools [LS97].In recent years these factors have prompted researchers to develop more intelligent tools for informationretrieval, such as intelligent Web agents. The agent-based approach to Web mining involves the developmentof sophisticated AI systems that can act autonomously or semi-autonomously on behalf of a particular user,to discover and organize Web-based information. Generally, the agent-based Web mining systems can beplaced into the following categories:Intelligent Search Agents Several intelligent Web agents have been developed that search for relevantinformation using characteristics of a particular domain (and possibly a user pro�le) to organize andinterpret the discovered information. For example, agents such as FAQ-Finder [HBML95], InformationManifold [KLSS95], and OCCAM [KW96] rely either on pre-speci�ed and domain speci�c informationabout particular types of documents, or on hard coded models of the information sources to retrieveand interpret documents. Other agents, such as ShopBot [DEW96] and ILA [PE95], attempt tointeract with and learn the structure of unfamiliar information sources. ShopBot retrieves product1
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Figure 1: WebACE Architectureinformation from a variety of vendor sites using only general information about the product domain.ILA, on the other hand, learns models of various information sources and translates these into its owninternal concept hierarchy.Information Filtering/Categorization A number of Web agents use various information retrieval tech-niques [FBY92] and characteristics of open hypertext Web documents to automatically retrieve, �lter,and categorize. For example, HyPursuit [WVS+96] uses semantic information embedded in link struc-tures as well as document content to create cluster hierarchies of hypertext documents, and structure aninformation space. BO (Bookmark Organizer) [MS96] combines hierarchical clustering techniques anduser interaction to organize a collection of Web documents based on conceptual information. Patternrecognition methods and word clustering using the Hartigan's K-means partitional clustering algorithmare used in [WP97] to discover salient HTML document features (words) that can be used in �ndingsimilar HTML documents on the Web.Personalized Web Agents Another category of Web agents includes those that obtain or learn user pref-erences and discover Web information sources that correspond to these preferences, and possibly thoseof other individuals with similar interests (using collaborative �ltering). A few recent examples of suchagents include WebWatcher [AFJM95], Syskill & Webert, and others. For example, Syskill & We-bert [Ack97] utilizes a user pro�le and learns to rate Web pages of interest using a Bayesian classi�er.Balabanovic [BSY95] uses a single well-de�ned pro�le to �nd similar web documents. Candidate webpages are located using best-�rst search. The system needs to keep a large dictionary and is limitedto a single user.WebACE incorporates aspects from all three categories. It is an intelligent search agent which automat-ically generates a personalized user pro�le as well as an automatic categorization of search results.3 WebACE ArchitectureWebACE's architecture is shown in Figure 1. As the user browses the Web, the pro�le creation modulebuilds a custom pro�le by recording documents of interest to the user. The number of times a user visitsa document and the total amount of time a user spends viewing a document are just a few methods fordetermining user interest [Ack97, AFJM95, BSY95]. Once WebACE has recorded a su�cient number ofinteresting documents, each document is reduced to a document vector and the document vectors are passedto the the clustering modules. WebACE uses two novel algorithms for clustering which can provide signi�cant2



