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AbstractClustering techniques have been used by many intelligent software agents in order to retrieve, �lter,and categorize documents available on the World Wide Web. Clustering is also useful in extractingsalient features of related web documents to automatically formulate queries and search for other similardocuments on the Web. Traditional clustering algorithms either use a priori knowledge of documentstructures to de�ne a distance or similarity among these documents, or use probabilistic techniques suchas Bayesian classi�cation. Many of these traditional algorithms, however, falter when the dimensionalityof the feature space becomes high relative to the size of the document space. In this paper, we introducetwo new clustering algorithms that can e�ectively cluster documents, even in the presence of a veryhigh dimensional feature space. These clustering techniques, which are based on generalizations of graphpartitioning, do not require pre-speci�ed ad hoc distance functions, and are capable of automaticallydiscovering document similarities or associations. We conduct several experiments on real Web datausing various feature selection heuristics, and compare our clustering schemes to standard distance-basedtechniques, such as hierarchical agglomeration clustering, and Bayesian classi�cation methods, such asAutoClass.Keywords: clustering, categorization, World Wide Web documents, graph partitioning, association rules,principal component analysis.�This work was supported in part by Army Research O�ce contract DA/DAAG55-98-1-0441, by Army High PerformanceComputing Research Center cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the con-tent of which does not necessarily re
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1 IntroductionThe World Wide Web is a vast resource of information and services that continues to grow rapidly. Powerfulsearch engines have been developed to aid in locating unfamiliar documents by category, contents, or subject.Unfortunately, queries often return inconsistent results, with document referrals that meet the search criteriabut are of no interest to the user.While it may not be currently feasible to extract in full the meaning of an HTML document, intelligentsoftware agents have been developed which extract features from the words or structure of an HTML doc-ument and employ them to classify and categorize the documents. Clustering o�ers the advantage that apriori knowledge of categories is not needed, so the categorization process is unsupervised. The results ofclustering could then be used to automatically formulate queries and search for other similar documents onthe Web, or to organize bookmark �les, or to construct a user pro�le.In this paper, we present two new clustering algorithms based on graph partitioning and compare theirperformance against more traditional clustering algorithms used in information retrieval.Traditional clustering algorithms either de�ne a distance or similarity among documents, or use prob-abilistic techniques such as Bayesian classi�cation. Many of these algorithms, however, break down as thesize of the document space, and hence, the dimensionality of the corresponding feature space increases.High dimensionality is characteristic of the information retrieval applications which are used to �lter andcategorize documents on the World Wide Web. In contrast, our partitioning-based algorithms perform wellin the presence of a high dimensional space.In section 2 we describe the clustering algorithms, in Section 3 we present results of a number of exper-iments using di�erent methods to select features from the documents, and we compare the results of thedi�erent clustering algorithms. We show that partitioning clustering methods perform better than tradi-tional distance based clustering. Finally in Section 3 we compare our work with other similar systems andpresent ideas for future research.2 Clustering MethodsMost of the existing methods for document clustering are based on either probabilistic methods, or dis-tance and similarity measures (see [15]). Distance-based methods such as k-means analysis, hierarchicalclustering [20] and nearest-neighbor clustering [23] use a selected set of words appearing in di�erent doc-uments as features. Each document is represented by a feature vector, and can be viewed as a point in amulti-dimensional space.There are a number of problems with clustering in a multi-dimensional space using traditional distance-or probability-based methods. First, it is not trivial to de�ne a distance measure in this space. Featurevectors must be scaled to avoid skewing the result by di�erent document lengths or possibly by how common2



