
Floating Point Fault Tolerance with Backward Error Assertions

Daniel Boley Gene H. Golub* Samy Makar
Nirmal Saxena

Edward J. McCluskey†

Computer Science Dept. Computer Science Dept. Center for Reliable Computing
4-192 EE/CSci Building Building 460 Computer Systems Laboratory
University of Minnesota Stanford University Stanford University
Minneapolis, MN 55455 Stanford, CA 94305-2140 Stanford, CA 94305-4055

U.S.A. U.S.A. U.S.A.

ABSTRACT

This paper introduces an assertion scheme based on the backward error analysis for error detec-
tion in algorithms that solve dense systems of linear equations, Ax = b. Unlike previous
methods, this Backward Error Assertion Model is specifically designed to operate in an environ-
ment of floating point arithmetic subject to round-off errors, and can be easily instrumented in a
Watchdog processor environment. The complexity of verifying assertions is O(n2) compared to
the O(n3) complexity of algorithms solving Ax = b. Unlike other proposed error detection
methods, this assertion model does not require any encoding of the matrix A . Experimental
results under various error models are presented to validate the effectiveness of this assertion
scheme.

*The work of this author was supported in part by the National Science Foundation under Grant NSF CCR-
8821078.
†The work of this author was supported in part by the Innovative Science and Technology Office of the Strategic
Defense Initiative and administered through the Office of Naval Research under Contract No. N0001492-J-1782,
and in part by the National Science Foundation under Grant No. MIP-9107760.

− 2 −

1. Introduction

In many applications it has been found that the most effective way to solve problems of
very large order is via parallel processing, and the advent of VLSI technology has made possible
the construction of computers involving thousands of processors capable of handling such large
problems. To take a specific example, the systolic array is a parallel processing paradigm which
was pioneered by Kung [11], which is particularly well suited for implementation in VLSI, and
which has been particularly successful in signal processing applications (see e.g. [4] [6] [15]
[16]). However, individual processors in a processor array can suffer a hard failure or a transient
error (an error that may occur only occasionally or irregularly), giving rise to erroneous results
which may be difficult to detect. In the realm of floating point matrix computations, where no
computation is exact, the difficulty of error detection and correction is exacerbated by the pres-
ence of round-off errors. In this paper we use some basic algorithms in linear algebra as a vehi-
cle to demonstrate a new paradigm for detecting and partially correcting faults when using float-
ing point arithmetic. Specifically, we examine algorithms to solve dense systems of linear equa-
tions and linear least squares problems. These algorithms can be easily implemented on a sys-
tolic array [4] [11] and are fundamental to many methods in signal processing and parameter
identification [6]. We illustrate by a simple example how a classical checksum-based approach
can completely fail to detect catastrophic errors in a floating point computation, and we propose
a new approach specifically designed to detect faults during a floating point matrix computation,
capable of guaranteeing the accuracy and integrity of the computed results in the absence of
faults, and capable of correcting some errors.

This paper introduces a new way to guarantee the correctness of solutions of sets of linear
equations obtained via floating point arithmetic in the presence of transient hardware faults. The
specific object is the design of a Watchdog scheme that can guarantee that the solution is correct
to the extent that any floating point computation can be guaranteed correct, correct many tran-
sient errors, or else signal that an uncorrectable transient fault occurred during the solution pro-
cess. A Watchdog process is a small process running concurrently with the main computation
process that detects errors by monitoring the behavior of the main computation process [14]. If
it were possible to carry out the computations in exact arithmetic, then a reversal check [12]
could be used to verify that the computed solution does indeed exactly satisfy the original set of
equations. But floating point computations always involve some error, normally on the order of
the unit round-off of the machine. So it is generally impossible to guarantee the exact correct-
ness of any computed floating point solution down to the last bit, or even that the original equa-
tions are satisfied exactly, even when the computation is carried out correctly using the best
available algorithm in floating point arithmetic of a given precision. Hence, to detect the pres-
ence of errors from hardware faults, it is necessary to distinguish such errors from those that
could be caused just by normal round-off errors. Indeed, floating point arithmetic generally pre-
cludes the use of a simple reversal check [12, p106]. By using a technique (based on iterative
refinement) designed to reduce round-off level errors to a minimum, we can automatically
correct many errors, whether from round-off or from hardware faults, that are "small" enough.
This method is based on the mathematical bounds that must be satisfied by any solution obtained
using one of the standard floating point solution algorithms discussed in this paper. The method
is guaranteed to detect and signal errors that are too large or catastrophic to be corrected. Hence

− 3 −

any solution obtained using this Watchdog system will either be correct to whatever accuracy
would normally be expected for a "correct" floating point solution, or an error will be signaled.
The reliability of our error detection method depends on the reliable computation of the
appropriate bounds and residual vectors. But since these extra computations cost much less than
the original solution process, we can afford extra overhead to ensure the correctness of these
computations. This is discussed further below.

Most previous approaches for error detection and correction of any computation have been
based on the use of checksums. Many papers [8], [10], [13] have been devoted to the study of
checksum schemes for algorithms in floating point arithmetic such as Gaussian Elimination on a
matrix A . The basic idea of these methods is to extend the matrix A with some additional
columns which represent weighted checksums of the matrix rows using different, linearly
independent weight vectors. As Gaussian Elimination (GE) proceeds by row operations, these
checksums are preserved and can be used to detect, and in some cases correct, temporary errors
in the elements of the matrix or in the multipliers during the course of the elimination. A
description of this scheme can be found in many places (cf. [10]).

It is well known (e.g. [5, sec 2.4]) that floating point arithmetic presents distinctive prob-
lems in that computations are no longer exact. Almost all computations suffer from contamina-
tion arising out of the round-off error. Hence any method that attempts to detect or correct errors
must account for the fact that some error occurs in normal processing in floating point arith-
metic. In [17] there is an extensive discussion of the behavior of checksum schemes for detect-
ing or correcting multiple errors when floating point arithmetic is used.