improvement in both run-time performance and cluster quality over the HAC and AutoClass algorithms.These are described in Section 4.After WebACE has found document clusters, it can use the clusters to generate queries and search forsimilar documents. WebACE submits the queries to the search mechanism and gathers the documentsreturned by the searches, which are in turn reduced to document vectors. These new documents can beused in a variety of ways. One option is for WebACE to cluster the new documents, �ltering out the lessrelevant ones. Another is to update the existing clusters by having WebACE insert the new documents intothe clusters. Yet another is to completely re-cluster both the new and old documents. Finally, the usercan decide to add any or all of the new documents to his pro�le. The query generation methods and thealgorithms for incrementally updating existing clusters are discussed in Section 6. WebACE is modular sothat either clustering method of Section 4 can be plugged in.WebACE is implemented as a browser independent Java application. Monitoring the user's browsingbehavior is accomplished via a proxy server. The proxy server allows WebACE to inspect the browser'sHTTP requests and the resulting responses. Upon execution, WebACE spawns a browser and starts athread to listen for HTTP requests from the browser. As the browser makes requests, WebACE createsrequest threads to handle them. This allows multi-threaded browsers the capability of having multiplerequests pending at one time. The lifespan of these request threads is short, i.e. the duration of one HTTPrequest, Conversely, the browser listener thread persists for the duration of the application.4 Clustering MethodsExisting approaches to document clustering are generally based on either probabilistic methods, or distanceand similarity measures (see [FBY92]). Distance-based methods such as k-means analysis, hierarchicalclustering [JD88] and nearest-neighbor clustering [LF78] use a selected set of words (features) appearing indi�erent documents as the dimensions. Each such feature vector, representing a document, can be viewedas a point in this multi-dimensional space.There are a number of problems with clustering in a multi-dimensional space using traditional distance-or probability-based methods. First, it is not trivial to de�ne a distance measure in this space. Some wordsare more frequent in a document than other words. Simple frequency of the occurrence of words is notadequate, as some documents are larger than others. Furthermore, some words may occur frequently acrossdocuments. Techniques such as TFIDF [SM83] have been proposed precisely to deal with some of theseproblems.Secondly, the number of all the words in all the documents can be very large. Distance-based schemesgenerally require the calculation of the mean of document clusters. In a k-means algorithm, randomlygenerated initial clusters of a very high dimensional dataset will have calculate mean values which do notdi�er signi�cantly from one cluster to the next. Hence the clustering based on these mean values does notalways produce very good clusters. Similarly, probabilistic methods such as Bayesian classi�cation used inAutoClass [CS96], do not perform well when the size of the feature space is much larger than the size of thesample set. This type of data distribution seems to be characteristic of document categorization applicationson the Web, such as categorizing a bookmark �le. Furthermore, the underlying probability models usuallyassume independence of attributes (features). In many domains, this assumption may be too restrictive.It is possible to reduce the dimensionality by selecting only frequent words from each document, or touse some other method to extract the salient features of each document. However, the number of featurescollected using these methods still tends to be very large, and due to the loss of some of the relevant features,the quality of clusters tends not to be as good. Other, more general methods, have also been proposed fordimensionality reduction which attempt to transform the data space into a smaller space in which relationshipamong data items is preserved. Then the traditional clustering algorithms can be applied to this transformeddata space. Principal Component Analysis (PCA) [Jac91], Multidimensional Scaling (MDS) [JD88] andKohonen Self-Organizing Feature Maps (SOFM) [Koh88] are some of the commonly used techniques fordimensionality reduction. In addition, Latent Semantic Indexing (LSI) [And54, DDF+90, Ber92, BDO95]is a method frequently used in the information retrieval domain that employs a dimensionality reductiontechnique similar to PCA. An inherent problem with dimensionality reduction is that in the presence ofnoise in the data, it may result in the degradation of the clustering results. This is partly due to the fact3



that by projecting onto a smaller number of dimensions, the noise data may appear closer to the clean datain the lower dimensional space. In many domains, it is not always possible or practical to remove the noiseas a preprocessing step. In addition, performing dimensionality reduction prior to clustering often adds acomputationally prohibitive step.Our proposed clustering algorithms which are described in this section are designed to e�ciently handlevery high dimensional spaces, without the need for dimensionality reduction. In contrast to traditionalclustering methods, our proposed methods are linearly scalable, an advantage which makes these methodsparticularly suitable for use in Web retrieval and categorization agents. For our evaluation, we used twosets of sample documents retrieved from the Web to compare these algorithms to two well-known methods:Bayesian classi�cation as used by AutoClass [CS96] and hierarchical agglomeration clustering (HAC) basedon the use of a distance function [DH73].AutoClass is based on the probabilistic mixture modeling [TSM85], and given a data set it �nds maximumparameter values for a speci�c probability distribution functions of the clusters. The clustering results providethe full description of each cluster in terms of probability distribution of each attributes. The HAC methodstarts with trivial clusters, each containing one document and iteratively combines smaller clusters that aresu�ciently \close" based on a distance metric. In HAC, the features in each document vector is usuallyweighted using the TFIDF scaling [SM83], which is an increasing function of the feature's text frequencyand its inverse document frequency in the document space.4.1 Association Rule Hypergraph Partitioning AlgorithmThe ARHP method [HKKM97a, HKKM97b, HKKM98] is used for clustering related items in transaction-based databases, such as supermarket bar code data, using association rules and hypergraph partitioning.From a database perspective, the transactions can be viewed as a relational table in which each item rep-resents an attribute and the domain of each attribute is either the binary domain (indicating whether theitem was bought in a particular transaction) or a non-negative integer indicating the frequency of purchasewithin a given transaction.The ARHP method �rst �nds set of items that occur frequently together in transactions using associationrule discovery methods [AMS+96]. These frequent item sets are then used to group items into hypergraphedges, and a hypergraph partitioning algorithm [KAKS97] is used to �nd the item clusters. The similarityamong items is captured implicitly by the frequent item sets.In the document retrieval domain, it is also possible to view a set of documents in a transactional form. Inthis case, each document corresponds to an item and each possible feature corresponds to a transaction. Theentries in the table represents the frequency of occurrence of a speci�ed feature (word) in that document. Afrequent item sets found using the association rule discovery algorithm corresponds to a set of documents thathave a su�ciently large number of features (words) in common. These frequent item sets are mapped intohyperedges in a hypergraph. A typical document-feature dataset, represented as a transactional database,is depicted in Figure 2.
Figure 2: A Transactional View of a Typical Document-Feature SetA hypergraph [Ber76] H = (V;E) consists of a set of vertices (V ) and a set of hyperedges (E). Ahypergraph is an extension of a graph in the sense that each hyperedge can connect more than two vertices.In our model, the set of vertices V corresponds to the set of documents being clustered, and each hyperedge4



