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ABSTRACT
The Vandermonde transform was recently presented as a
time-frequency transform which, in difference to the discrete
Fourier transform, also decorrelates the signal. Although the
approximate or asymptotic decorrelation provided by Fourier
is sufficient in many cases, its performance is inadequate
in applications which employ short windows. The Vander-
monde transform will therefore be useful in speech and audio
processing applications, which have to use short analysis win-
dows because the input signal varies rapidly over time. Such
applications are often used on mobile devices with limited
computational capacity, whereby efficient computations are
of paramount importance.

Implementation of the Vandermonde transform has, how-
ever, turned out to be a considerable effort: it requires ad-
vanced numerical tools whose performance is optimized for
complexity and accuracy. This contribution provides a base-
line solution to this task including a performance evaluation.

Index Terms— time-frequency transforms, decorrela-
tion, Vandermonde matrix, Toeplitz matrix, warped discrete
Fourier transform

1. INTRODUCTION

The discrete Fourier transform is one of the most fundamen-
tal tools in digital signal processing. It provides a physically
motivated representation of an input signal in the form of fre-
quency components. Since the Fast Fourier Transform (FFT)
calculates the discrete Fourier transform also with very low
computational complexity O(N logN), it has become one of
the most important tools of digital signal processing [1].

Although celebrated, the discrete Fourier transform has
a blemish: It does not decorrelate signal components com-
pletely (for a numerical example, see Section 4). Only when
the transform length converges to infinity do the components
become orthogonal [2]. Such approximate decorrelation
is in many applications good enough. However, applica-
tions which employ relatively small transforms such as many
speech and audio processing algorithms, the accuracy of this
approximation limits the overall efficiency of algorithms. For
example, the speech coding standard AMR-WB [3] employs
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Fig. 1. Characteristics of a Vandermonde transform; the thick
black line illustrates the (non-warped) Fourier spectrum of a
signal and the red, black and blue lines are the response of
pass-band filters of three selected frequencies, filtered with
the input signal. The Vandermonde factorization size is 64.

windows of length N = 64. Practice has shown that perfor-
mance of the discrete Fourier transform is in this case insuffi-
cient and consequently, most mainstream speech codecs use
time-domain encoding [3].

There are naturally plenty of transforms which provide
decorrelation of the input signal, such as the Karhunen-Loève
transform (KLT) [4]. However, the components of the KLT
are abstract entities without a physical interpretation as sim-
ple as the Fourier transform. A physically motivated domain,
on the other hand, allows straightforward implementation of
physically motivated criteria into the processing methods. A
transform which provides both a physical interpretation and
decorrelation is therefore desired.

We have recently presented a transform, called the Van-
dermonde transform, which has both of the preferred charac-
teristics [5]. It is based on a decomposition of a Hermitian
Toeplitz matrix into a product of a diagonal matrix and a Van-
dermonde matrix. This factorization is actually also known as
the Carathéodory parametrization of covariance matrices [6]
and is very similar to the Vandermonde factorization of Han-
kel matrices [7].

For the special case of positive definite Hermitian Toeplitz
matrices, the Vandermonde factorization will correspond to a
frequency-warped discrete Fourier transform. In other words,
it is a time-frequency transform which provides signal com-
ponents sampled at frequencies which are not necessarily uni-
formly distributed. The Vandermonde transform thus pro-



vides both the desired properties: decorrelation and a physical
interpretation.

While the existence and properties of the Vandermonde
transform have been analytically demonstrated, the purpose
of the current work is, firstly, to collect and document exist-
ing practical algorithms for Vandermonde transforms. These
methods have appeared in very different fields, including nu-
merical algebra, numerical analysis, systems identification,
time-frequency analysis and signal processing, whereby they
are often hard to find. This paper is thus a review of methods
which provide a joint platform for analysis and discussion of
results. Secondly, we provide numerical examples as a base-
line for further evaluation of the performance of the different
methods.

2. VANDERMONDE TRANSFORM

This section provides a brief introduction to Vandermonde
transforms. For a more comprehensive motivation and dis-
cussion about applications, we refer to [5].

