
Building and Navigatinga Network of Local Minima �Seung-Woo Kim and Daniel BoleyyDepartment of Computer Science and EngineeringUniversity of MinnesotaMinneapolis, Minnesota 55455AbstractWe present a novel method that constructs and navigates a network of local min-ima of potential �elds de�ned over multi-dimensional spaces. Though motivated byproblems of motion planning for robotic manipulators, similar techniques have beenproposed for use in other domains such as molecular chemistry and drug design. Themethod is based on building a roadmap of paths connecting local minima of a potentialfunction. The novel approach consists of an up-hill search strategy used to climb outof local minima and �nd new nearby local minima, without doubling back on previouslocal minima. With this up-hill search strategy, one can �nd local minima otherwisedi�cult to encounter, and one can focus the search to speci�c local minima and speci�cdirections from those local minima. The construction of the roadmap can be done inparallel with very little communication. We present extensive simulation results.1 Introduction and BackgroundWe present a novel fast method that constructs and navigates a network of local minimaof potential �elds de�ned over multi-dimensional spaces. The speed of our method comesfrom the parallelism inherent in the search process and from an up-hill search strategy whichleads to a more systematic search of the free space. Such methods have a wide variety ofapplications from motion planning to chemical analysis at the molecular level and even todrug design. The ability to plan paths quickly is important to make motion planning usefulin application areas, such as industrial robotics, teleoperation [13], control of redundant�This research was supported in part by NSF grants CCR-9628786, INT-9726332, and IIS-9811229.yContact author. Electronic mail: boley@cs.umn.edu.1

robots [10], etc. To keep the exposition as simple as possible, this paper is devoted to thepresentation of our methods in the context of the motion planning problem for a roboticmanipulator. This problem consists of �nding a path for a manipulator from a given initialto a given goal con�guration while avoiding obstacles present in the environment. Manyalgorithms have been developed [12], but most are rarely used in practice because of theircomputational complexity [7].Many existing motion planning methods operate in the space of all possible con�gurations(\C-space"), as opposed to the physical work space (\W-space"). While the W-space hasdimension 2 or 3 depending on the physical space traversed by the manipulator, the C-space has dimension equal to the number of degrees of freedom (dof) of the robot, Manyalgorithms operate by computing the set of infeasible con�gurations (obstacles) and thensearching the remaining C-space for feasible paths. To make the methods computationallytractable, various devices have been used. In [3], the C-space was discretized into cells, andthe cells that were totally free of obstacles were searched for paths. Unfortunately, small\passageways" between obstacles often did not correspond to any totally free cell and nopath could be found through such passageways. Arti�cial potential �elds were used in [3]in order to avoid collisions and/or to focus the search toward the goal. A genetic algorithmapproach combined with landmarks was used in [14], where landmarks were placed until alocal planner could generate a path. Other methods make assumptions on the type of robot,e.g. taking advantage of the symmetry of the workspace [2], or use a coarse discretization ofC-Space.A random search of the C-space was used in [8, 9], where a signi�cant amount of pre-processing was used to obtain acceptable performance. This approach shares many of thefeatures of the methods proposed in the present paper, including the use of an arti�cialpotential �eld over the continuous C-space and the construction of a roadmap by startingat many random positions and exploring in random directions. The arti�cial potential �eldwas designed to keep the robot away from the obstacles. The roadmap was a graph consist-ing of vertices corresponding to feasible con�gurations and edges corresponding to feasiblestraight-line paths connecting those con�gurations. Our method also uses a randomizedsearch with an arti�cial potential �eld, but the generated roadmap has a much more modest2

size, since the vertices are limited to the local minima in the potential �eld and the edgesare not limited to straight-line paths. Space does not permit a complete history of previouswork in this area, but an excellent summary of previous work can be found in [9, 6].We propose a method to connect any given initial and goal con�gurations for a manip-ulator in a static environment using a roadmap in the C-space. As in [8], we �rst build aroadmap, which is a connected graph that in some sense covers the entire free space in theC-space. The nodes or vertices in the roadmap are the local minima, and the edges are thepaths connecting those local minima. To connect any two arbitrary given con�gurations, we�rst connect them to the roadmap, and then search the roadmap for a path between them.Our method enjoys many favorable properties. Since the vertices are local minima of thepotential function, the number of vertices in the roadmap is much more limited than thatobtained by a more arbitrary placement as done in [8]. A major novelty is our up-hill searchstrategy, which constructs paths that tend to follow potential wells (i.e. \valley oors"). Thismeans that we can follow the curved obstacle boundaries in C-space and also �nd narrowpassageways in the free space more easily. As in [8], each segment of the roadmap can becomputed independently and in parallel, leading to a high degree of parallelism. Because thevertices are local minima, connecting an arbitrary goal con�guration to the roadmap can beaccomplished by a very e�cient gradient descent method. If the resulting local minimumis not already on the roadmap, the up-hill search strategy is very e�ective in connecting itup. Furthermore, it will be seen that these paths tend to pass through saddle points in thepotential function (see the Appendix), limiting the potential hill that must be climbed alongeach path. In the context of robot manipulators, this corresponds to staying as far fromobstacles as possible. Lastly, the directed randomized parallel search process is e�ective in�nding a large fraction of all the local minima in a short time. This partial graph of localminima is usually su�cient to \cover" the entire space in the sense that it is relatively easyto connect any new local minimum to the existing graph.Figure 1 shows a 2 dof robot example. Figure (a) shows a W-space with the base atthe black circle. Figure (b) is the corresponding C-space. The circles in (b) mark the localminima in the potential function, and the small dots mark the intermediate waypoints foundby our up-hill search strategy. The hollow circle marks the local minimum very close to the3

point corresponding to the con�guration in (a).