a word is across many documents. Techniques such as TFIDF [28] have been proposed precisely to dealwith some of these problems, but we have found out in our experiments that using TFIDF scaling does notalways help.Second, the number of di�erent words in the documents can be very large. Distance-based schemesgenerally require the calculation of the mean of document clusters, which are often chosen initially at random.In a high dimensional space, the cluster means of randomly chosen clusters will do a poor job at separatingdocuments. Similarly, probabilistic methods such as Bayesian classi�cation used in AutoClass [11, 29] do notperform well when the size of the feature space is much larger than the size of the sample set or may dependon the independence of the underlying features. Web documents su�er from both high dimensionality andhigh correlation among the feature values. We have found that hierarchical agglomeration clustering (HAC)[13] is computationally very expensive, and AutoClass has performed poorly on our examples.Our proposed clustering algorithms, described below, are designed to e�ciently handle very high dimen-sional spaces and large data sets, as shown in the experimental results we describe later.2.1 Association Rule Hypergraph Partitioning (ARHP)The Association Rule Hypergraph Partitioning (ARHP) [17, 18] is a clustering method based on the associ-ation rule discovery technique used in data mining. This technique is often used to discover a�nities amongitems in a transactional database (for example, to �nd sales relationships among items sold in supermarketcustomer transactions. From a database perspective, these transactions can be viewed as a relational tablein which each item represents an attribute and the domain of each attribute is either the binary domain(indicating whether the item was bought in a particular transaction) or a non-negative integer indicatingthe frequency of purchase within a given transaction. Figure 1 depicts a portion of a typical supermarkettransaction database.
Figure 1: Portion of a Typical Supermarket Transaction DatabaseThe association rule discovery methods [2] �rst �nd groups of items occurring frequently together in manytransactions. Such groups of items are referred to as frequent item sets. In the ARHP method, we use thediscovered frequent item sets to form a hypergraph, where vertices are items and each hyperedge representsa frequent item set. Then a hypergraph partitioning algorithm [21] is used to �nd the item clusters. Thesimilarity among items is captured implicitly by the frequent item sets.In the document retrieval domain, it is also possible to view a set of documents in a transactional form.3



In this case, each document corresponds to an item and each possible feature corresponds to a transaction.The entries in the table (domain of document attribute) represents the frequency of occurrence of a speci�edfeature (word) in that document. A frequent item sets found using the association rule discovery algorithmcorresponds to a set of documents that have a su�ciently large number of features (words) in common.These frequent item sets are mapped into hyperedges in a hypergraph. A typical document-feature dataset,represented as a transactional database, is depicted in Figure 2.
Figure 2: A Transactional View of a Typical Document-Feature SetA hypergraph [5] H = (V;E) consists of a set of vertices (V ) and a set of hyperedges (E). A hypergraphis an extension of a graph in the sense that each hyperedge can connect more than two vertices. In ourmodel, the set of vertices V corresponds to the set of documents being clustered, and each hyperedgee 2 E corresponds to a set of related documents. A key problem in modeling data items as a hypergraph isdetermining what related items can be grouped as hyperedges and determining the weights of the hyperedge.In this case, hyperedges represent the frequent item sets found by the association rule discovery algorithm.Association rules capture the relationships among items that are present in a transaction [3]. Let T bethe set of transactions where each transaction is a subset of the item-set I , and C be a subset of I . Wede�ne the support count of C with respect to T to be:�(C) = jftjt 2 T;C � tgj:Thus �(C) is the number of transactions that contain C. An association rule is an expression of the formX s;�=) Y , where X � I and Y � I . The support s of the rule X s;�=) Y is de�ned as �(X [ Y )=jT j, and thecon�dence � is de�ned as �(X [ Y )=�(X). The task of discovering an association rule is to �nd all rulesX s;�=) Y , such that s is greater than a given minimum support threshold and � is greater than a givenminimum con�dence threshold. The association rule discovery is composed of two steps. The �rst step isto discover all the frequent item-sets (candidate sets that have support greater than the minimum supportthreshold speci�ed). The second step is to generate association rules from these frequent item-sets.The frequent item sets computed by an association rule algorithm such as Apriori are excellent candidatesto �nd such related items. Note that these algorithms only �nd frequent item sets that have support greaterthan a speci�ed threshold. The value of this threshold may have to be determined in a domain speci�cmanner. The frequent item sets capture the relationships among items of size greater than or equal to 2.Note that distance based relationships can only capture relationships among pairs of data points whereas the4