e 2 E corresponds to a set of related documents. A key problem in modeling data items as a hypergraph isdetermining what related items can be grouped as hyperedges and determining the weights of the hyperedge.In this case, hyperedges represent the frequent item sets found by the association rule discovery algorithm.Association rules capture the relationships among items that are present in a transaction [AMS+96]. LetT be the set of transactions where each transaction is a subset of the item-set I , and C be a subset of I . Wede�ne the support count of C with respect to T to be:�(C) = jftjt 2 T;C � tgj:Thus �(C) is the number of transactions that contain C. An association rule is an expression of the formX s;�=) Y , where X � I and Y � I . The support s of the rule X s;�=) Y is de�ned as �(X [ Y )=jT j, and thecon�dence � is de�ned as �(X [ Y )=�(X). The task of discovering an association rule is to �nd all rulesX s;�=) Y , such that s is greater than a given minimum support threshold and � is greater than a givenminimum con�dence threshold. The association rule discovery is composed of two steps. The �rst step isto discover all the frequent item-sets (candidate sets that have support greater than the minimum supportthreshold speci�ed). The second step is to generate association rules from these frequent item-sets.The frequent item sets computed by an association rule algorithm such as Apriori are excellent candidatesto �nd such related items. Note that these algorithms only �nd frequent item sets that have support greaterthan a speci�ed threshold. The value of this threshold may have to be determined in a domain speci�cmanner. The frequent item sets capture the relationships among items of size greater than or equal to 2.Note that distance based relationships can only capture relationships among pairs of data points whereas thefrequent items sets can capture relationship among larger sets of data points. This added modeling poweris nicely captured in our hypergraph model.Assignment of weights to the resulting hyperedges is more tricky. One obvious possibility is to use thesupport of each frequent item set as the weight of the corresponding hyperedge. Another possibility is tomake the weight as a function of the con�dence of the underlying association rules. For size two hyperedges,both support and con�dence provide similar information. In fact, if two items A and B are present in equalnumber of transactions (i.e., if the support of item set fAg and item set fBg are the same), then there isa direct correspondence between the support and the con�dence of the rules between these two items (i.e.,greater the support for fA, Bg, more con�dence for rules \fAg =) fBg" and \fAg =) fBg"). However,support carries much less meaning for hyperedges of size greater than two, as in general, the support ofa large hyperedge will be much smaller than the support of smaller hyperedges. Another, more natural,possibility is to de�ne weight as a function of the support and con�dence of the rules that are made of agroup of items in a frequent item set. Other options include correlation, distance or similarity measure.In our current implementation of the model, each frequent item-set is represented by a hyperedge e 2 Ewhose weight is equal to the average con�dence of the association rules, called essential rules, that have allthe items of the edge and has a singleton right hand side. We call them are essential rules, as they captureinformation unique to the given frequent item set. Any rule that has only a subset of all the items in therule is already included in the rules of subset of this frequent item set. Furthermore, all the rules thathave more than 1 item on the right hand size are also covered by the subset of the frequent item set. Forexample, if fA,B,Cg is a frequent item-set, then the hypergraph contains a hyperedge that connects A, B,and C. Consider a rule fAg=)fB,Cg. Interpreted as an implication rule, this information is captured byfAg=)fBg and fAg=)fCg. Consider the following essential rules (with con�dences noted on the arrows)for the item set fA,B,Cg: fA,Bg 0:4=)fCg, fA,Cg 0:6=)fBg, and fB,Cg 0:8=)fAg. Then we assign weight of 0.6( 0:4+0:6+0:83 = 0:6) to the hyperedge connecting A,B, and C.The hypergraph representation can then be used to cluster relatively large groups of related items by par-titioning them into highly connected partitions. One way of achieving this is to use a hypergraph partitioningalgorithm that partitions the hypergraph into two parts such that the weight of the hyperedges that are cutby the partitioning is minimized. Note that by minimizing the hyperedge-cut we essentially minimize therelations that are violated by splitting the items into two groups. Now each of these two parts can be furtherbisected recursively, until each partition is highly connected. For this task we use HMETIS [KAKS97], amulti-level hypergraph partitioning algorithm which can partition very large hypergraphs (of size > 100Knodes) in minutes on personal computers. 5