In this paper, we propose another scheme, not based on the checksum approach, to certify
the correctness of a solution to a dense set of linear equations when operating in an environment
of floating point arithmetic. The basis of our approach is the error analysis for the method used
to compute the solution. We check that the computed solution satisfies an a priori error bound
for the particular method used. Suitable a priori bounds are given in the Appendix. A prelim-
inary version of this paper appeared as [2].

The rest of this paper is organized as follows. We illustrate the checksum scheme with a
simple example, which we then use to show a major weakness of this scheme, as it is commonly
defined. We then describe our approach using GE with two different pivoting strategies, used to
solve sets of linear equations, as well as Orthogonal Triangularization (QR Factorization), used
to solve linear least squares problems. We illustrate the approach with some numerical experi-
ments and finish with some concluding remarks. In an Appendix we sketch the derivation of the
bounds from the backward error analysis of the numerical methods used.

− 4 −

2. What Checksum Schemes Won’t Find

We illustrate the checksum scheme with a simple-minded example which we then use to
point out a major weakness of this approach. Suppose we want to solve the system Ax = b in 3
decimal digit rounded arithmetic, where

A =
R
Q1.00e-3

1.00

1.00

2.00 H
P; b =

R
Q1.00

3.00 H
P.

The method we use is GE with Partial Pivoting [3] to factor the matrix A as the product of a per-
mutation matrix P , a unit lower triangular matrix of multipliers L and an upper triangular matrix
U , to get A = PTLU . At each stage k of GE with Partial Pivoting, the k-th column is searched
from the diagonal down for the largest entry in magnitude. The row containing this entry then
becomes the new Pivot row for this stage. The Pivot row is swapped with the k-th row, and then
multiples of it are added to rows k+1, . . . , n to annihilate all the entries in column k below the
diagonal. We remark that Pairwise Pivoting [20] suffers in the same way as Partial Pivoting in
this example.

We construct a Checksum matrix

H ≡ (I c Hc) ≡
R
Q0
1

1

0

c
c

1

1

1

2 H
P,

where the checksum coefficients Hc are chosen so that any pair of rows are independent, theoret-

ically allowing the detection of up to 2 errors ([8] [10] [13]). (In this case, this trivially reduced
to nonsingular.) The row operations are carried out on the extended matrix

Aw = AH = (A c Ac) =
R
Q1.00e-3

1.00

1.00

2.00

c
c

1.00

3.00

1.00

4.00 H
P.

In the pivoting algorithm used, no row swap occurs, so that we get a multiplier matrix:

L =
R
Q1.00e-3

1.00

1.00

0 H
P,

and A is overwritten with the extended upper triangular matrix. After rounding to 3 decimal
digits, the result is:

Uw = (U c Uc) =
R
Q 0

1.00

1.00

2.00

c
c

1.00

3.00

1.00

4.00 H
P.

To verify that no errors occurred, we form the Checksum Difference Matrix D = UHc − Uc and

note that all all its entries are zero. In this particular case, even in the face of round-off errors,
the Difference Matrix D is exactly zero. If we carry out back-substitution on this result, we
arrive at the solution x = (1.00, 1.00)T, which is almost correct to the accuracy shown. The true
answer (to 15 digits of accuracy) is x = (1.00200400801603, 0.99899799599198)T, which when
rounded to 3 digits is x = (1.00, .999)T.

It is generally assumed that temporary errors can occur in the entries of A or among the
multipliers in L at any time during the course of the elimination. This checksum scheme will
detect and in some cases correct such errors. However, temporary errors could affect intermedi-
ate results that are not stored either in A or in L . Such intermediate results are used to determine

− 5 −

the order of the rows in pivoting. It has been shown in [17] that errors to the matrix entries may
also affect the row order, but such errors can be detected by a checksum scheme, even if correc-
tion is precluded by the catastrophic cancellation resulting from the incorrect row ordering. We
show by example that errors in intermediate results may also result in incorrect row orderings,
giving rise to possible catastrophic cancellation, and that such errors may be completely
undetected by the checksum scheme.

Consider the effect if a temporary error occurs in one of the compares during the search for
the Pivot row. In our particular example, we end up with a row swap where none was needed.
The matrix A becomes

Âw = ÂH = (Â c Âc) =
R
Q 1.00

1.00e-3

2.00

1.00

c
c

3.00

1.00

4.00

1.00 H
P,

and the result of the elimination would be

L̂ =
R
Q1.00e+3

1.00

1.00

0 H
P

(where the permutation representing the row swap has been combined into L̂) and

Ûw = (Û c Ûc) =
R
Q 0

1.00e-3

−1.00e+3

1.00

c
c

−1.00e+3

1.00

−1.00e+3

1.00 H
P.

Again, the Checksum Difference Matrix D̂ = ÛHc − Ûc , computed in the precision of the pro-

cessor (3 digits), is exactly zero. However, back-substitution on this result yields the solution
x̂ = (0, 1.00)T, which has no digits of accuracy at all! We have illustrated that catastrophic loss
of accuracy can occur as a result of a temporary error not detected by the checksum scheme.
Note that none of this error can be explained by possible ill-conditioning of the problem, since in
this case the matrix A has a condition number under 10 (i.e. well-conditioned). This is an
extreme example, but it does show that a zero Checksum Difference Matrix may not guarantee
the accuracy or correctness of the computed answer in floating point arithmetic.

This may be considered an artificial example, since it is often possible to supplement the
checksum-based scheme with other error detection methods such as replicating the computation
on different processors, or at least the critical parts of the computation such as pivot row selec-
tion. However these methods entail modifications of the solution code itself, perhaps including
the sharing of data between the different processors as the computation proceeds. We propose a
method that (a) does not depend on any modification of the basic code, and (b) does not preclude
the use of any error detection method which does require such modifications.