(a) (b)Figure 1: A 2 dof robot example. (a) shows a W-space with a 2 dof robot with the baseat the black circle. (b) is the corresponding C-space with the origin at the lower-left cornerand the x and y axes representing the �rst and second joints respectively. The gray regionsare the regions of collision with obstacles. (b) also shows the local minima (large blackcircles) and the intermediate points (tiny dots) within the individual hyperplanes found bythe procedure UpStream of Fig. 5. The hollow circle is the local minimum close to thepoint corresponding to con�guration (a).The rest of the paper is organized as follows. Section 2 gives an overview of the processof building a roadmap. Section 3 discusses the potential function and the gradient descentmethods based on that potential function. We use our method for robots with many articu-lated joints in a static 2 dimensional environment as an example to illustrate the methods.Section 4 discusses the process of generating a roadmap using the novel up-hill search strat-egy. Section 5 discusses �nding a collision free path using the generated roadmap. Section 6shows our experimental results, followed by the conclusion in Section 7.
4

2 Building the RoadmapThe process of building a roadmap is summarized in Figure 2. Local minima are initiallyfound by descending from randomly chosen feasible positions. From each such local mini-mum, the method climbs out of the potential well and explores \neighboring valleys" lookingfor neighboring local minima. This is accomplished using our novel up-hill search strategy.Parallelism is obtained by simultaneously starting this search from many randomly chosenpositions. A master process collects all the partial paths generated and assembles the overallgraph.At the roadmap grows to cover the C-space, new local minima become harder and harderto �nd by a purely random process. Also, the need to make sure that all the existinglocal minima are connected becomes more critical. Hence at some point we switch to amore focused search in Phase II. In Phase II, we start from the more isolated local minimaand explore up-hill in the direction toward the largest connected component in the existingroadmap, with the goal of connecting them.Phase II is also used when connecting an arbitrary initial or goal con�guration to theroadmap. If the local minimum reached by gradient descent from a given goal con�gurationis not already on the roadmap, Phase II is used to connect it up.The main features of our method are the following. (a) We limit the situations where arandom movement is necessary, (b) we use a potential �eld to guarantee collision-free paths,(c) we have a systematic strategy for climbing out of a local minimum to �nd a low energypath to other local minima, (d) we use Gauss-Newton directions to descend along shallowslopes very e�ciently, and (e) the overall process easily decomposes for e�cient parallelprocessing.3 Gradient Descent using a Potential FunctionThe use of gradient descent methods requires the use of a potential function that has atleast one derivative (the gradient). Using a more sophisticated method such as Gauss-Newton requires a potential function with at least two derivatives [1], even though the second5

Phase I. Randomized Search.Repeat until a given percentage of all local minima found are connectedtogether in a large connected component:1. Select a random starting position and descend to a local minimum �0.2. Explore up-hill from that local minimum in a randomly chosen directionu0 by repeated use of the UpStream procedure to �nd a partial pathto neighboring local minima.3. Connect the new partial path to the existing graph of partial paths.Phase II. Focused Search.Repeat until all the local minima are connected:1. Select an \isolated" local minimum.2. Explore up-hill from that local minimum in a randomly chosen directionu0 among those directions leading toward the larger connected graph ofminima, using repeated applications of the UpStream procedure.3. Connect the new partial path to the existing graph of partial paths.Figure 2: GraphBuild { create a graph (roadmap) of local minima and their connections.Each new combination of position �0 and direction u0 is discarded if already encountered.derivative (the Hessian) is not computed explicitly. In our approach, we use a potentialfunction that has at least two derivatives except at isolated points. The up-hill searchstrategy (procedure UpStream) described in the next section is used to carry out a searchin the neighborhood of those isolated points where the derivatives may not exist.3.1 The Potential FunctionWe de�ne the potential function over the C-space, though its computation is based on theW-space con�guration. For simplicity, we limit our discussion to revolute joints, thougha very similar formulation could be applied to translational joints. The C-space is a dof6

dimensional space of joint angles � = (�0; �1; : : : ; �dof�1), where 0 � �i < 2� and 0 � i < dof.The base joint angle �0 is set to 0 when the �rst link is pointing at 3'o'clock and increasescounterclockwise. The other joint angles, �i, are set to 0 (1 � i < dof) when the joint is fullystretched and increases counterclockwise. The potential function prevents each joint fromgoing through the fully folded position (� = ��).We de�ne a potential function designed to repel the individual robot links away from theobstacles and from each other. The potential function is expressed in the form of a non-linearleast squares functional E(�) = 12Xi r2i (�); (1)where E(�) is the potential , ri(�) are the individual potential functions for each link andeach obstacle, de�ned over the m dimensional space �. Each ri is di�erentiable with respectto �. The potential function consists of three parts, the potential between the robot links andobstacles, the potential between non-consecutive links, and the potential between consecutivelinks sharing a joint. We now describe the formulation of each of these components.The potential resulting from the obstacles and robot links. This is the primary forcea�ecting the robot because we wish to avoid collisions between the robot and the ob-stacles. In order to compute the potential for a given con�guration, a pair of closestpoints is computed for each pair of link and obstacle segment. In Figure 3, let usdenote the closest points between i-th link and j-th obstacle segment as Pi;j and Qi;jrespectively. Then the Euclidean distance between them is di;j = kPi;j � Qi;jk2. Letm 4= the number of links, n 4= the number of obstacles, and ri+j�m 4= 1=di;j. Thenthe overall potential EO arising from the obstacles isEO = 12 boundO�1Xi=0 r2i (2)where boundO = mn.The potential between non-consecutive links. This component in the potential is de-signed to prevent self collisions. The construction is analogous to the construction ofthe potential between a link and an obstacle. Let us denote si;j as the reciprocal of the7