Once, the overall hypergraph has been partitioned into k parts, we eliminate bad clusters using thefollowing cluster �tness criterion. Let e be a set of vertices representing a hyperedge and C be a set ofvertices representing a partition. The �tness function that measures the goodness of partition C is de�nedas follow: fitness(C) = Pe�C Weight(e)Pje\Cj>0Weight(e)The �tness function measures the ratio of weights of edges that are within the partition and weights of edgesinvolving any vertex of this partition. Note that this �tness criteria can be incorporated into the partitioningalgorithm as a stopping condition. With this stopping condition, only the partitions that do not meet the�tness criteria are partitioned further.Each good partition is examined to �lter out vertices that are not highly connected to the rest of thevertices of the partition. The connectivity function of vertex v in C is de�ned as follow:connectivity(v; C) = jfeje � C; v 2 egjjfeje � CgjThe connectivity measures the percentage of edges that each vertex is associated with. High connectivityvalue suggests that the vertex has many edges connecting good proportion of the vertices in the partition.The vertices with connectivity measure greater than a give threshold value are considered to belong to thepartition, and the remaining vertices are dropped from the partition.In ARHP, �ltering out of non-relevant documents can also be achieved using the support criteria in theassociation rule discovery components of the algorithm. Depending on the support threshold. documentsthat do not meet support (i.e., documents that do not share large enough subsets of words with otherdocuments) will be pruned. This feature is particularly useful for clustering large document sets which arereturned by standard search engines using keyword queries.4.2 Principal Direction Divisive PartitioningThe method of Principal Direction Divisive Partitioning (PDDP) [Bol97] is based on the computation ofthe leading principal direction (also known as principal component) for a collection of documents and thencutting the collection of documents along a hyperplane resulting in two separate clusters. The algorithm isthen repeated on each separate cluster. The result is a binary tree of clusters de�ned by associated principaldirections and hyperplanes. The PDDP method computes a root hyperplane, and then a child hyperplanefor each cluster formed from the root hyperplane, and so on. The algorithm proceeds by splitting a leaf nodeinto two children nodes using the leaf's associated hyperplane.The leaf to be split next at each stage may be selected based on a variety of strategies. The simplestapproach is to split all the clusters at each level of the binary tree before proceeding to any cluster at thenext level. However, in our experiments, this resulted in imbalance in the sizes of the clusters, includingsome clusters with only 1 document. Another option is to use any appropriate measure of cohesion. Forsimplicity of computation, the experiments shown in this paper have been conducted using a modi�ed scattervalue [DH73] de�ned below.Each document is represented by a column of word counts and all the columns are collected into aterm frequency matrix M , in a manner similar to Latent Semantic Indexing (LSI) [BDO95]. Speci�cally,the i; j-th entry, Mij , is the number of occurrences of word wi in document dj . To make the resultsindependent of document length, each column is scaled to have unit length in the usual Euclidean norm:cMij = Mij=qPiM2ij , so that Pi cM2ij = 1. An alternative scaling is the TFIDF scaling [SM83], but thisscaling �lls in all the zero entries in M . In our experiments, only up to 3% of the entries were nonzero, andthe PDDP algorithm depends on this sparsity for its performance. Hence the TFIDF scaling substantiallyraises the cost of the PDDP algorithm while not yielding any improvement of the cluster quality [Bol97].At each stage of the algorithm a cluster is split as follows. The centroid vector for each cluster is thevector c whose i-th component is ci =Pj cMij=k, where the sum is taken over all documents in the clusterand k is the number of documents in the cluster. The principal direction for each individual cluster is thedirection of maximum variance, de�ned to be the eigenvector corresponding to the largest eigenvalue of the6