A Vandermonde matrix V is defined by the scalars νk as

V =


1 ν0 ν20 . . . νN−1

0

1 ν1 ν21 . . . νN−1
1

...
...

...
1 νN−1 ν2N−1 . . . νN−1

N−1

 . (1)

It is full rank if scalars νk are distinct (νk 6= νh for k 6= h)
and its inverse has an explicit formula [8].

A symmetric Toeplitz matrix T is defined by scalars τk as

T =


τ0 τ1 . . . τN−1

τ1 τ0
. . .

...
...

. . . . . . τ1
τN−1 . . . τ1 τ0

 . (2)

If T is positive definite, then it can be factorized as [5]

T = V∗ΛV, (3)

where Λ is a diagonal matrix with real and strictly positive
entries λkk > 0 and the exponential series V are all on the
unit circle νk = exp(iβk). This form is also known as the
Carathéodory parametrization of a Toeplitz matrix [6].

We present here two uses for the Vandermonde transform:
either as a decorrelating transform or as a replacement for a
convolution matrix. Consider first a signal x which has the
autocorrelation matrix E[xx∗] = Rx. Since the autocorre-
lation matrix is positive definite, symmetric and Toeplitz, we
can factorize it as R = V∗ΛV. It follows that if we apply
the transform

yd = V−∗x (4)

where V−∗ is the inverse Hermitian of V, then the autocor-
relation matrix of yd is

Ry = E[ydy
∗
d] = V−∗E[xx∗]V−1 = V−∗RxV

−1

= V−∗V∗ΛVV−1 = Λ.
(5)

The transformed signal yd is thus uncorrelated. The inverse
transform is

x = V∗yd. (6)

As a heuristic description, we can say that the forward trans-
form V−∗ contains in its kth row a filter whose pass-band is
at frequency −βk and the stop-band output for x has low en-
ergy. Specifically, the spectral shape of the output is close to
that of an AR-filter with a single pole on the unit circle. Note
that since this filterbank is signal adaptive, we consider here
the output of the filter rather than the frequency response of
the basis functions.

The backward transform V∗ in turn has exponential se-
ries in its columns, such that x is a weighted sum of the ex-
ponential series. In other words, the transform is a warped
time-frequency transform. Fig. 1 demonstrates the discrete
(non-warped) Fourier spectrum of an input signal x and fre-
quency responses of selected rows of V−∗.

The Vandermonde transform for evaluation of a signal in
a convoluted domain can be constructed as follows. Let C
be a convolution matrix and x the input signal. Consider the
case where our objective is to evaluate the convoluted signal
yc = Cx. Such evaluation appears, for example, in speech
codecs employing ACELP, where quantization error energy is
evaluated in a perceptual domain and where the mapping to
the perceptual domain is described by a filter [3].

The energy of yc is

‖yc‖2 = ‖Cx‖2 = x∗C∗Cx = x∗Rcx

= x∗V∗ΛVx = ‖Λ1/2Vx‖2.
(7)

The energy of yc is thus equal to the energy of the trans-
formed and scaled signal

yv = Λ1/2Vx. (8)

We can thus equivalently evaluate signal energy in the con-
volved or the transformed domain, ‖yc‖2 = ‖yv‖2. The in-
verse transform is obviously

x = V−1Λ−1/2yv. (9)

The forward transform V has exponential series in its
rows, whereby it is a warped Fourier transform. Its inverse
V−1 has filters in its columns, with pass-bands at βk. In this
form the frequency response of the filter-bank is equal to a
discrete Fourier transform. It is only the inverse transform
which employs what is usually seen as aliasing components
in order to enable perfect reconstruction.



3. PRACTICAL ALGORITHMS

For using Vandermonde transforms, we need effective algo-
rithms for determining as well as applying the transforms. In
this section we will discuss available algorithms. Let us begin
with application of transforms since it is the more straightfor-
ward task.

Multiplications with V and V∗ are straightforward and
can be implemented inO(N2). To reduce the storage require-
ments, we show here algorithms where exponents νhk need not
be explicitly evaluated for h > 1. Namely, if y = Vx and
the elements of x are ξk, then the elements ηk of y can be
determined with the recurrence

τh,0 = ξN−1

τh,k = ξN−1−k + νhτh,k−1, for 1 ≤ k < N

ηh = τh,N−1.