l
0

θ
0

θ
1

i
θ

l
i

Base

j-th obstacle
i-th link

0-th link

P d
Q

i,j
i,j

i,j

Figure 3: Computing potential �elds. Pi;j = the closest point between i-th link and j-thobstacle on i-th link, Qi;j = the closest point between i-th link and j-th obstacle on j-thobstacle, di;j = the Euclidean distance between Pi;j and Qi;j, li = distance between thebase of i-th link to Pi;j, �i = i-th joint angle.distance between i-th link and j-th link, where 2 � i < m and 0 � j < i � 1. Thenthe potential between non-consecutive links is as follows:ENC = 12 m�1Xi=2 i�2Xj=0 s2i;j = 12 boundNC�1Xk=boundO r2k; (3)where, for convenience, we change the notation s to the common notation r, using thecommon indexing rk = si;j with k = mn+(i� 1)(i� 2)=2+ j, and where boundNC =boundO + (m� 2)(m� 3)=2 + (m� 2).The potential between consecutive links. This component of the potential function isdesigned to limit the movement of the joints, so that two consecutive links cannot foldthrough each other. Hence, for revolute joints considered in this paper, the poten-tial function must go to in�nity as each joint angle approaches �. Therefore, EC iscomputed as follows: EC = 12 m�1Xi=1 1=k� � �ik22 = 12 boundall�1Xk=boundNC r2k (4)where 1 � i < m, and where we again adopt a common indexing with rk = 1=k���ik2,8

k = (m�2)(m�3)=2+(m�2)+(i�1), and boundall = boundO+boundNC+m�1.No potential is applied to �0 because the base of the robot is allowed to rotate freely.The overall potential �eld considers all these forces in order to insure a feasible path. Thetotal potential ET is as follows: ET = EO + ENC + EC (5)3.2 Gradient Descent AlgorithmsWe use two basic algorithms to follow the gradient descent direction. The basic methodis the steepest descent method. This method works well when the robot is close to theobstacles. However, it is well known that its convergence rate can be very slow [1]. Toaccelerate convergence, we use the Gauss-Newton method as we approach a local minimum.The Gauss-Newton method tends to work well in descending along a shallow valley withsteep sides. The general descent algorithm �rst follows the steepest descent (Sec. 3.2.1)direction for a few steps, after which it switches to Gauss-Newton (Sec. 3.2.2) to �nd a localminimum. To account for the possibility of a discontinuity in the derivative at the localminimum found by Gauss-Newton, some additional probing is carried out around that localminimum, as discussed in Sec. 3.2.3.3.2.1 Steepest Descent MethodThe gradient of the potential function at � = (�0; : : :; �m�1)T isrE(�) = J T r (6)where J 2 Rboundall�m is the Jacobian matrix of r, de�ned byJ i;j = @ri@�j (7)To obtain a descent direction, we simply follow the direction of the negative gradient (6).This yields the method of steepest descent.The Jacobian matrix is composed of three parts corresponding to the three parts formingthe potential function. 9

1. Jacobian due to EO. The Jacobian matrix is computed directly from (2). Even thoughthe Qi;j in Figure 3 change as the robot moves, they are �xed for simplicity of com-putation. Let us denote Pi;j = (xi;j; yi;j) and Qi;j = (p; q). Also, the k-th joint is at(xk; yk). The computation of J due to obstacles is as follows:J i+jm;k = @ri+jm@�k = @@�k 1di;j! = @@�k kPi;j �Qi;jk�12= @@�k h(xi;j � p)2 + (yi;j � q)2i�1=2= �(xi;j � p)@xi;j@�k + (yi;j � q)@yi;j@�k�q(xi;j � p)2 + (yi;j � q)2�3 (8)where 0 � i < boundO, and 0 � j < m. The derivative @xi;j@�k is calculated as follows:@xi;j@�k = @@�k "x0 + iXu=0 lucos(uXv=0 �v)#= � iXu=k lusin(uXv=0 �v)= (yk � yi;j) (9)Similarly, @yi;j@�k = xi;j � xk (10)Therefore, J l;k = (xi;j � p)(yi;j � yk)� (yi;j � q)(xi;j � xk)�q(xi;j � p)2 + (yi;j � q)2�3 (11)where l = i + jm, 0 � i < m, and 0 � j < n.Computation of each term in (11) is not too di�cult and is needed for collision check-ing anyway. However, the size of the Jacobian matrix can be quite large. Therefore,this method may be slow if there are too many obstacles in the W-space. In that case,the potential function calculation might be simpli�ed, especially for obstacles far fromindividual links. By segmenting the entire C-space into regions, it would be a straigh-forward process to limit the calculation of the potential function to those obstacleswhich are close to the relevant links, by examining only those regions holding each link10