unscaled sample covariance matrix (cM � ce)(cM � ce)0, where e is a row vector of all ones and 0 denotes thematrix transpose. In our algorithm, it is obtained by computing the leading left singular vector of (cM � ce)using a \Lanczos"-type interative method [Bol97]. In the \Lanczos"-type interative method, the matrix(cM � ce) is used only to form matrix vector products, which can be computed fast by using(cM � ce)v = cMv � c(ev): (1)In this way, the matrix (cM � ce) need not be formed explicitly, thus preserving sparsity. The resultingsingular vector is the principal direction, and all the documents are projected onto this vector. Thosedocuments with positive projections are allocated to the right child cluster, the remaining documents areallocated to the left child cluster. With this notation, we can also give the following precise de�nition ofthe scatter of a cluster: Pij(cMij � ci)2, where the sum is taken over all documents dj in the cluster and allthe words wi, and ci is the i-th component of the cluster's centroid vector. In other words, the scatter issum of squares of the distances from each document in the cluster to the cluster mean. The process stopswhen all the scatter values for the individual clusters fall below the scatter value of centroid vectors collectedtogether.This process di�ers from that in [BDO95] in that (a) we �rst scale the columns to have unit length tomake the results independent of the document length, (b) we translate the collection of document columnsso that their mean lie at the origin, (c) we compute only the single leading singular value with its associatedleft and right singular vectors, (d) we repeat the process on each cluster during the course of the algorithm.In LSI as described in [BDO95], the SVD is applied once to the original untranslated matrix of word counts,and the �rst k singular values and associated vectors are retrieved, for some choice of k. This removes muchof the noise present in the data, and also yields a representation of the documents of reduced dimensionality,reducing the cost and raising the precision of user queries. The matrix produced by this LSI computationcould be used as a preprocessing step to the PDDP algorithm, but generally lacks any sparsity. In addition,clusters of small variance may be lost in the noise dimensions removed by the LSI technique. In PDDP,however, property (d) ensures that such small clusters will eventually appear, though they could be dividedby a hyperplane early in the splitting process leading to multiple small clusters.5 Experimental Evaluation5.1 Comparative Evaluation of Clustering AlgorithmsTo compare our clustering methods with the more traditional algorithms, we selected 185 web pages in 10broad categories: business capital (BC), intellectual property (IP), electronic commerce (EC), informationsystems (IS), a�rmative action (AA), employee rights (ER), personnel management (PM), industrial part-nership (IPT), manufacturing systems integration (MSI), and materials processing (MP). The pages in eachcategory were obtained by doing a keyword search using a standard search engine. These pages were thendownloaded, labeled, and archived. The labeling facilitates an entropy calculation and subsequent referencesto any page were directed to the archive. This ensures a stable data sample since some pages are fairlydynamic in content.The word lists from all documents were �ltered with a stop-list and \stemmed" using Porter's su�x-stripping algorithm [Por80] as implemented by [Fra92]. We derived 10 experiments (according to the methodused for feature selection) and clustered the documents using the four algorithms described earlier. Theobjective of feature selection was to reduce the dimensionality of the clustering problem while retain theimportant features of the documents. Table 1 shows the feature selection methods that characterize variousexperiments.Validating clustering algorithms and comparing performance of di�erent algorithms is complex becauseit is di�cult to �nd an objective measure of quality of clusters. We decided to use entropy as a measureof goodness of the clusters (with the caveat that the best entropy is obtained when each cluster containsexactly one document). For each cluster of documents, the category distribution of documents is calculated�rst. Then using this category distribution, the entropy of each cluster j is calculated using the formulaEj = �PCi pCi log pCi , where pCi is the fraction of documents within the cluster with the category label7



Word Selection DatasetSet Criteria Size CommentsE1 All words 185x10536 We select all non-stop words (stemmed).E2 All words withtext frequency> 1 188x5106 We prune the words selected for E11 to exclude thoseoccurring only once.E3 Top 20+ words 185x1763 We select the 20 most frequently occurring words andinclude all words from the partition that contributesthe 20th word.E4 Top 20+ with textfrequency > 1 185x1328 We prune the words selected for E3 to exclude thoseoccurring only once.E5 Top 15+ with textfrequency > 1 185x1105E6 Top 10+ with textfrequency > 1 185x805E7 Top 5+ with textfrequency > 1 185x474E8 Top 5+ plus em-phasized words 185x2951 We select the top 5+ words augmented by anyword that was emphasized in the html document,i.e., words appearing in <TITLE>, <H1>, <H2>,<H3>, <I>, <BIG>, <STRONG>, <B>, or<EM> tags.E9 Quantile �ltering 185x946 Quantile �ltering selects the most frequently occur-ring words until the accumulated frequencies exceeda threshold of 0.25, including all words from the par-tition that contributes the word that exceeds thethreshold.E10 Frequent item sets 185x499 We select words from the document word lists thatappear in a-priori word clusters. That is, we use anobject measure to identify important groups of words.Table 1: Setup of experiments. The \D" experiments were constructed in similar fashion. Their sizes canbe found in Fig. 9.Ci, the sum is taken over all categories, C1; C2; : : :. In our example, C1 =BC, C2 =IP, etc. When a clustercontains documents from one category only, the entropy value is 0.0 for the cluster and when a clustercontains documents from many di�erent categories, then entropy of the cluster is higher. The total entropyis calculated as the sum of entropies of the clusters weighted by the size of each cluster: Etotal =Pj Ejnj=n,where nj is the number of documents in cluster j and n is the total number of documents. We compare theresults of the various experiments by comparing their entropy across algorithms and across feature selectionmethods (Fig. 6). Figure 3 shows the category distribution of documents in each cluster of the best AutoClassresult with the entropy value 2.05. Comparing this result to one of PDDP result with entropy value of 0.69in Figure 4 and one of ARHP result with entropy value of 0.79 in Figure 5, we can see the big di�erences inthe quality of the clusters obtained from these experiments. Note that in most experiments, documents witheach document label have ended up in several clusters. An open question is how to re-agglomerate clusterscontaining similar documents that were separated by the clustering algorithm prematurely.Our experiments suggest that clustering methods based on partitioning seem to work best for this typeof information retrieval applications, because they are linearly scalable w.r.t. the cardinalities of the doc-ument and feature spaces (in contrast to HAC and AutoClass which are quadratic). In particular, boththe hypergraph partitioning method and the principal component methods performed much better than thetraditional methods regardless of the feature selection criteria used.There were also dramatic di�erences in run times of the four methods. For example, when no featureselection criteria was used (dataset size of 185 � 10538), ARHP and PDDP took less than 2 minutes, whereasHAC took 1 hour and 40 minutes and AutoClass took 38 minutes.Aside from overall performance and the quality of clusters, the experiments point to a few other notableconclusions. As might be expected, in general clustering algorithms yield better quality clusters when thefull set of feature is used (experiment E1). Of course, as the above discussion shows, for large datasetsthe computational costs may be prohibitive, especially in the case of HAC and AutoClass methods. It is8
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Figure 3: Class distribution of AutoClass clusters.
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Figure 4: Class distribution of PDDP clusters.9