(10)

Here τh,k is a temporary scalar, of which only the current
value needs to be stored. The overall recurrence has N steps
forN components, whereby overall complexity isO(N2) and
storage constant. A similar algorithm can be readily written
for y = V∗x.

Multiplication with the inverse Vandermonde matrices
V−1 and V−∗ is a slightly more complex task but fortunately
relatively efficient methods are already available from litera-
ture [9, 10]. The algorithms are simple to implement and for
both x = V−1y and x = V−∗y the complexity is O(N2)
and storage linear O(N). However, the algorithm includes a
division at every step, which has in many architectures a high
constant cost.

Although the above algorithms for multiplication by the
inverses are exact in an analytic sense, practical implementa-
tions are numerically unstable for large N . In our experience,
computations with matrices up to a size of N ∼ 64 is some-
times possible, but beyond that the numerical instability
renders these algorithms useless as such. A practical solution
is Leja-ordering of the roots νk [11] which is equivalent to
Gaussian Elimination with Partial Pivoting [12]. The main
idea behind Leja-ordering is to reorder the roots in such a way
that the distance of a root νk to its predecessors 0 . . . (k − 1)
is maximized. By such reordering the denominators appear-
ing in the algorithm are maximized and values of interme-
diate variables are minimized, whereby the contributions of
truncation errors are also minimized. Implementation of
Leja-ordering is simple and can be achieved with complexity
O(N2) and storage O(N).

The final hurdle is then obtaining the factorization, that
is, the roots νk and when needed, the diagonal values λkk.
From [5] we know that the roots can be obtained by solving

Ra = [1 1 . . . 1]T , (11)

where a has elements αk. Then ν0 = 1 and the remain-
ing roots ν1 . . . νN are the roots of polynomial A(z) =

∑N−1
k=0 αkz

−k. We can readily show that this is equivalent
with solving the Hankel system

τN−1 . . . τ1 τ0
...

... τ0 τ1

τ1
... ...

...
τ0 τ1 . . . τN−1



α̂1

α̂2

...
α̂N

 = −


τ1
τ2
...
τN

 (12)

where τN = − 1
α0

∑N−1
k=1 αk+1τN−k. The roots νk are then

the roots of Â(z) = 1 +
∑N
k=1 α̂kz

−k.
Since factorization of the original Toeplitz system Eq. 11

is equivalent with Eq. 12, we can use a fast algorithm for fac-
torization of Hankel matrices [13]. This algorithm returns a
tridiagonal matrix whose eigenvalues correspond to the roots
of Â(z). The eigenvalues can then be obtained in O(N2) by
applying the LR algorithm, or inO(N3) by the standard non-
symmetric QR-algorithm [14, 15]. The roots obtained this
way are approximations, whereby they might be slightly off
the unit circle. It is then useful to normalize the absolute value
of the roots to unity, and refine with 2 or 3 iterations of New-
ton’s method. The complete process has a computational cost
of O(N2).

The last step in factorization is to obtain the diagonal val-
ues Λ. Observe that

Re = V∗ΛVe = V∗λ (13)

where e = [1 0 . . . 0]T and λ is a vector containing the diag-
onal values of Λ. In other words, by calculating

λ = V−∗(Re), (14)

we obtain the diagonal values λkk. This inverse can be calcu-
lated with the methods discussed above, whereby the diagonal
values are obtained with complexity O(N2).

In summary, the steps required for factorization of a ma-
trix R are
1. Solve Eq. 11 for a using Levinson-Durbin or other classi-

cal methods.

2. Extend autocorrelation sequence by
τN = − 1

α0

∑N−1
k=1 αk+1τN−k.