frequent items sets can capture relationship among larger sets of data points. This added modeling poweris nicely captured in our hypergraph model.The hypergraph representation can then be used to cluster relatively large groups of related items bypartitioning them into highly connected partitions. One way of achieving this is to use a hypergraph parti-tioning algorithm that partitions the hypergraph into two parts such that the weight of the hyperedges thatare cut by the partitioning is minimized. Note that by minimizing the hyperedge-cut we essentially minimizethe relations that are violated by splitting the items into two groups. Now each of these two parts can befurther bisected recursively, until each partition is highly connected. For this task we use HMETIS [21], amulti-level hypergraph partitioning algorithm which can partition very large hypergraphs (of size > 100Knodes) in minutes on personal computers.Once, the overall hypergraph has been partitioned into k parts, we eliminate bad clusters using thefollowing cluster �tness criterion. Let e be a set of vertices representing a hyperedge and C be a set ofvertices representing a partition. The �tness function that measures the goodness of partition C is de�nedas follow: fitness(C) = Pe�C Weight(e)Pje\Cj>0Weight(e)The �tness function measures the ratio of weights of edges that are within the partition and weights of edgesinvolving any vertex of this partition.Each good partition is examined to �lter out vertices that are not highly connected to the rest of thevertices of the partition. The connectivity function of vertex v in C is de�ned as follow:connectivity(v; C) = jfeje � C; v 2 egjjfeje � CgjThe connectivity measures the percentage of edges that each vertex is associated with. High connectivityvalue suggests that the vertex has many edges connecting good proportion of the vertices in the partition.The vertices with connectivity measure greater than a give threshold value are considered to belong to thepartition, and the remaining vertices are dropped from the partition.In ARHP, �ltering out of non-relevant documents can also be achieved using the support criteria in theassociation rule discovery components of the algorithm. Depending on the support threshold. documentsthat do not meet support (i.e., documents that do not share large enough subsets of words with otherdocuments) will be pruned. This feature is particularly useful for clustering large document sets which arereturned by standard search engines using keyword queries.2.2 Principal Direction Divisive Partitioning (PDDP) AlgorithmIn the principal direction algorithm, each document is represented by a feature vector of word frequencies,scaled to unit length. The algorithm is a divisive method in the sense that it begins with all the documentsin a single large cluster, and proceeds by splitting it into subclusters in recursive fashion. At each stage in5



the process, the method (a) selects an unsplit cluster to split, and (b) splits that cluster into two subclusters.For part (a) we use a scatter value, measuring the average distance from the documents in a cluster to themean [13], though we could also use just the cluster size if it were desired to keep the resulting clusters allapproximately the same size. For part (b) we construct a linear discriminant function based on the principaldirection (the direction of maximal variance). Speci�cally, we compute the mean of the documents withinthe cluster, and then the principal direction with respect to that mean. This de�nes a hyperplane normal tothe principal direction and passing through the mean. This hyperplane is then used to split the cluster intotwo parts which become the two children clusters to the given cluster. This entire cycle is repeated as manytimes as desired resulting in a binary tree hierarchy of clusters in which the root is the entire document set,and each interior node has been split into two children. The leaf nodes then constitute a partitioning of theentire document set.The de�nition of the hyperplane is based on principal component analysis, similar to the Hotelling orKarhunen-Loeve Transformation [13]. We compute the principal direction as the leading eigenvector ofthe sample covariance matrix. This is the most expensive part, for which we use a fast Lanczos-basedsingular value solver [16]. By taking advantage of the high degree of sparsity in the term frequency matrix,the Lanczos-based solver is very e�cient, with cost proportional to the number of nonzeroes in the termfrequency matrix. This has been discussed in more detail in [7].This method di�ers from that of Latent Semantic Indexing (LSI) [6] in many ways. First of all, LSI wasoriginally formulated for a di�erent purpose, namely as a method to reduce the dimensionality of the searchspace for the purpose of handling queries: retrieving some documents given a set of search terms. Secondly,it operates on the unscaled vectors, whereas we scale the document vectors to have unit length. Thirdly, inLSI, the singular value decomposition of the matrix of document vectors itself are computed, whereas weshift the documents so that their mean is at the origin in order to compute the covariance matrix. Fourthly,the LSI method must compute many singular vectors of the entire matrix of document vectors, perhaps onthe order of 100 such singular vectors, but it must do so only once at the beginning of the processing. Inour method, we must compute only the single leading singular vector (the vector u), which is considerablyeasier to obtain. Of course we must repeat this computation on each cluster found during the course of thealgorithm, but all the later clusters are much smaller than the initial \root" cluster, and hence the latercomputations are much faster.In most of our experiments, we have used the norm scaling, in which each document is represented by afeature vector of word counts, scaled to unit length in the usual Euclidean norm. This leaves the sparsitypattern untouched. An alternate scaling is the TFIDF scaling [28], but this scaling �lls in all zero entrieswith nonzeroes, drastically increasing the cost of the overall algorithm by as much as a factor of 20. In spiteof the increased costs, the TFIDF scaling did not lead to any noticeable improvement in the PDDP resultsin our experiments [8]. 6



