
Generalized URV Subspace Tracking LMSAlgorithm 1S. Hosur and A. H. Tew�k and D. BoleyDept. of Electrical Engineering and Computer Science, University ofMinnesota, Minneapolis, MN 55455AbstractThe convergence rate of the Least Mean Squares (LMS) algorithm is poor whenever the adaptive�lter input auto-correlation matrix is ill-conditioned. In this paper we propose a new LMS algorithmto alleviate this problem. It uses a data dependent signal transformation. The algorithm tracks thesubspaces corresponding to clusters of eigenvalues of the auto-correlation matrix of the input to theadaptive �lter, which have the same order of magnitude. The algorithm up-dates the projection of thetap weights of the adaptive �lter onto each subspace using LMS algorithms with di�erent step sizes.The technique also permits adaptation only in those subspaces, which contain strong signal componentsleading to a lower excess Mean Squared Error (MSE) as compared to traditional algorithms.1 IntroductionThe LMS adaptive algorithm is the most popular algorithm for adaptive �ltering because of its sim-plicity and robustness. However, its main drawback is slow convergence whenever the adaptive �lter inputauto-correlation matrix is ill-conditioned i.e. the eigenvalue spread of this matrix is large [1], [2]. A class ofadaptive �lters known as the transform domain �lters have been developed for the purpose of convergencerate improvement [1]. All transform domain adaptive �lters try to approximately de-correlate and scalethe input to the adaptive �lter in the transform domain, in order to obtain an autocorrelation matrix withzero eigen value spread in that domain.The use of �xed parameter orthogonal transforms will not result in optimal convergence rates forall types of input signals. A transform which achieves optimal convergence rates for all inputs is theKarhounen-Lo�euve Transform (KLT), which is data dependent. The KLT forms the inverse of the inputautocorrelation matrix and uses this inverse to obtain a zero eigenvalue spread in the transform domainautocorrelation matrix. However when the input is very ill-conditioned, forming the inverse is not recom-mended. Also the excess MSE of the LMS adaptive �lter is proportional to its step size. Increasing thestep size tends to increase the rate of convergence of the algorithm but at the same time increases theexcess MSE. In the case of transform domain �lters, to achieve zero eigenvalue spread and hence increaseconvergence speed, the de-correlated modes are scaled in the transform domain. This scaling process isequivalent to using a larger step size for modes which contain little or no signal energy. As these modesessentially contain noise, the excess MSE increases.Our goal in this paper is to develop an adaptive signal transformation which can be used to speed upthe convergence rate of the LMS algorithm, and at the same time provide a way of adapting only to thestrong signal modes, in order to decrease the excess MSE. The transform should also be able to track the{ 1 {



signal behavior in a non-stationary environment. We develop such a data adaptive transform domain LMSalgorithm, using a generalization of the rank revealing URV decomposition, �rst introduced by Stewart [8].In the next section, we introduce the rank revealing URV decomposition and the idea of trackingsubspaces corresponding to clusters of singular values. Section 3 generalizes the URV decomposition andintroduces the idea of subspace domain LMS �ltering. Simulation results are given in Section 4. Conclusionsand future work are presented in the �nal section.2 Subspace TrackingRecently, some subspace updating techniques have been suggested in the context of total least squares(TLS) [3] - [7]. A Kalman �lter was used to update the eigenvector corresponding to the smallest eigen-value in [3]. However it was not suggested how to modify the algorithm in case of multiple eigenvaluescorresponding to noise. [4] discusses a strategy to obtain a fast eigen-decomposition of a covariance ma-trix. The eigenvalues in the noise subspace are replaced by their average value and the same is done tothe signal eigenvalues. This technique could work well if the exact eigenvalues could be grouped togetherin two tight clusters. In [5], [6], the eigen-problem on the covariance matrix is replaced by the singularproblem, thereby reducing the condition numbers to their square roots and increasing numerical accuracy,and using the averaging technique of [4]. Again the assumption that the eigenvalues could be grouped intotwo tight clusters is made. In normal signal scenarios this assumption is generally not valid.The URV decomposition was �rst introduced by Stewart [8], to break the eigenspace of RN , where Nis the length of the impulse response of the