3. Apply tridiagonalization algorithm of [13] on sequence τk.

4. Solve eigenvalues νk using either the LR- or the symmet-
ric QR-algorithm [14, 15].

5. Refine root locations by scaling νk to unity and a few it-
erations of Newton’s method.

6. Determine diagonal values λkk using Eq. 14.

4. EXPERIMENTS

Let us begin with a numerical example that demonstrates the
concepts used. Here matrix C is a convolution matrix cor-
responding to the trivial filter 1 + z−1, matrix R its auto-
correlation, matrix V the corresponding Vandermonde ma-
trix obtained with the algorithm in Section 3, matrix F is



the discrete Fourier transform matrix and the matrices ΛV

and ΛF demonstrate the diagonalization accuracy of the two
transforms. We can thus define

C =

1 1 0 0
0 1 1 0
0 0 1 1

 , R = CC∗ =

2 1 0
1 2 1
0 1 2

 ,

V =

1 1 1
1 i −1
1 −i −1

 , F =

1 1 1

1 e−
iπ2
3 e+

iπ2
3

1 e+
iπ2
3 e−

iπ2
3

 ,

(15)

whereby we can evaluate the diagonalization with

ΛV = |V−∗RV−1| =

1 0 0
0 0.5 0
0 0 0.5

 ,

ΛF = |F−∗RF−1| =

 1.11 0.111 0.111
0.111 0.444 0.222
0.111 0.222 0.444

 .

(16)

We can here see that with the Vandermonde transform we ob-
tain a perfectly diagonal matrix ΛV . The performance of the
discrete Fourier transform is far from optimal, since the off-
diagonal values are clearly non-zero. As a measure of perfor-
mance, we can calculate the ratio of the absolute sums of off-
and on-diagonal values, which is zero for the Vandermonde
factorization and 0.444 for the Fourier transform.

We can then proceed to evaluate the implementations de-
scribed in Section 3. We have implemented each algorithm in
MATLAB with the purpose of providing a performance base-
line upon which future works can compare and to find even-
tual performance bottlenecks. We will consider performance
in terms of complexity and accuracy.

To determine the performance of the factorization, we
will compare the Vandermonde factorization to the discrete
Fourier and Karhunen-Loève transforms, the latter applied
with the eigenvalue decomposition. We have applied the
Vandermonde factorization using two methods, firstly, the
algorithm described in this article (V1), and secondly, the
approach described in [5] using the built-in root-finding func-
tion provided by MATLAB (V2). Since this MATLAB func-
tion is a finely tuned generic algorithm, we would expect to
obtain accurate results but with higher complexity than our
purpose-built algorithm.

As data for all our experiments we used the set of speech,
audio and mixed sound samples used in evaluation of the
MPEG USAC standard [16] with a sampling rate of 12.8 kHz.
The audio samples were windowed with Hamming windows
to the desired length and their autocorrelations were calcu-
lated. To make sure the autocorrelation matrices are positive
definite, the main diagonal was multiplied with (1 + 10−5).

For performance measures we used computational com-
plexity in terms of normalized running time and accuracy
in terms of how close Λ̂ = V−∗RV−1 is to a diagonal
matrix, measured by the ratio of absolute sums of off- and
on-diagonal elements. Results are listed in Tables 1 and 2.

Table 1. Complexity of factorization algorithms for different
window lengths N in terms of normalized running time.

N 16 32 64 128 256 512
V1 1.00 3.02 10.13 35.96 131.80 496.91
V2 1.00 2.10 8.77 90.61 634.17 4056.62
KLT 1.00 4.33 8.93 30.59 109.53 419.76

Table 2. Accuracy of factorization algorithms for different
window lengths N in terms of log10 of ratio of absolute sums
of off- and on-diagonal values of Λ̂ = V−∗RV−1.

N 16 32 64 128 256 512
FFT -0.22 -0.16 -0.13 -0.11 -0.08 -0.07
V1 -2.36 -2.14 -1.93 -1.72 -1.26 -0.97
V2 -13.99 -13.56 -13.11 -12.67 -12.14 -11.56
KLT -14.56 -14.24 -14.07 -13.89 -13.65 -13.23

Note that here it is not sensible to compare the running times
between algorithms, only the increase in complexity as a
function of frame size, because the built-in MATLAB func-
tions have been implemented in a different language than our
own algorithms. We can see that the complexity of the pro-
posed algorithm V1 increases with a comparable rate as the
KLT, while the algorithm employing root-finding functions of
MATLAB V2 increases more. The accuracy of the proposed
factorization algorithm V1 is not yet optimal. However, since
the root-finding function of MATLAB V2 yields comparable
accuracy as the KLT, we conclude that improvements are
possible by algorithmic improvements.