3. Backward Error Assertion Model

In this section we propose Backward Error Assertions as a way to check for errors in the
solution of a set of linear equations. In what follows, we use the subscript c to denote numeri-

cally computed quantities, possibly with errors. The vector and matrix norms we use are defined
as follows (cf. [5, pp53, pp56-7])

− 6 −

c c x c c 1 ≡
i
Σ c xi c , c c x c c 2 ≡ I

L i
Σ c xi c 2 M

O

1⁄2, c c x c c ∞ ≡
i

max c xi c ,

c c A c c 1 ≡
i

max
j
Σ c aij c , c c A c c ∞ ≡

j
max

i
Σ c aij c , c c A c c F ≡ I

Li ,j
Σ c aij c 2 M

O

1⁄2.

We examine three methods: Gaussian Elimination (GE) with Partial Pivoting, GE with
Complete Pivoting, and Orthogonal Triangularization using Householder Transformations (QR
Factorization). We also examine the addition of iterative refinement. It is well known from the
landmark work of J. H. Wilkinson (e.g. [21, pp157-160, pp209-215, p236, pp247-252]) that
these methods are all backward stable. That is, if the methods are used to find the solution to
Ax = b, the computed solution xc will exactly satisfy the approximate system (A + E)xc = b, and

in each case a bound on the norm of E can be given in terms of the original data and the floating
point precision of the processor. It is well known [3] that the relative error in the solution is
bounded by K(A). c c E c c / c c A + E c c , where K(A) ≡ c c A c c . c c A−1 c c is the condition number of A . The
accuracy of solutions computed in floating point arithmetic is guaranteed only indirectly through
this relationship [3].

Our approach is to use the guarantee as a Backward Error Assertion by checking whether
the computed solution meets this guarantee. Regardless of whether or not temporary errors
occur, if the solution meets the guarantee, then it is as close to the true solution as the method
can make it anyway. In this case, the solution will be just as acceptable as the computed solu-
tion that would be obtained in floating point arithmetic with no transient errors.

How does one check that it meets the guarantee? Let xc be the computed solution that may

have been subject to temporary errors. We can compute its residual: rc ≡ Axc − b. It is easy to

show that xc must satisfy the approximate equation (A + E)xc = b, where

E ≡
xc

Txc

rcxc
T

. (1)

Indeed, this is the smallest E in the F-norm for which xc will satisfy the approximate equation.

Therefore, the computed solution xc meets the guarantee if the error matrix E satisfies the a

priori bound for the particular method.

To describe our validating procedure in detail, we use GE with Partial Pivoting as an
example. For this method, the basic steps are as follows:

− 7 −

Algorithm 1. Solve Ax = b for x with GE with partial pivoting and validation of the result.

1. Use GE with Partial Pivoting [3] to factor A into PA ∼∼ LcUc , where Lc , Uc are lower and

upper triangular, and P is a permutation. (cost: O(n3))

2. Solve triangular systems Lcyc = Pb for yc and Ucxc = yc for xc . (cost: O(n2))

3. Compute Residual rc ≡ Axc − b. (cost: O(n2))

4. Use the residual rc to check that the matrix E (equation (1)) satisfies the bound (A3) (cost:

O(n2)):

c c E c c ∞ ≤
xc

Txc

c c rc c c ∞. c c xc c c 1 ≤ gε1.02 R
Qn

3 + 2n2 +
100
n H

P. (2)

In the above, ε is the "machine epsilon", also known as the unit round-off for the floating point
arithmetic. Note that the norm of E in (2) can be computed directly in terms of the norms of rc

and xc (the left-most equality) without explicitly forming E [5, p60]. Also, in the above formula

the growth factor g represents the maximum possible value that can occur in a matrix entry dur-
ing the elimination process. For Partial Pivoting, the maximum growth is

g = 2n−1 c c A c c ∞, (3)

though Wilkinson [22] points out that it is extremely rare to encounter a matrix with growth
greater that

g = 8 c c A c c ∞. (4)

In those rare cases where this last heuristic bound is exceeded, those cases are exactly the ones in
which great improvement in accuracy could be achieved by using one of the other methods men-
tioned here, which have smaller possible growth factors. So it would be legitimate to use the
heuristic bound instead of the hard bound in the Watchdog checking process. In those cases
where it fails, it will be either due to temporary errors or (less likely) be one of those rare cases
where Partial Pivoting has large growth. In either case, the solution should be re-attempted with
one of the other two more robust algorithms.

Steps 1 and 2 describe the basic underlying method for solving a system of linear equa-
tions. Steps 3 and 4 together make up the validating procedure. Note that the total cost of the
validating procedure is O(n2), compared with O(n3) for the basic method. The validating pro-
cedure also requires only the original unmodified input data, whose validity can be verified by
traditional checksum schemes. These properties are maintained for the other methods described
below.

As used in this model, the underlying method (steps 1 and 2) is used with no modifications.
It is not a difficult matter to use a different method for this portion of the computation. It is only
necessary to replace steps 1 and 2 with the new method and to replace the bound (2) with the
new bound appropriate for that method. For GE with Complete Pivoting, we replace steps 1 and
2 with this method:

− 8 −

First Update to Algorithm 1. Use complete pivoting instead of partial pivoting.
1′ Factor PAQ ∼∼ LcUc where P , Lc , Uc are defined as before, and Q is another permutation.