adaptive �lter, into two subspaces, one corresponding to thecluster of largest singular values and the other corresponding to the null subspace.The URV decomposition of a rank k matrix A is a decomposition of the formA = U�R 00 0�VH (1)where U and V are orthogonal matrices and R is an upper triangular matrix of order k. The singular valuedecomposition can be considered as a special case of the URV decomposition where the upper triangularmatrix R is diagonal.The URV decomposition is rank revealing in the following sense. If A is nearly of rank k, i.e., if the�rst k singular values of A are much larger than the remaining singular values, then it can be shown thatthere exists a URV decomposition of A of the formA = U�R F0 G�VH (2)where R and G are upper triangular, the smallest entry in R is on the order of the kth singular value ofA and the sum of squares of the Frobenius norms of F and G is on the order of the sum of squares of the(k + 1)st through the last singular values of A. Hence, if the singular values of A satisfy�1 � � � � � �k > �k+1 � � � � � �Nwhere �k is large compared to �k+1, theninf(R) �= �kpkFk2 + kGk2 �=q�2k+1 + � � �+ �2N :Thus, this decomposition immediately provides us with the sub-spaces corresponding to a group oflargest singular values and another corresponding to the group of smallest singular values.The URV updating procedure updates the URV decomposition of the data matrix corresponding tothe input process, as additional data vectors become available. In essence, it updates the subspaces{ 2 {



corresponding to the group of large eigenvalues and that of small eigenvalues of the correlation matrix ofthe input to the adaptive �lter.The URV updating algorithm consists of a series of plane (Givens) rotations [9], which are multiplica-tions by orthogonal matrices of the formQ = 0BBB@ I 0 0 0 00 c 0 s 00 0 I 0 00 �s 0 c 00 0 0 0 I1CCCAwhere c2 + s2 = 1 and the I's represent identity matrices of appropriate dimensions. Pre-multiplicationby a plane rotation operates on the rows of the matrix while post-multiplication operates on its columns.By using a sequence of plane rotations, appropriately constructed, in a special order, we can annihilatedesired entries while �lling in as few zero entries as possible, and then restoring the few zeros �lled in.Each rotation applied from the right is accumulated in V, to maintain A = URVH , where U is not saved.The URV updating procedure used is similar to that used in [7] and can be described as follows :-� Absorb a new row : The matrix A is replaced by (�AH x )H i.e a new row is augmented to thematrix A and � < 1 is the forgetting factor that damps out the e�ect of previous data. This problemcan be rewritten as the problem of updating the matrix0@ R F0 GyH zH 1Awhere [yHzH ] = xHV. When absorbing the row, the matrices R and V are updated. This is done byreducing yH so that only one nonzero component and G remain upper triangular by applying planerotations from the right. The entire matrix is then reduced to an upper triangular form. The rankis automatically incremented by one. No determination is made if the rank is actually increased.� De
ate and Re�ne : It is possible for the matrix not to change rank or the rank could decrease.The Frobenius norms of F and G and an approximation of the last singular value of R and thecorresponding singular vector are estimated using a condition number estimator [9]. One can also useany of the many condition number estimators proposed in literature [10]. The URV decomposition isthen de
ated by one, i.e., transformations are applied to decrease the rank index by one so that thesmallest singular value of R is moved into the trailing columns. This is done by isolating the smallestsingular value of R into its last column. A heuristic is used to determine if the rank boundary is inthe middle of a cluster of singular values. If the answer to the heuristic is negative, de
ation is donerepeatedly till the heuristic �nds a gap in the singular values, marking the end of the cluster. If s bethe smallest singular value of R, and f is the Frobenius norm of the trailing part, then according tothe heuristic, a gap exists if s > df , where d is a user chosen spread. In order to allow for round o�or other small noise, we pretend that the trailing part has an extra singular value equal to the userchosen zero tolerance b. The heuristic actually used iss2 > d2(f2 + b2)Thus any singular value below b or within a cluster of b will be treated as part of the trailing part.The user de�ned parameters are only the spread d and the zero tolerance b.3 Generalized URV-LMS AlgorithmThe URV updating procedure developed in the previous section, maintains and updates only twogroups of singular values. If the input autocorrelation matrix has eigenvalues which could be so classi�ed.{ 3 {