or adjacent to each link. The potential from farther obstacles can be approximated bygrouping them together, or can be disregarded altogether. For simplicity, we do notconsider this here.2. Jacobian due to ENC. The Jacobian matrix for non consecutive robot links is com-puted similarly: J boundO+l;k = (s� p)(t� yk)� (t� q)(s� xk)�q(s� p)2 + (t� q)2�3 (12)where (s; t) and (p; q) are closest points between i-th link and j-th link respectively,l = (i� 1)(i� 2)=2 + j, 2 � i < m, and 0 � j < i� 1.3. Jacobian due to EC. By taking the derivative of corresponding components of r, weobtain: J boundNC+l;k = 8>><>>: 0 if i 6= k�1(���i)2 if (� � �i) < 0)1(���i)2 if (� � �i) > 0) (13)where l = i� 1, and 1 � i < m.3.2.2 Gauss-Newton MethodWe use the Gauss-Newton method [1] to speed up convergence. The Gauss-Newton methodis based on a sequence of linear approximations of r(�). If �k denotes the current approxi-mation, then a correction pk is computed as a solution to the linear least squares problemminp kr(�k) +J (�k)pk2; p � Rm; (14)and the new approximation is �k+1 = �k+�kpk, where �k is a step length to be determined.This linear least squares problem is solved using the QR decomposition of J (�k) [1]. One ofthe important properties of the Gauss-Newton direction is that if �k is not a critical point,then pk is a descent direction [1].Because we want to �nd a path to the local minimum as well as the local minimum itself,�k must be determined in such a way so as to limit the maximum step movement of therobot. Starting with �k 4= 1=kpk, the stepsize �k is halved repeatly until the new potential11

Figure 4: Behavior of gradient descent methods on the example of Figure 1. The leftside indicates the steepest descent direction at each point, and the right side shows theGauss-Newton directions.E(�k+1) is less than the old potential E(�k). If the new potential is already less than theold potential at the initial stepsize, then the stepsize �k is doubled until a prede�ned limitis reached or the new potential becomes larger than the old potential.Figure 4 illustrates the behavior of the two gradient descent methods for the C-space ofFig. 1. The left side of Figure 4 indicates the steepest descent directions, which are almostperpendicular to the potential walls from the obstacles. In the narrow passage in the C-space, however, steepest descent method is not very e�cient because it tends to oscillate.The right side of Figure 4 shows the descent path for the Gauss-Newton method, withoutthe oscillation.3.2.3 DiscontinuityNormally, a combination of steepest descent and Gauss-Newton is very e�ective in �ndinglocal minima. Steepest descent is very robust, especially in the steep potential walls nearobstacles, while Gauss-Newton is very e�ective once one has moved away from the immediateneighborhood of an obstacle. However, once a possible local minimum is reached, one must12

carry out some additional probing in order to account for the possibility of a discontinuityin the derivatives. Such a discontinuity may arise from the way the potential function isconstructed. In our case, the points Pi;j; Qi;j (the closest points of approach between a linkand an obstacle) may jump as the con�guration changes. For example, the points of closestapproach between the obstacle and the uppermost link shown in Fig. 3 will jump if the linkrotates a little to the right.The probing technique we use is based on moving a small step in some probing directionand then descending along the gradient to a local minimum. In order to explore new posi-tions, the new gradient descent process is restricted to a hyperplane normal to the originalprobing direction in a manner described in the next section. A thorough exploration of theneighborhood of the original local minimum is accomplished by probing in this manner inall the coordinate directions. If any probing direction yields a point with a lower potential,this point replaces the original local minimum.4 Building the Graph by Connecting Local MinimaOur goal is to build a roadmap consisting of all the found local minima together withthe computed paths connecting them. The previous section discussed the gradient descentmethods used to �nd a \�rst" local minimum. To connect di�erent local minima, as well asto discover new nearby local minima, we use an up-hill ascent process in a given explorationdirection to climb away from a local minimum and �nd a path to another local minimum.Our exploration process continues �nding new local minima, connecting them to the previouslocal minima to form a partial path in the overall graph, in such a way as to avoid doublingback to a local minimum already visited. This algorithm has the property of passing throughsaddle points in the potential function between local minima, which limits the height of thepotential hill traversed by a given path.The roadmap is built by using the above process to create many partial paths. Thesepaths are then connected to form the overall graph. In many cases, the paths are alreadyconnected through the random search process, but often a Phase II is needed to focus thesearch process in order to complete the connections. which are then connected to form the13