0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

PM

MSI

MP

IS

IPT

IP

ER

EC

BC

AA

Figure 5: Class distribution of ARHP clusters.therefore important to select a smaller set of representative features to improve the performance of clusteringalgorithms without losing too much quality. Our experiments with various feature selection methods repre-sented in E1 through E10, clearly show that restricting the feature set to those only appearing in the frequentitem sets (discovered as part of the association rule algorithm), has succeeded in identifying a small set offeatures that are relevant to the clustering task. In fact, in the case of AutoClass and HAC, the experimentE10 produced results that were better than those obtained by using the full set.It should be noted that the conclusions drawn in the above discussion have been con�rmed by anotherexperiment using a totally independent set of documents [MHB+97].Dimensionality Reduction using LSI/SVDAs noted above, feature selection methods, such as those used in our experiments, are often used in orderto reduce the dimentionality of clustering problem in information retrieval domains. The objective of thesemethods is to extract the most salient features of the document data set to be used as the dimensions inthe clustering algorithm. Another approach to dimentionality reduction is that of Latent Semantic Indexing(LSI) [BDO95], where the SVD [Ber92] is applied once to the original untranslated matrix of word counts,and the �rst k singular values and associated vectors are retrieved, for some choice of k. This removes muchof the noise present in the data, and also yields a representation of the documents of reduced dimensionality.We compared AutoClass, HAC, and PDDP, after the application of LSI to the complete dataset (E1).Speci�cally, we compared the entropies for each method without using LSI, to three LSI datasets with k = 10,k = 50, k = 100. It should be noted that, in the case of HAC, we used LSI on the dataset with the TFIDFscaling in order to be able to compare the results to the original results (without the LSI). However, theTFIDF scaling may not necessarily be the right choice, and a more systematic study with di�erent scalingmethods is called for. A summary of our experimental results with LSI is depicted in Figure 7.This limited set of experiments suggests that LSI can indeed improve the results in the case of AutoClassand HAC (at least for some values of k), though not enough to match the entropies in the cases of PDDP orARHP without dimensionality reduction. In the case of PDDP, LSI did not seem provide quality improve-ments to any substantial degree. Furthermore, in all of these cases, the results seem to highly dependent10



PDDPFigure 6: Entropy of di�erent algorithms. Note that lower entropy indicates better cohesiveness of clusters.on the right choice of k. The correct choice for k may, in fact, vary from data set to data set, or (as theexperiments suggest), from algorithm to algorithm.Also, both HAC and AutoClass ran dramatically faster on the data with small number of dimensionsthan on the original data. For the small data set (E1) used for these experiments, the time to run SVD wasrelatively small. Hence, the overall runtime including SVD computation and clustering improved. However,for a large matrix, the runtime for computing SVD could be quite substantial and may make it impracticalto perform dimensionality reduction before clustering.The precise cost of the SVD computation for both LSI and PDDP depends on many variables, includingthe number of eigenvalues sought and their distribution, and hence is much beyond the scope of this paper.The underlying Lanczos iteration needed to obtain the k � 1 eigenvalues in LSI is more or less the sameas that used to obtain the single eigenvalue in PDDP, except that in the latter there is no need to de
ateeigenvalues as they converge to prevent them from re-appearing. However, at least k, and often at least 2k,iterations are needed in the LSI case [Ber92]. On the other hand, obtaining the single leading eigenvectorcan be accomplished in relatively few iterations, typically around 15 to 20, and never more than 25 in ourapplication. We also note that though the SVD computation in PDDP must be repeated, it is applied tothe entire matrix only once.Finally, we note that we have not run ARHP on the LSI datasets, as ARHP would have required thecomputation of frequent item sets (documents) based on a very small number of (k) transactions. Frequentitem sets discoverd using a small number of transactions are not likely to be useful, because they are notstatistically signi�cant. Hence, the hypergraph constructed from these frequent item sets does not capturethe original relationships present among the documents.5.2 Scalability of Clustering AlgorithmsThe scalability of our clustering methods is essential if they are to be practical for large numbers of documents.In this section we give some experimental evidence that our methods are indeed scalable.We have applied our clustering methods to a large data set denoted \D1" consisting of 2,340 documentsusing a dictionary of 21,839 words. We then constructed three other data sets labeled D3, D9, D10 usingreduced dictionaries using the same strategies as E3, E9, E10, respectively, in Table 1. The number of wordsin the resulting reduced dictionaries is reported in Fig. 9.11