2.3 Hierarchical Agglomeration ClusteringA classical algorithm we have implemented is a bottom up hierarchical agglomeration clustering (HAC)method based on the use of a distance function [13]. We start with trivial clusters, each containing onedocument. We cycle through a loop in which the two \closest clusters" are merged into one cluster. Eachloop cycle reduces the number of clusters by 1, and this is repeated until the desired number of clusters isreached. For these experiments, we chose a distance function based on the \cosine" measure (essentially thecosine of the angle between the two documents in N -space), where each cluster was represented by its mean.The cluster means were scaled by the corresponding cluster sizes to discourage large clusters.2.4 AutoClassThe other algorithm we use is AutoClass. AutoClass [11] is based on the probabilistic mixture modeling [29].Given a set of data X , AutoClass �nds maximum parameter values ~̂V for a speci�c probability distributionfunctions T of the clusters.Given ~̂V = f ~̂VC ; ~̂V1; ~̂V2; : : : ; ~̂Vkg, where ~̂VC = f�̂1; �̂2; : : : ; �̂kg and �̂j is a class mixture probability,AutoClass calculates the probability that data point Xi belongs to class Cj by Bayes' rule:P (Xi 2 Cj) = �̂jP (Xij ~̂Vj)Pkl=1 �̂lP (Xij ~̂Vl)One of the advantages of AutoClass is that it has a theoretical foundation using Bayesian statistics.The clustering results provide the full description of each cluster in terms of probability distribution of eachattributes. It also works well for both discrete and continuous attributes. The results of the clustering isfuzzy, i.e., it gives probabilities of one data point belonging to di�erent clusters. Analysts can determine thecluster membership of a data point based on these probabilities.One of the weaknesses of AutoClass is that the underlying probability model assumes independence ofattributes. In many domains, this assumption is too restrictive. Another problem with the basic model isthat it does not provide a satisfactory distribution function for ordered discrete attributes [11]. Furthermoreunrelevant attributes (with respect to clustering) or hidden biases may dominate the clustering process.3 Experimental Results3.1 Experimental SetupFor the experiments we present here we selected 185 Web pages in ten broad categories: a�rmative action(AA), business capital (BC), electronic commerce (EC), employee rights (ER), intellectual property (IP),industrial partnership (IPT), information systems (IS), materials processing (MP), manufacturing systemsintegration (MSI), and personnel management (PM).7



These pages were obtained by doing a keyword search using a standard search engine. The pages weredownloaded, labeled, and archived. The labeling facilitates an entropy calculation and subsequent referencesto any page were directed to the archive. This ensures a stable data sample since some pages are fairlydynamic in content.Results we obtained in similar experiments with a smaller set of documents have been previously reportedin [25]. Those documents were obtained in part from the Network for Excellence in Manufacturing website, online at http://web.miep.org:80/miep/index.html and were used originally for the experiments describedin [31]. The experiments we describe in this paper grew out of our initial set of experiments, and were usedto validate on a larger dataset the results we obtained with our original experiments. We have conducted,more recently, another series of experiments with a much larger dataset (2340 documents, obtained throughthe Yahoo online news service) that we have used to support our scalability analysis, as described later inSection 3.2.Word Selection DatasetSet Criteria Size CommentsJ1 All words 185x10536 We select all non-stop words (stemmed).J2 Quantile �ltering 185x946 Quantile �ltering selects the most frequently occur-ring words until the accumulated frequencies exceeda threshold of 0.25, including all words from the par-tition that contributes the word that exceeds thethreshold.J3 Top 20+ words 185x1763 We select the 20 most frequently occurring words andinclude all words from the partition that contributesthe 20th word.J4 Top 5+ plus em-phasized words 185x2951 We select the top 5+ words augmented by anyword that was emphasized in the html docu-ment, i.e., words appearing in <TITLE>, <H1>,<H2>, <H3>, <I>, <BIG>, <STRONG>, or<EMPHASIZE> tags.J5 Frequent item sets 185x499 We select words from the document word lists thatappear in a-priori word clusters. That is, we use anobject measure to identify important groups of words.J6 All words withtext frequency> 1 188x5106 We prune the words selected for J1 to exclude thoseoccurring only once.J7 Top 20+ with textfrequency > 1 185x1328 We prune the words selected for J3 to exclude thoseoccurring only once.J8 Top 15+ with textfrequency > 1 185x1105J9 Top 10+ with textfrequency > 1 185x805J10 Top 5+ with textfrequency > 1 185x474Table 1: Setup of experiments.The word lists from all documents were �ltered with a stop-list and \stemmed" using Porter's su�x-stripping algorithm [26] as implemented by [14]. We derived ten experiments, clustered the documents using8