(cost: O(n3))
2′ Solve triangular systems Lcyc = Pb for yc and Uczc = yc for zc , then form solution

xc ≡ QTzc . (cost: O(n2))

Then the bound in step 4 will again be (2), but with a different growth factor g [22]:

g = 1.8n(1/4)logn . (5)

We remark again that for both pivoting strategies, g is a bound on the growth in the matrix
elements that can occur during the elimination process. If a slight modification to the software
in steps 1 and 2 is allowed, one can monitor this growth and if necessary abort if this growth fac-
tor is exceeded. In particular, for Partial Pivoting, it is known [3] that at the k-th stage, the max-
imum possible growth is

g = 2k−1 c c A c c ∞,

so that a further check can be had by monitoring this growth during the elimination.

Likewise, we can use the method of Orthogonal Triangularization, also known as the QR
Decomposition (cf. [5], sec 5.2.1). In this method, steps 1 and 2 are replaced by
Second Update to Algorithm 1. Use QR instead of GE.

1′′ Factor A ∼∼ QcRc where Qc is an orthogonal matrix, and Rc is an upper triangular matrix.

(cost: O(n3))
2′′ Solve triangular system Rcxc = Qc

Tb for xc . (cost: O(n2))

Normally Qc is left as a list of Elementary Reflectors known as Householder Transformations [5,

pp195-9] whose product is Qc . These Householder Transformations are exactly those generated

by the method itself. Multiplication by Qc
T is accomplished by applying the individual House-

holder Transformations in reverse order. In this case, the error bound equivalent to (2) becomes
(A9):

c c E c c F ≤
xc

Txc

c c rc c c 2. c c xc c c 2 ≤ ε c c A c c F(1.18n2 + 30n). (6)

Note that also in this case we can bound the norm of E directly from the norms of rc and xc

without explicitly forming E [5, p60].

4. Iterative Refinement

Iterative refinement is a technique that can be applied to any solution method for systems
of linear equations. It can reduce the residual to the minimum possible [3] [5]. It yields finer
error detection through a tighter backward error bound, and at the same time yields partial error
correction through its iterative convergence property, even with just one iteration. Although
computational experience has shown that the accuracy obtained in practice from GE with partial
pivoting, or with QR, is usually quite satisfactory, recent work has shown that the guaranteed
a-priori bounds on the norm of the residual after just one step of iterative refinement are much

− 9 −

tighter than the bounds for the residual from the original solution method. Early work [9] [19]
was based on norm-wise bounds, along the lines of the bounds in the previous section. But
recent work [1] [7] has adopted a component-wise analysis that in many cases yields much
tighter bounds on the sizes of the individual components of the residual vector. In this section,
we sketch one of these results that is of particular interest as a backward Error Assertion.

In this paper, if M and N denote two conformal vectors or matrices, we use the notation
c M c to denote the vector or matrix obtained by taking the absolute value of each entry of M , and
the notation M ≤ N as meaning that each entry of M is less than or equal to the corresponding
entry of N .

One step of iterative refinement can be appended to either GE or QR algorithms as fol-
lows:
Algorithm 2. Solve Ax = b for x with a standard matrix factorization and one step of iterative
refinement.

1. Solve Axc = b for xc and the residual rc ≡ Axc − b using QR or GE.

2. Solve Aec = rc using the factorization already obtained as part of step 1.

3. Form refined solution xI ≡ xc − ec .

4. Form new residual rI ≡ AxI − b.

When QR is used, the bound on the residual rI is given in [7] and is as follows. Assume A is a

dense, nonsingular matrix, and xc is obtained using the QR decomposition using Householder

transformations or Givens rotations. If

ε c c c A c . c A−1 c c c ∞σ(A ,xI) ≤ f
I
L c c A c c F(1.18n2 + 30n) M

O
−1 (7)

then

c rI c ≤
1 − nε
2nε

c A c . c xI c (8)

where

σ(A ,x) =
mini(c A c . c x c)i

maxi(c A c . c x c)i
and f (t) ∼∼ 2

1 + n
(t + n + 2)2

,

and nε ≤ .01. By using (1), the component-wise bound (8) can be converted into a simple norm
bound on the perturbation E = ∆A independent of xI :

c c EI c c F ≤
xI

TxI

c c rI c c 2. c c xI c c 2 =
c c xI c c 2

c c rI c c 2 ≤
1 − nε
2nε

c c A c c F (9)

To interpret this result for the purposes of checking correctness, it is not necessary to check
condition (7). If the bound (8) (or alternatively (9)) is satisfied, then the solution is guaranteed
to be accurate to the extent possible in floating point arithmetic, whether or not (7) also happens
to be satisfied.

− 10 −

If the bound (8) (or alternatively (9)) is not satisfied, then either the hypothesis (7) fails or a
hardware fault has occurred. The failure of the hypothesis (7) means that the original system is
very ill-conditioned or badly scaled, making it extremely unlikely that any method, even a
"correct" one, can yield a solution of high accuracy. If a hardware fault has occurred, then this
fault has resulted in a catastrophic loss of accuracy in the solution. In either case, a failure to
satisfy the bound (9) implies that the solution cannot be trusted, and an uncorrectable error is
signaled. A new attempt to solve the problem is then necessary. If hardware faults are rare
enough, the same computer can be used to rule out the hardware as the source of the error. But
to rule out the possibility that the failure lies with the conditioning of the underlying system, the
system must be solved using extra precision arithmetic, or using an algorithm less sensitive to
round-off errors, or possibly by re-formulating the problem to obtain a better scaled system to
solve. Since the way such catastrophic errors must be handled depends on the particular applica-
tion and the accuracy desired, we limit ourselves in this paper to detecting and signaling such
catastrophic errors.

We obtain the overall fault-tolerant solution procedure by combining one of the standard
matrix factorizations such as QR with iterative refinement and backward error validation:
Algorithm 3. Solve Ax = b with validation of the result and partial fault tolerance.