overall graph.The heart of the exploration process is the UpStream algorithm, described in Sec. 4.1.Sections 4.2 and 4.3 discuss the strategy to connect partial paths and the parallelization ofthe algorithm. A property of passing through saddle points is proved in the Appendix.4.1 Moving Up HillThe task here is to �nd a path from one local minimum to another. This path will formpart of a partial path, which will eventually be connected to other partial paths to form oneoverall connected graph encompassing all the local minima.The basic up-hill search strategy is given by procedure UpStream in Fig. 5. Starting ata local minimum, we select a random coordinate direction to move along. We take a smallstep in this chosen direction, and then descend \laterally" with a gradient descent searchrestricted to the hyperplane normal to the chosen probing direction, as illustrated in Fig. 6.The procedure is described more formally in Fig. 5. The lateral descent step allows us tofollow the \valley oors," at least for some small distances, making it easier to �nd narrowpassageways among the obstacles in C-space. We found that this process is very e�ective atreaching otherwise di�cult to �nd local minima such as those with relatively small \descentbasins." This procedure has already been mentioned as a way to probe in the neighborhoodof a prospective local minimum to verify that it is indeed a local minimum (Sec. 3.2.3).We remark in step 3 of UpStream that if E(�(k+1)) < E(�(k)) and E(�(k�1)) < E(�(k))then we are at a top of a hill or \mountain pass." These points are often saddle points inthe potential function. A precise statement and proof of this property is in the Appendix.The main use of the UpStream procedure is to search for neighboring local minima,connecting them together as outlined in Fig. 2. This procedure is used repeatedly throughoutthe entire exploration process, but the main use is in Phase I of GraphBuild to explorepaths from found local minima leading to new nearby local minima, and in Phase II to explorepaths leading from isolated local minima leading to local minima within the largest connectedcomponent of the roadmap. Each exploration process consists of repeated passes throughthe UpStream procedure, until an obstacle is encountered or a known local minimum is14

reached.4.2 Connecting Partial PathsWe found that simply searching for local minima from randomly chosen points is not verye�cient because the method tends to repeatedly land on certain more easily found localminima while missing many other local minima. The result is that many local minima areconnected together in one large connected component, while other local minima are isolatedby themselves or in very small connected components. If such isolated local minima arerecognized, it is much more e�cient to concentrate on such local minima. Our experimentshave shown that after many partial paths are found and attached to the graph, a connectedsubgraph emerges containing the majority of the local minima, while the other local minimaare spread among several smaller connected components. Therefore we keep track of thesize of the largest graph. When the largest graph contains more than a given percentage ofall the local minima found, then the algorithm stops generating random partial paths andswitches over to a \Phase II" in which it selects only the local minima in the smaller graphsfor more expansion (Fig. 2). The percentage at which the algorithm switches strategy canbe varied by the user. The biggest e�ect of varying the percentage is on the overall cost ofthe method, as will be seen in Section 6.The resulting graph consists of vertices representing the local minima in the potentialfunction. The edges in the graph represent the paths connecting those points (Fig. 6). Tosave space within the process, we limit the information stored for each path to just thoseitems needed to identify and recreate the path when needed (see Sec. 5.3).4.3 Parallel Implementation of Graph GenerationIn order to construct the roadmap, we need to connect the generated partial paths together.Each partial path can be generated independently and in parallel. The only communicationrequired occurs when a partial path is complete and must be connected to the existing graph.Hence the overall process is quite suitable for parallel processing. We use a master-slavescheme for the parallel implementation. The master program is responsible for accepting15

1. Follow the selected direction u0 for a small distance �.2. Find the value �(k+1) in the hyperplane yielding the local minimum inmin� E(�(k) + u0� + U�)(the \lateral" movement), and set the new position,�(k+1) = �(k) + u0� + U�(k+1);where U is a matrix whose columns form an orthonormal basis of the hyperplanenormal to u0.3. If E(�(k+1)) > E(�(k)) and E(�(k�1)) > E(�(k)) , record a new `valley" and con-struct a \side path" using a standard gradient descent method to �nd the localminimum in the new \valley." (Duplicate local minima found this way are dis-carded.)4. Repeat this process setting k := k + 1 until an obstacle is encountered.Figure 5: UpStream { Probe in a given selected direction u0.

local minimum

hyperplanes

pathsearch direction

E

E

i-1

i

E

i+1

Figure 6: Illustration of procedure UpStream of Fig. 5, repeated several times. Eachiteration consists of two parts: 1. a �xed movement along the chosen search direction, and2. a descent to a local minimum within the hyperplane normal to the chosen direction. Theiteration is repeated from that intermediate local minimum. Each Ei represents the potentialat each intermediate local minimum. 16

local minima

discard
local minimum

valleys

(a) (b)

start

(c) (d)Figure 7: Connecting local minima using repeated passed through procedure UpStream.The planner (a) starts from a random con�guration to �nd the local minimum; (b) looks for\valleys" as the starting points for seeking new local minima; (c) �nds the local minima bygradient descent, merging those found; (d) probes to �nd exact local minima.partial paths and connecting the nodes and edges to the graph, and the slave programs keepgenerating and sending partial paths to the master program. Generating each partial pathgenerally takes 2 orders of magnitude more computation than gluing it to the graph. Themessages in both directions are very short. Therefore we expect linear speedup for up to atleast a few hundred processors.5 Finding a Path from Start to Goal PositionA path connecting two given con�gurations is found by connecting those con�gurations tothe roadmap and seeking a path connecting those con�gurations within the roadmap. Inthis section we discuss the relatively simple process of using the roadmap to connect twogiven con�gurations. In the following, Section 5.1 deals with connecting the initial and goalcon�gurations to the graph, Section 5.2 describes the graph search method that was used,and Section 5.3 discusses how to regenerate the detailed path from the path found by thegraph search.5.1 Connecting Input Con�gurations to GraphIn order to �nd a path from the initial to the goal con�gurations, the input con�gurationsmust be connected to the graph �rst. This is done by a straightforward application of17