One can easily generalize the URV updating procedure described in the previous section to tracksubspaces corresponding to more than two singular value clusters. Each step of the generalized proceduremay be viewed as a recursive application of the URV decomposition on the R matrix computed at theprevious stage within the same step.3.1 Generalized URV UpdationThe idea of a generalized URV decomposition, which divides the singular values into more than twoclusters can be introduced with the simple example where there are three groups of singular values. Nowthere are two singular value boundaries which have to be maintained and updated properly. When anew row is added and the updating is done, the procedure just pretends that we have an ordinary URVdecomposition using the second singular value boundary. Because of the way the row is absorbed in the�rst step, the rank boundaries are automatically incremented by one. During the de
ation step, the secondboundary is moved left by one. This increases the dimension of the �rst boundary by one. Therefore asecond de
ation step is carried out to restore the separation of the �rst and the second cluster of singularvalues. This step does not a�ect the second boundary. In cases where one needs to cluster the eigenvaluesinto more than three groups, a similar procedure is followed.Using the generalized URV decomposition, we can group the singular values of any matrix A into anarbitrary number of groups. The number of groups or clusters is determined automatically by the largestcondition number that can be tolerated in each cluster. This implies that if one chooses the clustering tobe done in such a way that each cluster has singular values of the same order of magnitude, the conditionnumber in each cluster is improved which in turn implies a faster convergence of the LMS �lter applied toa projection of weights in the corresponding subspace. The largest condition number is the maximum ofthe ratio of the largest singular value in each cluster to its smallest singular value. This value depends onthe spread and zero tolerance, speci�ed by the user.3.2 The URV-LMS AlgorithmLet the input signal vector at time n be given asxn = [x(n); x(n � 1); � � � ; x(n�N + 1)]T (3)and let the weight vector at this time be hn. The corresponding �lter output iszn = xTnhn (4)The output error en is the di�erence between the desired response d(n) and the output of the adaptive�lter at time n, zn. en = d(n)� zn (5)The LMS algorithm tries to minimize the mean squared value of the error en, updating the weight vectorhn with each new data sample received ashn+1 = hn + 2�xnen (6)where the step size � is a positive constant.The convergence of the LMS algorithm depends on the condition number of the input autocorrelationmatrix Rx 4= E[xnxTn ]. If the input vector is transformed as xn to un = EHxn, where E is the unitaryeigenvector matrix of Rx, then the output process zn would be de-correlated. However, this implies thatwe need to perform an eigen decomposition of the autocorrelation matrix or a singular value decompositionof the data matrix at every adaptation, implying a computational computational complexity of O(N3) forevery adaptation.Instead of transforming the input using the eigen matrix, we could transform the input using theunitary matrix V obtained by the generalized URV decomposition. This would imply a savings in the{ 4 {



computational costs as the URV decomposition can be updated with each new data at a relatively lowcomputational cost. The input data vector xn is transformed into the vector yn,yn = VHxn (7)These transformed coe�cients are then weighed using the subspace domain adaptive �lter coe�cientvector gn. The output signal zn is given as zn = gTnyn (8)The corresponding error signal en is given asen = d(n)� znThe weight update equation is given by gn+1 = gn + 2Menyn (9)where M is a diagonal matrix of step sizes used. The diagonal elements of M can usually be clusteredinto values of equal step sizes, corresponding to the subspaces isolated using the generalized URV. Thisclustering is due to the fact that each subspace is selected to minimize the condition number in thatsubspace. Hence adaptation of all the projected tap weights within each subspace has nearly the sameconvergence speed and one only needs to match the convergence speeds of the slow converging subspaceprojections of the tap weights to those of the fast converging subspace projections. This can be done byusing larger step sizes for those subspace projections of the tap weights which converge slowly, to increasetheir convergence speed. Also the clusters obtained using the generalized URV are very well organized,with the largest singular value cluster �rst, making construction ofM is very straightforward. The diagonalvalues of the upper triangular matrix generated in the generalized URV decomposition re