1. Use QR to factor A into A ∼∼ QcRc . (cost: O(n3))

2. Solve triangular system Rcxc = Qc
Tb for xc . (cost: O(n2))

3. Compute Residual rc ≡ Axc − b. (cost: O(n2))

4. Solve triangular system Rcec = Qc
Trc for ec . (cost: O(n2))

5. Form refined solution xI = xc − ec . (cost: O(n))

6. Compute Residual rI ≡ AxI − b. (cost: O(n2))

7. Check that the residual rI satisfies the bound (8) or (9). (cost: O(n2))

When used as a Backward Error Assertion, (8) or (9) each yield a simple tight formula that can
be checked in O(n2) operations. In fact, the entire computation of the single step of iterative
refinement plus the validation procedure (steps 3-7 above) takes only O(n2) steps, once the QR
or GE factorizations have been computed (needed just once). We can then check the condition
(9). If (9) fails, then either a transient error occurred during the solution, refinement, or valida-
tion process, or the original system is too ill-conditioned to admit an accurate solution in finite
precision arithmetic. If (9) is satisfied, then the solution xI is guaranteed to be as accurate as one

can expect from the method. Note that this does not say that no transient error occurred, but it
does guarantee that if any error has occurred, it has been corrected silently. Any such error must
be located in the lower order bits of a floating point word, so that it mimics a slight loss of preci-
sion. Hence, this procedure is fault-tolerant in the sense that many errors are silently corrected,
failing only on the more catastrophic errors.

The success of the Backward Error Assertion scheme depends on carrying out the computa-
tions of Algorithm 3 in a reliable way even in the presence of transient faults. The Backward
Error Assertions (steps 3-7) are intended to detect errors in steps 1 and 2. Faults in the error
detection steps could lead to a reduction in the error coverage (fraction of errors detected) or
false alarms (errors signaled when none occurred). To avoid these situations, it is necessary to

− 11 −

carry out steps 3-7 in a fault tolerant manner. The simplest way to detect errors in steps 3-7 is to
replicate the computations. Since steps 3-7 cost only O(n2), much less than the cost of step 1,
the replication will be a minor extra expense. However, a more efficient approach can be
designed using forward error bounds for matrix-matrix and matrix-vector multiplications. These
bounds lead to effective error detection schemes developed in [18] which are applicable to the
computations in steps 3-7.

The robustness of Backward Error Assertions against undetected errors and false alarms
depends on the mathematical theory in [7]. The computed solution to the exact set of equations
Ax = b must satisfy exactly the approximate set of equations (A + E)x = b, where c c E c c is bounded
by the backward error bounds (8) or (9). The backward error bounds are tight enough that the
exact and approximate set of equations must agree to many digits of accuracy. Hence any solu-
tion satisfying the backward error bounds is guaranteed to solve the exact set of equations as
well as the correctly computed solution. If the system is also reasonably well conditioned, this
also implies that the solution has many digits of accuracy.

5. Numerical Experiments

In order to validate this method, we demonstrate by example that this method will not
accept any answer with less accuracy than that obtainable without transient errors. The results
also verify the theory that any answer produced without transient errors will be accepted and that
many errors can be silently corrected.

As a simple illustration of the Backward Error Assertion Model, we apply the method to
the example in Section 1. There are two computed solutions x = (1.00, 1.00)T and x̂ = (0, 1.00)T,
corresponding to the elimination without and with a row swap, respectively. The two
corresponding residuals are r = (0, 1e-3), and r̂ = (1, 0), though r will be exactly zero if com-
puted in the 3 digit arithmetic of the processor itself. The norms of the matrices E and Ê define
by (1) are, respectively, 10−3 and 1. The right hand side of (2) with (3) is 9.8e-2 indicating that x
is accepted, and x̂ is rejected. Even with the very limited accuracy of 3 digit arithmetic, this
method can guarantee accuracy in excess of one digit, without even resorting to the one step of
iterative refinement. However, because the bound (2) has the factor n3, it becomes much too
loose a bound as the dimension increases. However, if one step of iterative refinement is
applied, the dependence becomes linear in n , so that the guaranteed bound becomes much
tighter, even if in practice the unrefined answer already has almost the maximum accuracy.
Hence we use iterative refinement to validate this method for larger examples.

To validate the effectiveness of the Backward Error Assertion Model on larger examples, a
set of simple prototype numerical experiments was performed. Double precision floating point
was used, in which each word is 64 bits long, allocated as follows: the sign bit in bit 63 (left-
most), the exponent in bits 62-52, the mantissa in bits 51-0.

In the experiments, a matrix with random elements uniformly distributed in the interval
(−1,1) was chosen and factored into A = QR using QR. Then certain entries in the Q and R
were chosen at random, and errors injected into a bit of each chosen entry. Then the perturbed
QR factors were used to solve the system followed by one step of iterative refinement. The resi-
dual obtained after the one step of iterative refinement was then compared to the bound (8). An

− 12 −

error was silently corrected if the residual satisfied the theoretical bound (8). Answers that were
silently corrected in this way were accepted. An error was detected and signaled if the residual
exceeded the theoretical bound (8). In these tests, we used two error injection models: the Single
Error Model, in which errors were injected into a single, randomly chosen, element of Q or R at
a time, and the Multiple Error Model, in which several errors were injected into different ran-
domly chosen elements. Prototype tests, shown in Figure 1, were carried out with randomly
generated well-conditioned 50×50 matrices, and in the case of the Multiple Error Model, with
five errors. The tests show that errors injected in the lower 30 bits were almost always silently
corrected, and multiple errors injected in the upper 25 bits were almost always detected and sig-
naled without being corrected. Single errors in the upper half were about half detected and half
silently corrected. A single error is a rank one change, which can often be completely corrected
in one step of iterative refinement. The maximum relative error in any solution that was
accepted in this test was 7.3122e-13, meaning all the accepted answers had at least 12 digits of
accuracy.