the gradient descent methods of Sec. 3, starting from the initial and goal con�gurationsand descending to their respective local minima. These local minima are often already onthe graph, otherwise Phase II of the graph building algorithm (Fig. 2) is used to computea connection. To be more precise, Phase II of the graph construction algorithm tries toconnect small graphs to the largest graph. Therefore, if a local minimum is not found inthe graph, it is viewed as a non-connected small subgraph, and a Phase II search is used toconnect it to the large graph.In our implementation, only the local minima and the exploration directions used toclimb out of the local minima (the \u0" in Fig. 5) were saved; the rest of the partial pathinformation was thrown away. Therefore, after the topological path is found in the graph,the planner regenerates the actual path. Of course, one could preserve the partial paths asthey are generated during the graph construction phase, but the process of regenerating thedetailed partial paths is relatively inexpensive.One implementation decision is the condition under which the graph building processshould switch over from Phase I to Phase II (Fig. 2). Initially we thought that it pays toswitch over once we thought that we had found a large fraction of the local minima andhad connected most of the found local minima into a large graph. This would make it muchmore likely that any given new con�guration could be easily connected to the roadmapby a simple gradient descent process leading to a local minimum already on the roadmap.However, we discovered experimentally that �nding a large fraction of the local minima canbe too expensive. In addition, even if the gradient descent process from a given con�gurationdoes not reach a local minimum on the roadmap, the Phase II process is very e�ective inconnecting it up. From our experiments, a typical graph contains about half of all thepossible local minima, so the probability of �nding the local minima in the graph at the�rst attempt is 50%. However, the graph having half of all the possible local minima can beconsidered to be very dense in the sense that the planner can �nd the connections from theother local minima to the graph very easily. Typically, it takes just one or two expansionsto reach the graph, in our scenarios.
18

5.2 Graph SearchMany methods for �nding a path in a state-space graph or tree have been proposed in [11],[16], [15]. In our case, the graph search is a lot simpler because: (a) all the nodes andedges are known and �xed, (b) typically, the number of nodes is modest, on the order ofthousands. The physical length of the path is not considered in our current implementation.In future work, we will use more advanced methods which take the actual path length intoconsideration and which are more suitable when the number of nodes becomes very large.Since we do not consider the physical length of the path, breadth-�rst search (or BFS[11], [16], [15]) is used, which is simple to implement and reasonably fast. In the worst case,BFS will explore every node in the graph. Thus, this method is complete in the sense thatthe method will �nd a path if there is one in the graph. Usually, breadth-�rst-search cansu�er from a large space requirement that is exponential in the depth of the solution. Inour case, however, we start with a graph in which all the nodes and edges are known and�xed. Furthermore, the number of nodes rarely exceeds one thousand. Another reason BFSis successful is that even though the branching factor is high, the majority of the newlyexpanded nodes are already in the BFS queue. In any case, the total number of nodescannot exceed the total number of local minima. Graphs of this size can be easily handledby modern computers, even by PC-level computers. The experimental results show that BFScan �nd the solutions in a fraction of a second on a single processor Pentium Pro 200MHzwith 64MB of main memory. Of course, in more complex domains, the graph search problemcould become a more signi�cant issue.5.3 Regenerating the Actual PathsTo save space stored within the roadmap and to reduce the volume of information transferedbetween parallel processors, we discarded the detailed partial path information generatedduring the graph construction algorithm, leaving only the information necessary to regeneratethe paths. The edges in the graph have the following information: (a) the location of the�rst local minimum, (b) the location of the second local minimum connected thereto, (c) theprobing direction in which the planner explored to connect the �rst local minimum to the19

next. Given just this limited information, it is straightforward to regenerate the path withall its intermediate points. Regenerating each partial path can be done in parallel. The pathregeneration algorithm takes advantage of this and the regeneration of each component ofall the partial paths are done in parallel. Usually, the number of tasks (each correspondingto each component to be generated) is much larger than the number of processors available.The cost of each task can vary a lot depending on the length of each component and thenumber of valley points traversed. Therefore, a dynamic approach for load balancing is used.The outline of the algorithm is presented below:1. The master program decomposes all the partial paths and stores them in a list. Eachelement in the list is the \command" and the information needed to regenerate acomponent.2. The master program sends to each processor a \command" from the list.3. As a slave processor sends the partial path, the master program collects the path andallocates a new \command" (if any) to the slave processor.4. Once the master program has received all the components, the whole path is returnedand the program is �nished.In our experiments we found that the parallel performance of the path regeneration processsu�ered because of the variability in the lengths of the individual partial paths. Nevertheless,the entire path regeneration process never took longer than 21 seconds with 16 processorsin the most complex cases, having about 16 local minima in a single path.6 Experimental ResultsWe tested our method on many examples, including a 7 dof and an 8 dof manipulatorillustrated in �gures 8 and 9. We used an SGI Challenge Cluster consisting of 3 Challenge Lmachines and 1 Challenge XL machine. Each Challenge L machine has 4 R10000 processorsand Challenge XL has 8 R10000 processors. We used PVM3 (Parallel Virtual Machine) for20

(a) (b) (c) (d)