the four algorithms described earlier, and analyzed the results. Our objective is to reduce the dimensionalityof the clustering problem while retaining the important features of the documents. The ten experiments weconducted are distinguished by further selection rules, as shown in Table 1.3.2 Evaluation of Clustering ResultsValidating clustering algorithms and comparing performance of di�erent algorithms is complex because it isdi�cult to �nd an objective measure of quality of clusters. We decided to use entropy [27] as a measure ofgoodness of the clusters. When a cluster contains documents from one class only, the entropy value is 0.0 forthe cluster and when a cluster contains documents from many di�erent classes, then entropy of the clusteris higher. The total entropy is calculated as the weighted sum of entropies of the clusters. We compare theresults of the various experiments by comparing their entropy across algorithms and across feature selectionmethods (Fig. 3). Note that the hypergraph partitioning method does not cluster all the documents, so theentropy is computed only for the documents clustered.Our experiments suggest that clustering methods based on partitioning seem to work best for this typeof information retrieval applications, because:1. they do not require calculation of the mean of randomly chosen clusters, and so the issue of havingcluster means very close in space does not apply;2. they are linearly scalable with respect to the cardinalities of the document and feature spaces (incontrast to HAC and AutoClass which are quadratic);3. the quality of the clusters is not a�ected by the dimensionality of the data sets.In general, all the methods had similar behavior across the experiments in that the �ltering based onword frequencies did not have any major impact, except for the frequent item set used in experiment J5,which is discussed later. Both the ARHP and PDDP methods performed better than the traditional methods(except for HAC with norm scaling) regardless of the feature selection criteria.Algorithms such as AutoClass and HAC with TFIDF scaling become computationally prohibitive as thedimensionality is increased. For example, when no feature selection criteria was used (dataset size of 185� 10538), ARHP and PDDP took less than 2 minutes, whereas HAC took 1 hour and 40 minutes andAutoClass took 38 minutes.We have tried the PDDP algorithm on a larger dataset (2340 documents) and our experiments showthat the algorithm scales up linearly with the number of non-zero entries in the term frequency matrix [8].As each document uses only a small fraction of the entire dictionary of words, the term frequency matrixis very sparse. In this larger dataset only 0.68% of the entries were nonzero. The algorithm is able to takeadvantage of this sparsity, yielding scalable performance, as illustrated in 4.9
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0 0.5 1 1.5 2 2.5 3 3.5

x 105

0

5

10

15

20

25

30

35

40

K2 (7358 words)

K3 (8104 words)

K5 (1458 words)

K Series
(2340 docs)

K1 (21839 words)

J1 (10536 words)

J6 (5106 words)
J5 (449 words)

J4 (2951 words)

J Series
(185 docs)

time to obtain 16 clusters by PDDP algorithm

number of nonzero entries in term frequency matrix

se
co

nd
s 

on
 S

G
I C

ha
lle

ng
e

Figure 4: Time to obtain 16 clusters for various data sets using the PDDP Algorithm. The time in secondson an SGI challenge (vertical axis) is plotted against the number of nonzeroes in the term frequency matrix(horizontal axis). PDDP with norm scalingAA BC EC ER IP IPT IS MP MSI PM14 . . . . . . . . .6 . . 2 . . . . . 1. 10 . . . 1 . . . .. 9 . . . . . 1 . 1. . 15 . . . 1 . . .. . . 13 . . . . . 1. . 3 1 7 . 1 1 . .. . . . 12 . . . . .. . . . . 7 1 1 . .. . . . . 6 3 1 2 .. . . . . 4 . 1 4 .. . . . . . 11 . 1 .. . . . . . . 11 . .. . . . . . 2 1 11 .. . . . . . . . . 12. . 1 . . 1 . . . 4entropy = 0.690