In order to validate the method under increasing ill-conditioning, we ran a second set of
tests shown in Figures 2 and 3, with the Single Error Model, using randomly chosen bits, against
a range of condition numbers. In Figure 2 we show the percentage of solutions that were silently
corrected versus the condition number of the generated matrix. In this test we used the Single
Error Model with randomly chosen bits. In Figure 3, we show the maximum relative error in
any accepted solution (solid line). This is compared with the theoretical bound on the relative
error in the solution (dashed line in Figure 3), given by the formula [5, p82], assuming
δ.Κ(A)<1:

c c x c c
c c ∆x c c ≤

1 − δ.Κ(A)
2δ.Κ(A)

,

where Κ(A) = c c A c c . c c A−1 c c is the condition number of A , and δ ≡ c c ∆A c c / c c A c c is the maximum rela-
tive error in the matrix coefficients. Since we can model residuals either as errors in the matrix
using (1) or in the right hand side, we have chosen to simplify the analysis of [5] by choosing the
matrix error model. If no transient errors occur, then δ. c c A c c will be bounded by (2), (6), (9) as
appropriate, in any case O(ε). Figure 3 shows that the theoretical bound tends to be pessimistic
by a small constant factor, so that any solution satisfying it should be as satisfactory as the solu-
tion obtained with no errors. Note that when the condition number exceeded 1012 , the assump-
tion δ.Κ(A)<1 failed, so there is theoretically no bound.

Finally, we ran a third set of experiments shown in Figure 4 to validate the same method on
Gaussian Elimination in which incorrect pivot rows can be selected. This was the basis for the
example in section 2 on which the checksum scheme failed to detect an error. We used two sets
of sample matrices: one set chosen with entries of the form 100ν, where ν was a normally distri-
buted random variable with mean 0 and variance 1, and the other set chosen with random entries
uniformly distributed in [0,1]. The matrices in the first set were chosen to be badly scaled, since
the entries range over several orders of magnitude from 10−5 to 10+3 with most entries on the
order of unity. This was chosen so that if the wrong pivot rows are selected, rather severe can-
cellation would occur. Unfortunately, one side effect of this was that the matrices were rela-
tively badly conditioned with a condition number on the order of 3e+6. But even so, the results

− 13 −

from Figure 3 show that we can expect at least 7 (and probably at least 10 in practice) digits of
accuracy in the final answer. The matrices in the second set were chosen to be similar to the
those in the earlier experiments, and had relatively low condition numbers on the order of 3e+2.
A set of simple experiments with the Single Error Model was conducted using Gaussian Elimi-
nation. To emulate incorrect choices in pivot row selection in a simple way, we turned off pivot-
ing entirely. The results in Figure 4 show that even with this crude strategy, errors in the lower
order bits were often corrected in spite of poor choice of pivot rows. For the badly scaled cases,
bit errors even in the low order bits very often propagated through the matrix resulting in errors
too large to be corrected. On the other hand, the ill-conditioning resulted in a somewhat looser
Backward Error Assertion bound, guaranteeing only 7 to 10 digits of accuracy instead of over
12. But even though the bound is tight enough to guarantee substantial accuracy, it still tends to
be conservative in practice, as illustrated by the fact that the maximum error in any accepted
solution in this experiment was under 10−12, and many solutions flagged as erroneous were close
enough that a second round of iterative refinement would have been sufficient to reach an
acceptable solution. This simple experiment is sufficient to show that incorrect pivoting can
often lead to more catastrophic errors than isolated bit errors. However, the Backward Error
Assertion bounds depend only on the original data and are independent of the pivoting strategy
used or the actual pivot rows selected.

6. Conclusions

We have shown by example that the checksum scheme may fail to detect certain errors,
and in some cases even catastrophic errors. We then proposed the methodology of Backward
Error Assertions, based on the backward error analysis to verify the correctness of numerical
results. We applied this methodology to three different numerical methods for the solution of
systems of linear equations. The numerical experiments showed that the Backward Error Asser-
tion Model is effective in detecting errors that other schemes might not detect. The results show
the validity of this overall approach. The Backward Error Assertion Model will detect errors
that have the greatest effect on the accuracy of the final result, namely errors in the high order
part of the floating point word. Errors in the lower order part of the word will generally be
silently corrected. If two or more steps of iterative refinement were used, more errors might be
correctable, allowing faster recovery from errors. But some catastrophic errors will never be
correctable, so there is always the chance the whole computation will need to be repeated. The
Backward Error Assertion Model can easily be combined with the techniques of [18] to achieve
error detection capability on the entire computation including the Watchdog process.

We contrast this to the traditional approach where errors are corrected by first detecting
and locating them, and then applying an explicit correction. In floating point arithmetic, errors
may be so catastrophic that they may be uncorrectable, and only these errors are signaled. Itera-
tive refinement silently corrects many errors automatically. Hence in the Backward Error Asser-
tion Model, certain errors will be silently corrected without being explicitly detected, and other
errors will be detected and signaled without being corrected. In addition, this model allows the
simultaneous use of other traditional assertion schemes, such as a checksum method, at no extra
cost other than the separate costs of the methods used. These methods may be used to detect
some hardware faults (even those corrected by the Backward Error Assertion Method) occurring

− 14 −

in the floating point computation, but they may also miss some errors as illustrated in section 2.