(e) (f) (g) (h)Figure 8: A 7 dof robot example from start(a) to goal(h) con�guration.ratio node count graph build time graph search time path regen. timeP count dev aver dev worst aver dev worst aver dev worst30% 698 105 237 85 350 3 2 6 10 10 2160% 954 162 463 144 634 2 2 5 8 6 1580% 993 83 482 97 620 2 1 3 8 2 11Table I: Performance for Figure 8 with respect to Phase II switch-over ratio P with 16processors. \aver", \ dev", \worst" stand for average, standard deviation, and worst case,respectively. The node count is the number of local minima found. Times are in seconds.the parallel processing. Figures 8 and 9 show the actual paths connecting the start and goalcon�gurations found by our method.In Table I, each experiment was run 10 times. Along with the average values, the standarddeviations and worst cases are shown. The symbol P represents the ratio of the largestconnected component size vs the total number of nodes at which we switch over from PhaseI (random generation) to Phase II (focused search). It took about 7 minutes to compute thegraph for Figure 8 with the Phase II switch-over percentage of 60%. The time for connectingthe Figure 8(a) and Figure 8(h) to the graph after pre-processing was 2 seconds. Regenerating21

(a) (b) (c) (d)

(e) (f) (g) (h)Figure 9: An 8 dof robot example from start(a) to goal(h) con�guration.ratio node count graph build time graph search time path regen. timeP count dev aver dev worst aver dev worst aver dev worst60% 182 25 87 11 96 12 10 23 6 7 1670% 193 26 93 14 105 11 8 22 5 3 1080% 257 171 209 155 442 10 3 14 5 1 7Table II: Performance for Figure 9 with respect to Phase II switch-over ratio with 16 proces-sors, using same notation as in Table I. Times are in seconds.the path in W-space took about 8 seconds. For this example, the performance of actually�nding the path is quite consistent because obstacles are rather evenly distributed in the W-space. Changing the Phase II switch-over ratio directly a�ects the number of nodes generatedand it also a�ects the path regeneration time. If the ratio is set too low, the resulting graphhas fewer nodes and the path generated may not be as good. However, the fastest totaltime to construct a roadmap and compute a path was obtained by using a relatively lowswitch-over ratio of 30%.For the second example (Figure 9), the fastest pre-processing time for Figure 9 was 47seconds when the Phase II switch-over ratio was set to 60%. However, the performance of22

no. procs graph build time speedup e�ciencyNP aver dev worst SU SC1 6684 913 7692 1.00 1.004 1750 280 2120 3.82 0.958 921 153 1100 7.26 0.9116 482 97 620 13.87 0.87Table III: Graph build time for Figure 8 with respect to number of processors.�nding the actual path depended more on the location of the input con�guration, becauseif it was in a di�cult to �nd location, extra applications of Phase II were often needed toconnect it to the roadmap. Nevertheless, the time to connect a given con�guration to thegraph never exceeded 10 seconds.Table III shows the time to build the graph for Figure 8 with a varying number ofprocessors. The Phase II switch-over ratio was set to 80%. NP is the number of processors,SU represents the speed-up, and SC = SU=NP . The scalability is quite good as expectedup to 16 processors. Future work will include testing scalability on more massively paralleltestbeds.7 Conclusion and Future WorkIn this paper, we presented a novel method to combine randomized search and potential�elds to solve motion planning problems in 2 dimensional W-space and high dimensional C-space. The experimental results show that this method is very e�cient even for very di�cultproblems with a short period of preprocessing. The results show that even an incompleteroadmap can be a very e�ective tool for exploring a workspace, and attempting a-priori to�nd all the local minimamay not be the most e�cient approach. This is true even when thereare hard-to-�nd local minima such as those in narrow passageways or with small \descentbasins." Further study on the e�ect of varying the switch-over ratio from the general PhaseI search to the focused Phase II search is needed.The di�erentiable potential function and the up-hill ascent strategies used in this paper23

are easily adaptable to 3D W-spaces. From our experiments, the complexity of the problemin terms of local minima has more impact on the performance than the degrees of freedom.In previous work ([4], [5]), the C-space resulting from 3D W-space tends to be simpler than2D cases. We expect the 3D implementation of our method will have a performance similarto 2D cases, since the complexity of the mathematical computations should not increase bymuch. If there are many obstacles, it may become necessary to approximate the potentialfunction by speeding up the calculation of the contributions from obstacles that are far fromthe links. The number of local minima, and hence the size of our graphs, may increase,leading to the need to more specialized graph search algorithms. These aspects, as well as astudy of the saddle points in the potential function, will be a focus of our future research.References[1] �A. Bj�orck. Numerical Methods for Least Squares Problems. SIAM, 1989.[2] P. Adolphs and H. Tolle. Collision-free real-time path-planning in time varying environ-ment. In Proc. IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems, pages 445{452,1992.[3] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential �eld techniques forrobot path planning. IEEE Trans. Systems, Man, and Cybernetics, SMC-22(2):224{241,March/April 1992.[4] D. Challou. Parallel search algorithms for robot motion planning. Ph.D. dissertation,The University of Minnesota, 1995.[5] D. Challou, M. Gini, and V. Kumar. Toward real-time motion planning. In H. Kitano,V. Kumar, and C. B. Suttner, editors, Parallel Processing for Arti�cial Intelligence, 2.Elsevier, 1994.[6] D. Henrich. A review of parallel processing approaches to motion planning. In Proc.IEEE Int'l Conf. on Robotics and Automation, 1996.24