Figure 7: Comparison of Entropies for the E1, With and Without LSI.Scalability of PDDPFigures 8 and 9 illustrate the performance of the PDDP algorithm on these datasets. Fig. 8 shows that theentropies for D1 and D10 are lower than those for D3 and D9, when the number of clusters agrees. This isconsistent with the results shown in Fig. 6.
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Figure 8: Entropies from the PDDP algorithm with various number of clusters.The PDDP algorithm is based on an e�cient method for computing the principal direction. The methodfor computing the principal direction is itself based on the Lanczos method [GV96] in which the major costarises from matrix-vector products involving the term frequency matrix. The total cost is the cost of eachmatrix-vector product times the total number of products. The number of products has never exceeded 20in any of the experiments we have tried. The term frequency matrix is a very sparse matrix: in the D1 dataset only about 0.68% of the entries are nonzero. The cost of a matrix-vector product involving a very sparsematrix depends not on the dimensions of the matrix, but rather on the number of nonzero entries. Usingthe notation of the previous section, we seek the leading singular vector of the dense matrix (cM � ce), but12



matrix-vector products involving this matrix can be computed as shown in equation (1) without formingthis matrix explicitly. This is all that is required for the Lanczos method. Hence the total cost of the PDDPalgorithm is governed by the number of nonzero entries in the term frequency matrix. This is illustrated inFig. 9. Notice that even though the data set D10 has many fewer words than the other data sets, its costis more than for D3 or D9 because D10's term frequency matrix is 10 times more dense than D1's matrix:about 6.9% of its entries are nonzero.
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Figure 9: Times for the PDDP algorithm on an SGI versus number of nonzeros in term frequency matrix,for both E and D series with 16 clusters. The D experiments had 2,340 documents and the indicated numberof words, and were constructed just like the corresponding E experiments in Table 1.Scalability of ARHPThe problem of �nding association rules that meet a minimum support criterion has been shown to belinearly scalable with respect to the number of transactions [AMS+96]. It has also been shown in [AMS+96]that association rule algorithms are scalable with respect to the number of items assuming the average sizeof transactions is �xed. Highly e�cient algorithms such as Apriori are able to quickly �nd association rulesin very large databases provided the support is high enough.The complexity of HMETIS for a k-way partitioning is O((V +E) log k) where V is the number of verticesand E is the number of edges. The number of vertices in an association-rule hypergraph is the same as thenumber of documents to be clustered. The number of hyperedges is the same as the number of frequentitem-sets with support greater than the speci�ed minimum support. Note that the number of frequent itemsets (i.e., hyperedges) does not increase as the number of words increases. Hence, our clustering method islinearly scalable with respect to the number of words in the documents.Figure 10 shows the entropies from the ARHP algorithm. This result is also consistent with Figure 6where the entropies for D1 and D10 are lower than for D3 and D9. Each data set produces di�erent sizehypergraph. Table 2 shows the size of hypergraph for several experiments from E and D series. Figure 11shows the CPU time for partitioning these hypergraphs. The run time for partitioning these hypergraphssupports the complexity analysis that says the run time is proportional to the size of the hypergraph (V +E).
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Figure 10: Entropies from the ARHP algorithm with various number of clusters.Experiments Number of Edges Number of VerticesE1 12091 185E3 6572 185E9 4875 185E10 15203 185D1 95882 2068D3 81677 2065D9 128822 2028D10 89173 2147Table 2: Size of hypergraphs for several experiments from E and D series.6 Search for and Categorization of Similar DocumentsOne of the main tasks of the agent is to search the Web for documents that are related to the clusters ofdocuments. The key question here is how to �nd a representative set of words that can be used in a Websearch. With a single document, the words appearing in the document become a representative set. However,this set of words cannot be used directly in a search because it excessively restricts the set of documents tobe searched. The logical choice for relaxing the search criteria is to select words that are very frequent inthe document.The characteristic words of a cluster of documents are the ones that have high document frequency andhigh average text frequency. Document frequency of a word refers to the frequency of the word acrossdocuments. Text frequency of a word refers to word frequency within a document. We de�ne the TF wordlist as the list of k words that have the highest average text frequency and the DF word list as the list of kwords that have the highest document frequency.For each cluster, the word lists TF and DF are constructed. TF \DF represents the characteristic setof words for the cluster, as it has the words that are frequent across the document and have high average14