ect the averagemagnitude of the singular values in each cluster. This information can also be used in the selection of thestep sizes and hence in the construction of MAn increase in step size usually implies an increase in the misadjustment error. The subspaces whichbelong to small singular values are dominated by noise and would tend to increase the noise in the solution.Thus by not adapting in those subspaces, we can reduce the misadjustment error. This can be simply doneby setting those diagonal entries of M, which correspond to projections of the tap weights onto thesesubspaces, to zero.4 Simulation ResultsWe illustrate the performance of our procedure with a simple example in which a white noise randomsequence a(n) that can take the values �1 with equal probability is �ltered with a 3 tap FIR �lter whoseimpulse response is a raised cosine h(n) = (1 + cos(2�(n � 2)=W ))=2, n = 1; 2; 3. White Gaussian noiseis added to the output and an 11 tap equalizer is adaptively constructed using the LMS and URV LMSalgorithms (Figs. 4 and 4). Note that whereas the speed of convergence of the traditional LMS algorithmdepends heavily on the eigenvalue spread of the input covariance matrix as determined by W , the URVLMS algorithm has no problem adapting to the environment even when W is large (W = 3:5) and thecondition number of the input covariance matrix is correspondingly large (�max=�min = 47:4592).An Adaptive Line Enhancer (ALE) experiment was also conducted to illustrate the performance of thealgorithm when the adaptation is done only in the signal subspaces. The input to the ALE was chosen to be0:1 cos ( �15n)+cos ( 5�16n) corrupted by white Gaussian noise of variance 0:0001. The autocorrelation matrixof the input to the ALE has only four signi�cant eigenvalues, which could be grouped into two clusters.The ALE was adapted using both the LMS and the URV-LMS algorithms. The URV-LMS algorithmwas adapted only in the subspaces corresponding to the two large singular value clusters. The superiorperformance of the URV-LMS algorithm can be seen from the learning curves are plotted in Fig. 4.{ 5 {



5 ConclusionsIn this paper we developed a new LMS algorithm to improve the convergence rate whenever the inputautocorrelation matrix is ill-conditioned. The algorithm is data adaptive and uses a generalization of theURV updation procedure of Stewart. The rate of convergence depends on the worst conditioned subspace,whose condition number depends on the user de�ned spread and zero tolerances. However, there is atradeo� between the convergence speed, which depends on the condition number of each subspace and thecomputational expense of the generalized URV algorithm. As we noted in Section 3 and demonstratedusing simulations, this algorithm can be used to adapt only in subspaces which contain signal componentsof signi�cant strength, thus lowering the excess MSE. Our present work involves investigating the tradeo�sbetween error due to non-adaptation in noisy subspaces and the reduction in the excess MSE. Work onreducing the computational complexity and improving the quality of the subspaces estimated using thegeneralized URV decomposition is also in progress.References[1] D. F. Marshall, W. K. Jenkins and J. J. Murphy, \The Use of Orthogonal Transforms for ImprovingPerformance of Adaptive Filters," IEEE Trans. Circuits and Systems, Vol. 36, No. 4, pp. 474-483,April 1989.[2] S. Haykin, Adaptive Filter Theory, 2nd ed., Prentice Hall, 1991.[3] C. E. Davila, \Recursive Total Least Squares Algorithm for adaptive �ltering," Proceedings ofICASSP-91, ICASSP, pp 1853-1856, May 1991.[4] K. B. Yu, \Recursive updating the eigenvalue decomposition of a covariance matrix," IEEE Trans.Signal Proc., Vol. 39, pp. 1136-1145, 1991.[5] E. M. Dowling and R. D. DeGroat, \Recursive Total Least Squares Adaptive Filtering," Proceedingsof the SPIE Conf. on Adaptive Signal Proc., vol. 1565, SPIE, pp. 35-46, July 1991.[6] R. D. DeGroat, \Noniterative subspace tracking," IEEE Trans. on Sig. Proc., Vol. 40, pp. 571-577,1992.[7] D. L. Boley and K. T. Sutherland, \Recursive Total Least Squares : An Alternative to the DiscreteKalman Filter," Technical Report, Dept. of Comp. Sci., Univ. of Minn., TR 93-92, April 1993.[8] G. W. Stewart, \An Updating Algorithm for Subspace Tracking," IEEE Trans. Signal Proc., vol. 40,No. 6, pp. 1535-1541, June 1992.[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Baltimore MD, Johns HopkinsUniversity Press, 1989.[10] N. J. Higham, \A Survey of Condition Number Estimators For Triangular Matrices," SIAM Rev. No.29, pp. 575-596, 1987.
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