[7] Y.K. Hwang and N. Ahuja. Gross motion planning { a survey. ACM Computing Surveys,24(3):219{291, 1992.[8] L. Kavraki. Randomized preprocessing of C-space for fast path planning. In Proc. IEEEInt'l Conf. on Robotics and Automation, pages 2138{2145, 1994.[9] Lydia Kavraki, J.C. Latombe, Petr Svestka, and M.H. Overmars. Probabilisticroadmaps for path planning in high-dimensional con�guration spaces. IEEE Trans.Robotics and Automation, 12(4):566{580, 1996.[10] Thierry Laliberte and Clement Gosselin. E�cient algorithms for the trajectory plan-ning of redundant manipulators with obstacle avoidance. In Proc. IEEE Int'l Conf. onRobotics and Automation, pages 2044{2049, 1994.[11] Pat Langley. Systematic and nonsystematic search strategies. In Proc. Int'l Conf. onAI Planning Systems, pages 145{152, College Park, Md, 1992.[12] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publ., Norwell, MA, 1991.[13] V. Lumelsky and Edward Cheng. Real-time collision avoidance in teleoperated wholesensitive robot arm manipulators. IEEE Trans. Systems, Man, and Cybernetics, SMC-23(1):194{203, Jan/Feb 1993.[14] E. Mazer, J.M. Ahuactzin, and P. Bessiere. The ariadne's clew algorithm. J. Artif.Intel. Res., 9:295{316, 1998.[15] E. Rich. Arti�cial Intelligence. McGraw-Hill, 1991.[16] P. Winston. Arti�cial Intelligence. Addison-Wesley, June 1992.Appendix: Saddle PointsIn this Appendix, we prove that under certain conditions, the partial paths generated byrepeated passes through the UpStream process passes through saddle points in the poten-tial function. Let u0 denote the given search direction. We assume that we have a path25

�(0); �(1); �(2); : : : in C-space, where each �(k) is the local minimum found within the hyper-plane normal to u0 in step 2 of Fig. 5. We assume that the stepsize � is small enough thatthe points �(0); �(1); �(2); : : : lie on a continuous path of con�gurations where each point onthe path is the local minimum with the hyperplane passing through that point, normal tou0. On this continuous path, we denote by �0 a point where the potential function reachesa local maximum along the path, and x 4= � � �0 the deviation from that point of localmaximum. We let U be constructed such that [u0;U] is an orthonormal matrix.In a neighborhood of the local maximum x = 0, the potential function is locally aquadratic F of the form: E(x) � F (x) 4= 12xTAx� bTx+ c (15)where A 4= r2xE(x)j x=0;b 4= �rxE(x)j x=0;c4= a constant.For each step �, we denote by w� the local minimum within the hyperplane in thebasis parametrizing the hyperplane. Speci�cally, w� 4= the solution of w that minimizesF (�u0 + Uw) over all w 2 Rm�1 in the neighborhood of 0, 8� in the neighborhood of 0,where m is the dimension of the search space:w� 4= argminw F (�u0 + Uw): (16)The points x� 4= �u0+Uw� de�ne the path parameterized by � in a neighborhood of � = 0with potential function G(�). G(�) = F (�u0 + Uw�): (17)In particular, x0 = x�j �=0 = 0.We can now state the theorem that under certain conditions, the point �0 which is alocal maximum on the path is a saddle point.Theorem Assume (A1) the Hessian A and the Hessian restricted to the hyperplane UTAUare non-singular, and (A2) w� exists and is unique 8� in a neighborhood of � = 0. If G(�)achieves a local maximum at � = 0, then x� is a saddle point of the potential F .Proof By substituting �u0 + Uw� for x in (15), we getF (�u0 + Uw)= 12�2uT0Au0 � �bTu0 + �uT0AUw + 12wTUTAUw� bTUw + c (18)26

1. First, we prove that the Hessian matrix A is inde�nite.(a) If we take the �rst derivative of (18) with respect to w,rwF (�u0 + Uw) = wTUTAU � [bTU � �uT0AU] (19)The Hessian matrix of (18) isr2wF (�u0 + Uw) = UTAU (20)Since w0 is a local minimum in the hyperplane, the Hessian UTAU is positivede�nite.(b) By setting equation (19) equal to 0, we havew� = [UTAU]�1UT [b� �Au0] (21)At � = 0 we get w0 = [UTAU]�1UTb = 0, which by assumption (A1) impliesUTb = 0 (22)and therefore, b = �u0 (23)for some �. (21) reduces to w� = ��[UTAU]�1UTAu0.De�ne B = U [UTAU]�1UTA. Then (17) can be writtenG(�) = F (�(I � B)u0)= �22 uT0 (I � B)TA(I � B)u0 � �bT (I � B)u0 + c (24)The second derivative of the functionG with respect to �must be negative becauseit is a local maximum along the curve:d2Gd�2 ������=0 = uT0 (I �B)TA(I � B)u0 < 0: (25)From (a) and (b), it follows that the Hessian A is inde�nite.27

2. We still need to show that the gradient �b = 0.0 = dGd� j�=0= �uT0 (I �B)TA(I �B)u0 � bT (I � B)u0= bT (I � B)u0= bTu0 � bTBu0= bTu0 � bTU [UTAU]�1UTu0= bTu0 (from (22))= �uT0 u0 (from (23))Therefore, � = 0 and b = 0.From 1 and 2, it follows that x0 is a saddle point of the potential function. 2

28