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Figure 11: Hypergraph partitioning time for both E and D series. The number of partitions was about 16.frequency. The query can be formed as(c1 ^ c2 : : : ^ cm) ^ (t1 _ t2 : : : _ tn)where ci 2 TF \DF and ti 2 TF �DF .We formed queries from the business capital cluster discussed in Section 5. We found the characteristicwords of the cluster (TF \DF ) and issued the following query to Yahoo web search engine:+capit* +busi* +financ* +provid* +fund* +develop* +compani* +financi* +manag*The search returned 2280 business related documents. We then added the most frequent words that werenot in the previous list (TF �DF ) to form the following query:+capit* +busi* +financ* +provid* +fund* +develop* +compani* +financi* +manag*loan* invest* program* credit* industri* tax* increas* cost* technologi*sba* project*AltaVista search using this query returned only 372 business related documents which seemed highly relatedto the existing documents in the cluster. First page returned by the query is shown in Figure 12.The documents returned as the result of queries can be handled in several ways as shown in Figure 1.ARHP could be used to �lter out non-relevant documents among the set of documented returned by thequery as discussed in Section 4.1. The degree of �ltering can be increased either by setting higher supportcriteria for association rules discovery or by having a tighter connectivity constraint in the partition.Resulting documents can be incrementally added to the existing clusters using ARHP or PDDP dependingon the method used for clustering. With ARHP, for each new document, existing hyperedges are extendedto include the new document and their weights are calculated. For each cluster, the connectivity of thisnew document to the cluster is measured by adding the weights of all the extended hyperedges within thecluster. The new document is placed into the cluster with the highest connectivity. The connectivity ratiobetween the chosen cluster and the remaining clusters indicates whether the new document strongly belongsto the chosen cluster. If the connectivity of the document is below some threshold for all clusters, then thedocument can be considered as not belonging to any of the cluster.With PDDP, the binary tree can also be used to �lter new incoming documents by placing the documenton one or the other side of the root hyperplane, then placing it on one or the other side the next appropriatehyperplane, letting it percolate down the tree until it reaches a leaf node. This identi�es the cluster in the15
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original tree most closely related to the new incoming document. If the combined scatter value for thatcluster with the new document is above a given threshold, then the new document is only loosely related tothat cluster, which can then be split in two.7 ConclusionIn this paper we have proposed an agent to explore the Web, categorizing the results and then using thoseautomatically generated categories to further explore the Web. We have presented sample performanceresults for the categorization (clustering) component, and given some examples showing how those categoriesare used to return to the Web for further exploration.For the categorization component, our experiments have shown that the ARHP algorithm and the PDDPalgorithm are capable of extracting higher quality clusters while operating much faster compared to moreclassical algorithms such as HAC or AutoClass. This is consistent with our previous results [MHB+97]. TheARHP algorithm is also capable of �ltering out documents by setting a support threshold. Our experimentsshow that the PDDP and ARHP algorithms are fast and scale with the number of words in the documents.To search for similar documents keyword queries are formed by extending the characteristic word setsfor each cluster. Our experiments show that this method is capable of producing small sets of relevantdocuments using standard search engines.In the future, we will explore the performance of the entire agent as an integrated and fully automatedsystem, comparing the relative merits of the various algorithms for clustering, query generation, and doc-ument �ltering, when used as the key components for this agent. In particular, we will conduct furtherexperimental evaluation of query generation mechanism and classi�cation of new documents into existingclusters. Another area for future work involves the development of a method for evaluating quality of clusterswhich is not based on a priori class labels.References[Ack97] M. Ackerman et al. Learning probabilistic user pro�les. AI Magazine, 18(2):47{56, 1997.[AFJM95] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. WebWatcher: A learning apprenticefor the world wide web. In Proc. AAAI Spring Symposium on Information Gathering fromHeterogeneous, Distributed Environments. AAAI Press, 1995.[AMS+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of asso-ciation rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy, editors,Advances in Knowledge Discovery and Data Mining, pages 307{328. AAAI/MIT Press, 1996.[And54] T.W. Anderson. On estimation of parameters in latent structure analysis. Psychometrika,19:1{10, 1954.[BDO95] M. W. Berry, S. T. Dumais, and Gavin W. O'Brien. Using linear algebra for intelligent infor-mation retrieval. SIAM Review, 37:573{595, 1995.[Ber76] C. Berge. Graphs and Hypergraphs. American Elsevier, 1976.[Ber92] M. W. Berry. Large-scale sparse singular value computations. International Journal of Super-computer Applications, 6(1):13{49, 1992.[Bol97] D.L. Boley. Principal Direction Divisive Partitioning. Technical Report TR-97-056, Departmentof Computer Science, University of Minnesota, Minneapolis, 1997.[BSY95] Marko Balabanovic, Yoav Shoham, and Yeogirl Yun. An adaptive agent for automated Webbrowsing. Journal of Visual Communication and Image Representation, 6(4), 1995.17
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