The Backward Error Assertion Model can be easily implemented in a parallel environment.
In fact, the basic solver process for the set of linear equations can be implemented in whatever
way is most appropriate, such as a systolic array, without regard to the Backward Error Asser-
tions. The Assertions can be implemented in a separate Watchdog processor operating indepen-
dent of and parallel to the main processor(s), or as a postprocessor to the basic solver. The
Watchdog processor requires access only to the original input data and the computed solution,
but no other intermediate result. The main computation would proceed without any degradation
from the Watchdog processor, unless an error is signaled. The basic tasks in the Assertion pro-
cessor are Matrix Vector Products and Back-substitutions, which are both parallelizable in their
own right [5]. In addition, the use of Backward Error Assertions does not preclude the use of
any other error detection or correction scheme, such as further use of iterative refinement, repli-
cation of the backward error computation, or a checksum based scheme. Further study will show
the effectiveness of further steps of iterative refinement in correcting more errors, but since there
could always be catastrophic uncorrectable errors, one must always allow for the necessity to
repeat the computation from scratch. Under the assumption that such errors will be relatively
rare, the extra cost of repeating the entire computation occasionally will be modest.

REFERENCES

[1] M. Arioli, J. Demmel, I. S. Duff, Solving Sparse Linear Systems with Sparse Backward
Error, SIAM J. Matr. Anal. 10, pp. 165-190, 1989.

[2] D. L. Boley, G. H. Golub, S. Makar, N. Saxena, E. J. McCluskey, Backward Error
Assertions for Checking Solutions to Systems of Linear Equations, Stanford Univ. Numeri-
cal Analysis Project, report NA-89-12, November 1989.

[3] G. Forsythe, C. Moler, Computer Solution of Linear Algebraic Systems, Prentice Hall,
1967.

[4] W. M. Gentleman, H. T. Kung, Matrix Triangularization by Systolic Arrays, in Proc.
SPIE 298, Real-Time Signal Processing IV, pp. 298-303, 1981.

[5] G. H. Golub, C. Van Loan, Matrix Computations, 2nd ed., Johns Hopkins, 1989.

[6] S. Haykin, Adaptive Filter Theory (2nd ed.), Prentice Hall, 1991.

[7] N. J. Higham, Iterative Refinement Enhances the Stability of QR Factorization Methods
for Solving Linear Equations, BIT 31, pp. 447-468, 1991.

[8] K. H. Huang, J. A. Abraham, Algorithm-based fault tolerance for matrix operations,
IEEE Trans. Comput. C-33 #6, pp. 518-528, June 1984.

[9] M. Jankowski, H. Wozniakowski, Iterative Refinement Implies Numerical Stability, BIT
17, pp. 303-311, 1977.

[10] J. Y. Jou, J. A. Abraham, Fault-tolerant matrix arithmetic and signal processing on highly
concurrent computing structures, Proc. IEEE 74 #5, Special Issue on Fault Tolerance, pp.
732-741, May 1986.

− 15 −

[11] H. T. Kung, C. E. Leiserson, Systolic Arrays (for VLSI), in Sparse Matrix Proceedings
1978 (I. S. Duff and G. W. Stewart ed.), pp. 256-282, SIAM, Philadelphia, 1979,.

[12] P. A. Lee, T. Anderson, Fault Tolerance, Principles and Practice (2nd ed.), Springer Ver-
lag, 1990.

[13] F. T. Luk, H. Park, An analysis of algorithm-based fault tolerance, J. Parallel Distr.
Comput. 5, pp. 172-84, 1988.

[14] A. Mahmood, E. J. McCluskey, Concurrent Error Detection using Watchdog Processors -
a Survey, IEEE Trans. Comput. 37 #2, pp. 160-174, 1988.

[15] J. G. McWhirter, Recursive Least-Squares Minimization using a Systolic Array, in Proc.
SPIE 431, Real-Time Signal Processing VI, pp. 105-112, 1983.

[16] J. G. McWhirter, Algorithmic Engineering -- an Emerging Discipline, in Proc. SPIE
1152, Advanced Algorithms and Architectures for Signal Processing IV (F. T. Luk ed.), pp.
2-15, 1989.

[17] H. Park, On multiple error correction in matrix triangularizations using checksum
schemes, J. Parallel Distr. Comput. 14, pp. 90-97, 1992.

[18] A. Roy-Chowdhury, P. Banerjee, Tolerance Determination for Algorithm Based Checks
using Simple Error Analysis Techniques, in Fault Tolerant Computing Symp. FTCS-23, pp.
290-298, IEEE Press, 1993.

[19] R. D. Skeel, Iterative Refinement Implies Numerical Stability for Gaussian Elimination,
Math. Comp. 35, pp. 817-832, 1980.

[20] D. C. Sorensen, Analysis of pairwise pivoting in Gaussian elimination, IEEE Trans. Com-
put. C-34, pp. 274-278, 1985.

[21] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[22] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. A. C. M. 8, pp.
281-330, 1961.

Appendix

In this appendix we outline the derivation for the error bounds used for the three methods
we have considered in this paper. In the case of GE with Pivoting, it is a classical result [3] that
once one knows what the row/column interchanges will be, one can carry out all those inter-
changes and then carry out all the row operations that make up the elimination itself. Thus, for
the purpose of this error analysis, we can assume that A has already been permuted into the right
order so that no further permutation is necessary. The following analysis is well-known and
comes from [3]. To solve a set of linear equations using GE, we use three steps: (a) factor
A = LU , (b) solve Ly = b, (c) solve Ux = y. In floating point arithmetic, what we compute are
the approximate factors Lc , Uc and approximate solutions yc , xc , which satisfy [3]

LcUc = A + E1, (Lc + E2)yc = b, (Uc + E3)xc = yc (A1)

where the error perturbation matrices satisfy the bounds

− 16 −

c c E1 c c ∞ ≤ gεn2, c c E2 c c ∞ ≤ gε
2

n(n + 1)
1.01, c c E3 c c ∞ ≤ ε

2
n(n + 1)

1.01 (A2)

where g is the "growth factor" (the maximum element that ever occurs during the elimination), n
is the dimension of the system, and ε is the "machine epsilon", otherwise known as the unit
round-off error. Throughout this whole analysis, we make the implicit assumption that
nε ≤ 0.01. The factor 1.01 in (A2) can reduced closer to 1 by reducing this implicit bound on
nε. The final solution xc satisfies from (A1)

(A + ELU)xc ≡ (A + E1 + LcE3 + E2Uc + E2E3)xc = b,

and ELU can be bounded from (A2) by

c c ELU c c ∞ ≤ gε1.02 R
Qn

3 + 2n2 +
100
n H

P (A3)

From [3], [22], a priori bounds for g are given for Complete Pivoting by (5), and for Partial
Pivoting by (3), though in this last case g is almost always bounded by (4) [22], as already men-
tioned above.