The second experiment is application of transforms to de-
termine accuracy and complexity. Firstly, we apply Eqs. 4 and
9, whose complexities are listed in Table 3. Here we can see
that matrix multiplication of KLT and the built-in solution of
matrix systems of MATLAB V2 have roughly the same rate of
increase in complexity, while the proposed methods for Eqs. 4
and 9 have a much smaller increase. The FFT is naturally
faster than all the other approaches.

Finally, to obtain the accuracy of Vandermonde solutions,
we apply the forward and backward transforms in sequence.
The Euclidean distances between original and reconstructed
vectors are listed in Table 4. We can observe, firstly, that the
FFT and KLT algorithms are, as expected, the most accurate,
since they are based on orthonormal transforms. Secondly
we can see that the accuracy of the proposed algorithm V1 is
slightly lower than the built-in solution of MATLAB V2, but
both algorithms provide sufficient accuracy.

5. DISCUSSION

We have presented implementation details of decorrelating
time-frequency transforms using Vandermonde factorization
with the purpose of reviewing available algorithms as well
as providing performance baselines for further development.
While the algorithms were in principle available from previ-
ous works, it turns out that getting a system to run requires



Table 3. Complexity of Vandermonde solutions for different
window lengthsN in terms of normalized running time. Here
V −∗
1 and V −1

1 signifies solution of Eqs. 4 and 9 with respec-
tive proposed algorithms.

N 16 32 64 128 256 512
FFT 1.00 1.13 1.31 1.99 2.96 3.82
V −∗
1 1.00 2.00 4.30 10.17 24.52 68.56

V −1
1 1.00 1.99 4.26 10.14 24.64 69.49

V2 1.00 1.86 7.57 23.16 78.44 284.80
KLT 1.00 1.31 5.37 8.55 46.25 289.30

Table 4. Accuracy of forward and backward transforms as
measured by log10(‖x − x̂‖2/‖x‖2), where x and x̂ are the
original and reconstructed vectors.

N 16 32 64 128 256 512
FFT -15.82 -15.71 -15.66 -15.62 -15.58 -15.55
V −∗
1 -14.62 -14.07 -13.43 -12.89 -12.40 -12.11

V −1
1 -15.15 -14.84 -14.51 -14.14 -13.78 -13.42

V2 -15.38 -15.22 -15.00 -14.80 -14.67 -14.52
KLT -14.98 -14.85 -14.78 -14.70 -14.61 -14.51

considerable effort. The main challenges are numerical accu-
racy and computational complexity. The experiments confirm
that methods are available with O(N2) complexity, although
obtaining low complexity simultaneously with numerical sta-
bility is a challenge. However, since the generic MATLAB
implementations provide accurate solutions, we assert that
obtaining high accuracy is possible with further tuning of the
implementation.

In conclusion, our experiments show that for Vander-
monde solutions, the proposed algorithms have good ac-
curacy and sufficiently low complexity. For factorization,
the purpose-built factorization does give better decorrelation
than FFT with reasonable complexity, but in accuracy there
is room for improvement. The built-in implementations of
MATLAB give a satisfactory accuracy, which leads us to the
conclusion that accurate O(N2) algorithms can be imple-
mented.
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[5] T. Bäckström, “Vandermonde factorization of Toeplitz
matrices and applications in filtering and warping,”
IEEE Trans. Signal Process., vol. 61, no. 24, pp. 6257–
6263, 2013.

[6] P. Stoica and R. L. Moses, Spectral analysis of signals,
Pearson/Prentice Hall Upper Saddle River, NJ, 2005.

[7] D. L. Boley, F. T. Luk, and D. Vandevoorde, “Van-
dermonde factorization of a Hankel matrix,” Scientific
computing, pp. 27–39, 1997.

[8] N. Macon and A. Spitzbart, “Inverses of Vandermonde
matrices,” The American Mathematical Monthly, vol.
65, no. 2, pp. 95–100, 1958.
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