PDDP with TFIDF scalingAA BC EC ER IP IPT IS MP MSI PM13 . . . . . . . . 16 . . . . . . . . .. 13 . . . . 1 . . .. . 11 . . . 5 . . .. . 8 . . . . . . .. . . 11 . . . . . 1. 4 . . 12 . 1 . . .. 2 . . . 9 . . 1 .. . . . . 8 5 2 3 .. . . . . . 2 9 4 .. . . . . . . 3 . .. . . . . . 2 1 6 .. . . . . . . 1 2 .1 . . 5 7 . . . . 11. . . . . 2 3 1 2 5. . . . . . . . . 1entropy = 1.058Figure 5: Distribution of documents among clusters using the PDDP algorithm with or without TFIDFscaling for 16 clusters. Each column shows how many documents for each label appear in each of theclusters.using the PDDP algorithm with and without TFIDF scaling. Full results (including the data sets) areavailable on the Web at http://www.cs.umn.edu/~jmoore/wap2.html. Similarly, Figure 6 shows the classdistribution for the J1 experiment using the HAC algorithm with and without TFIDF scaling, Figure 711
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AutoClassAA BC EC ER IP IPT IS MP MSI PM2 . . 2 2 . . . . .5 8 3 2 4 6 6 . 2 6. 4 . . 1 1 2 . 2 .. 2 . . 1 . 2 . 1 .3 . 6 1 4 1 2 1 . .2 . 3 7 3 . 1 . . 2. . 1 . . 6 . . . .2 2 2 . . 3 6 5 1 54 . . 1 . 2 . 5 1 1. . 1 . . . . 2 . .. 1 . 1 1 . . 3 5 .. . . 1 2 . . 1 4 .2 2 3 1 1 . . . 2 5entropy = 2.050Figure 8: Distribution of documents among clusters using the AutoClass algorithm for 16 clusters. Not allthe documents are clustered.4 Related WorkA number of Web agents use various information retrieval techniques [15] and characteristics of open hyper-text Web documents to automatically retrieve, �lter, and categorize these documents [10, 9, 12].For example, HyPursuit [30] uses semantic information embedded in link structures as well as documentcontent to classify and group documents by the terms they contain and their hyperlink structures. Thesystem requires that information be maintained in the routers.BO (Bookmark Organizer) [24] combines hierarchical agglomerative clustering techniques and user inter-action to organize collection of Web documents listed in a personal bookmark �le.Pattern recognition methods and word clustering using the Hartigan's K-means partitional clusteringalgorithm are used in [31] to discover salient HTML document features (words) that can be used in �ndingsimilar HTML documents on the Web. The clustering algorithm does not scale well to large numbers ofdocuments. Broder [9] calculates a sketch for every document on the web and then clusters together similardocuments whose sketches exceed a threshold of resemblance. Given a document's URL, similar documentscan be easily identi�ed, but an index for the whole WWW needs to be maintained.Maarek [24] uses the Hierarchical Agglomerative Clustering method to form clusters of the documentslisted in a personal bookmark �le. Individual documents are characterized by pro�le vectors consisting ofpairs of lexically a�ne words, with document similarity a function of how many indices they share. Thismethod may not scale well to large document searches.The Syskill & Webert system [1] represents an HTML page with a Boolean feature vector, and thenuses naive Bayesian classi�cation to �nd web pages that are similar, but for only a given single user pro�le.Balabanovic [4] presents a system that uses a single well-de�ned pro�le to �nd similar web documents for a13