We can carry out a similar analysis for the Orthogonal Triangularization method, otherwise
known as the QR Decomposition. To solve Ax = b, we factor A = QR , where Q is orthogonal,
and solve the system Rx = y ≡ QTb. In floating point arithmetic, we actually compute [21,
pp157-160, p236, p250] the approximate factorization QcRc and approximate vectors yc , xc

which satisfy:

QcRc = A + E4, yc = P(b + e5), (Rc + E6)xc = yc ,

where P is a true orthogonal matrix close to QT. Assuming Q is left as a product of House-
holder Transformations, we have the following bounds [21, pp157-160, p236, p250]:

c c E4 c c F ≤ 12.36(n−1)(1 + 12.36ε)n−2ε c c A c c F ,

c c e5 c c 2 ≤ 12.36(n−1)(1 + 12.36ε)n−2ε c c b c c 2,

c c E6 c c F ≤ n(n−1)1.01ε c c R c c F .

where c c R c c F = c c A c c F . This bound is not derived directly from (A2), but rather from a bound on

the individual entries in E6 in back-substitution found in [3].

Using the bound (1 + 12.36ε)n−2 ≤ 1.1316, valid if nε ≤ 0.01, we rewrite the above bounds
as

c c E4 c c F ≤ 14(n−1)ε c c A c c F

c c e5 c c 2 ≤ 14(n−1)ε c c b c c 2 ≤ 0.14 c c b c c 2, (A4)

c c E4 c c F + c c E6 c c F ≤ ε c c A c c F(1.16n2 + 13n). (A5)

− 17 −

As in the case of GE, we combine the above relations to find that xc exactly satisfies

(P(A + E4) + E6)xc = P(b + e5). (A6)

We would like to reduce this to the form (A + E)xc = b, putting all the perturbation into the coef-

ficients A . We can do this by rewriting (A6) as

(PA + EQR)xc ≡
I
J
L
PA + PE4 + E6 + Pe5

xc
Txc

xc
T M

J
O
xc = Pb. (A7)

Take norms and combine (A4), (A5):

c c EQR c c F ≤ ε
I
J
L
c c A c c F(1.16n2 + 13n) + 14n

c c xc c c 2

c c b c c 2 M
J
O
. (A8)

We now need a lower bound on c c xc c c 2. To obtain this, take norms in (A6) and use (A4):

(c c A c c F + c c E4 c c F + c c E6 c c F) c c xc c c 2 ≥ c c b + e5 c c 2 ≥ c c b c c 2 − c c e5 c c 2 ≥ 0.86 c c b c c 2,

and use (A5) to arrive at

c c xc c c 2 ≥
c c A c c F[1 + ε(1.16n2 + 13n)]

0.86 c c b c c 2
.

Use this lower bound in (A8) to obtain the final bound

c c EQR c c F ≤ ε c c A c c F(1.18n2 + 30n). (A9)

The bound (8) was obtained from the following result in [7]: Let A be nonsingular. Sup-
pose that the linear system Ax = b is solved using solver S using one step of iterative refinement,
in floating point arithmetic with a unit round-off of ε. Assume that the residual is computed in
the conventional manner via inner products or vector-vector adds. Assume also that the com-
puted solution from solver S satisfies

c rc c ≤ ε(G c A c . c xc c + H c b c).

Then there is a function

f (t ,s) ∼∼
I
J
L c c c A c . c A−1 c c c ∞

(t + n + 1) + 2(t + n + 2)2(1 + εs)2
M
J
O n + 1

s

such that if

c c c A c . c A−1 c c c ∞σ(A ,xI) ≤ (f (c c G c c ∞, c c H c c ∞)ε)−1

then

− 18 −

c b − AxI c ≤
1 − nε

2(n + 1)ε
c A c . c xI c . (A10)

The bound (8) was then obtained from (A10) by absorbing H into G (i.e., treating all the errors
as if they were in the matrix) and by using the bound (A9) as a worst case bound for G .

− 19 −

20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

100

bit no.

pe
rc

en
t s

ile
nt

ly
 c

or
re

ct
ed

Figure 1 -- Percentage of Errors Silently Corrected vs Bit Number (QR).
(solid line = multiple (5) error model, dashed line = single error model)

All errors not silently corrected were detected and signaled.

− 20 −

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

50

60

70

80

90

100

Condition Number

Pe
rc

en
t s

ile
nt

ly
 c

or
re

ct
ed

Figure 2 -- Percentage of Errors Silently Corrected vs Condition Number (QR).
All errors not silently corrected were detected and signaled.

− 21 −

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Condition Number

m
ax

 r
el

at
iv

e
er

ro
r

ac
ce

pt
ed

Figure 3 -- Maximum Relative Error in Accepted Answer vs Condition Number.
(solid line = result from experiments, dashed line = theoretical bound)

− 22 −

20 25 30 35 40 45 50 55 60 65
10

20

30

40

50

60

70

80

90

100

bit no.

pe
rc

en
t s

ile
nt

ly
 c

or
re

ct
ed

Figure 4 -- Percentage of Errors Silently Corrected vs Bit Number (GE with wrong pivoting strategy).
(solid line = badly scaled matrix, dashed line = uniformly random matrix)

All errors not silently corrected were detected and signaled.