user. Candidate web pages are located using best-�rst search, comparing their word vectors against a userpro�le vector, and returning the highest -scoring pages. A TFIDF scheme is used to calculate the wordweights, normalized for document length. The system needs to keep a large dictionary and is limited to oneuser.A well-known and widely used technique for dimensionality reduction is Principal Component Analysis(PCA) [19]. Consider a data set with n data items and m variables. PCA computes a covariance matrixof size m � m, and then calculate the k leading eigenvectors of this covariance matrix. These k leadingeigenvectors of this matrix are principal features of the data. The original data is mapped along these newprincipal directions. This projected data has lower dimensions and can now be clustered using traditionalclustering algorithms such as K-means [20], Hierarchical clustering [20], or AutoClass.PCA provides several guidelines on how to determine the right number of dimension k for given databased on the proportion of variance explained or the characteristic roots of the covariance matrix. However,as noted in [19], di�erent methods provide widely di�erent guidelines for k on the same data, and thus itcan be di�cult to �nd the right number of dimension. The choice of a small k can lose important featuresof the data. On the other hand, the choice of a large k can capture most of the important features, but thedimensionality might be too large for the traditional clustering algorithms to work e�ectively.Latent Semantic Indexing (LSI) [6] is a dimensionality reduction technique extensively used in informationretrieval domain and is similar in nature to PCA. Instead of �nding the singular value decomposition of thecovariance matrix, it �nds the singular value decomposition of the original n�m data.Both PCA and LSI are preprocessing methods which produce a much lower dimensional representationof the dataset for subsequent processing by another algorithm. In the context of query systems, LSI has beensingularly successful in reducing the noise in the data, leading to much higher precision in results from userqueries [6]. They may also be considered as possible preprocessing modules in the context of unsupervisedclustering, and some preliminary experiments in this direction have been carried out using LSI followed byK-means and PDDP, yielding respective entropies of .834 and .859. To obtain these results, we used LSI toextract a dimension 10 approximation to the term frequency matrix, which was then used as the basis forthe subsequent K-means or PDDP method.The main di�culty with the LSI or PCA methods is the necessity to compute the k leading singularvalues and vectors of the term frequency matrix, where k is the desired dimension. A naive dense matrixsolver takes O(n3) operations to compute it and hence is prohibitively expensive. A method which takesadvantage of sparsity could be used to speed this up substantially. An example is the Lanczos method [16]which has been used with great success in the PDDP algorithm. However, it is considerably more di�cultto compute the leading k singular values and vectors in LSI than just the one leading singular vector as inPDDP. But even if the time is available, the resulting low dimension approximation will typically be dense.This substantially increases the processing cost for the subsequent clustering method as well as potentiallyoccupying as much space as the original data, depending on the choice of k.14



The Kohonen Self-Organizing Feature Map [22] is a neural network based scheme that projects highdimensional input data into a feature map of a smaller dimension such that the proximity relationshipsamong input data are preserved. On data sets of very large dimensionality such as those discussed here,convergence could be slow, depending upon the initialization.5 ConclusionIn this paper we have presented two new methods for clustering, namely, Association Rule HypergraphPartitioning and Principal Direction Divisive Partitioning, that are particularly suitable for the type ofinformation retrieval applications discussed above. These methods do not depend on distance measures, andperform well in high dimensional spaces.Our experiments suggest that both of these methods perform better than other traditional clusteringalgorithms regardless of the techniques used for feature selection. In particular, they both perform well,even when all of the features from each document are used in clustering. In addition, the experimentssuggest that if the features selected are restricted to those present in frequent item sets, such as thosederived from the Apriori Algorithm, then the traditional methods tend to perform better. It is also evidentthat, the hypergraph partitioning method may perform better, if the features selected include those wordsemphasized by document authors through the use of HTML tags.Our future research plans include developing methods for incremental clustering or classi�cation of doc-uments after discovering an initial set of clusters. Furthermore, we plan to investigate the use of clusteringtechniques proposed here for word clustering. These word clusters can then be used to classify new documentsor to search for related documents on the Web.References[1] Mark Ackerman and et al. Learning probabilistic user pro�les. AI Magazine, 18(2):47{56, 1997.[2] A. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of association rules.In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy, editors, Advances in KnowledgeDiscovery and Data Mining, pages 307{328. AAAI/MIT Press, 1996.[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery of association rules.In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smith, and R. Uthurusamy, editors, Advances in KnowledgeDiscovery and Data Mining, pages 307{328. AAAI/MIT Press, 1996.[4] Marko Balabanovic, Yoav Shoham, and Yeogirl Yun. An adaptive agent for automated Webbrowsing. Journal of Visual Communication and Image Representation, 6(4), 1995. http://www-diglib.stanford.edu/cgi-bin/WP/get/SIDL-WP-1995-0023.15
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