Building and Navigating
a Network of Local Minima *

Seung- Woo Kim and Daniel Boley!
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, Minnesota 55455

Abstract

We present a novel method that constructs and navigates a network of local min-
ima of potential fields defined over multi-dimensional spaces. Though motivated by
problems of motion planning for robotic manipulators, similar techniques have been
proposed for use in other domains such as molecular chemistry and drug design. The
method is based on building a roadmap of paths connecting local minima of a potential
function. The novel approach consists of an up-hill search strategy used to climb out
of local minima and find new nearby local minima, without doubling back on previous
local minima. With this up-hill search strategy, one can find local minima otherwise
difficult to encounter, and one can focus the search to specific local minima and specific
directions from those local minima. The construction of the roadmap can be done in
parallel with very little communication. We present extensive simulation results.

1 Introduction and Background

We present a novel fast method that constructs and navigates a network of local minima
of potential fields defined over multi-dimensional spaces. The speed of our method comes
from the parallelism inherent in the search process and from an up-hill search strategy which
leads to a more systematic search of the free space. Such methods have a wide variety of
applications from motion planning to chemical analysis at the molecular level and even to
drug design. The ability to plan paths quickly is important to make motion planning useful

in application areas, such as industrial robotics, teleoperation [13], control of redundant

*This research was supported in part by NSF grants CCR-9628786, INT-9726332, and I1S-9811229.
tContact author. Electronic mail: boley@cs.umn.edu.



robots [10], etc. To keep the exposition as simple as possible, this paper is devoted to the
presentation of our methods in the context of the motion planning problem for a robotic
manipulator. This problem consists of finding a path for a manipulator from a given initial
to a given goal configuration while avoiding obstacles present in the environment. Many
algorithms have been developed [12], but most are rarely used in practice because of their
computational complexity [7].

Many existing motion planning methods operate in the space of all possible configurations
(“C-space”), as opposed to the physical work space (“W-space”). While the W-space has
dimension 2 or 3 depending on the physical space traversed by the manipulator, the C-
space has dimension equal to the number of degrees of freedom (dof) of the robot, Many
algorithms operate by computing the set of infeasible configurations (obstacles) and then
searching the remaining C-space for feasible paths. To make the methods computationally
tractable, various devices have been used. In [3], the C-space was discretized into cells, and
the cells that were totally free of obstacles were searched for paths. Unfortunately, small
“passageways” between obstacles often did not correspond to any totally free cell and no
path could be found through such passageways. Artificial potential fields were used in [3]
in order to avoid collisions and/or to focus the search toward the goal. A genetic algorithm
approach combined with landmarks was used in [14], where landmarks were placed until a
local planner could generate a path. Other methods make assumptions on the type of robot,
e.g. taking advantage of the symmetry of the workspace [2], or use a coarse discretization of
C-Space.

A random search of the C-space was used in [8, 9], where a significant amount of pre-
processing was used to obtain acceptable performance. This approach shares many of the
features of the methods proposed in the present paper, including the use of an artificial
potential field over the continuous C-space and the construction of a roadmap by starting
at many random positions and exploring in random directions. The artificial potential field
was designed to keep the robot away from the obstacles. The roadmap was a graph consist-
ing of vertices corresponding to feasible configurations and edges corresponding to feasible
straight-line paths connecting those configurations. Our method also uses a randomized

search with an artificial potential field, but the generated roadmap has a much more modest



size, since the vertices are limited to the local minima in the potential field and the edges
are not limited to straight-line paths. Space does not permit a complete history of previous
work in this area, but an excellent summary of previous work can be found in [9, 6].

We propose a method to connect any given initial and goal configurations for a manip-
ulator in a static environment using a roadmap in the C-space. As in [8], we first build a
roadmap, which is a connected graph that in some sense covers the entire free space in the
C-space. The nodes or vertices in the roadmap are the local minima, and the edges are the
paths connecting those local minima. To connect any two arbitrary given configurations, we
first connect them to the roadmap, and then search the roadmap for a path between them.

Our method enjoys many favorable properties. Since the vertices are local minima of the
potential function, the number of vertices in the roadmap is much more limited than that
obtained by a more arbitrary placement as done in [8]. A major novelty is our up-hill search
strategy, which constructs paths that tend to follow potential wells (i.e. “valley floors”). This
means that we can follow the curved obstacle boundaries in C-space and also find narrow
passageways in the free space more easily. As in [8], each segment of the roadmap can be
computed independently and in parallel, leading to a high degree of parallelism. Because the
vertices are local minima, connecting an arbitrary goal configuration to the roadmap can be
accomplished by a very efficient gradient descent method. If the resulting local minimum
is not already on the roadmap, the up-hill search strategy is very effective in connecting it
up. Furthermore, it will be seen that these paths tend to pass through saddle points in the
potential function (see the Appendix), limiting the potential hill that must be climbed along
each path. In the context of robot manipulators, this corresponds to staying as far from
obstacles as possible. Lastly, the directed randomized parallel search process is effective in
finding a large fraction of all the local minima in a short time. This partial graph of local
minima is usually sufficient to “cover” the entire space in the sense that it is relatively easy
to connect any new local minimum to the existing graph.

Figure 1 shows a 2 dof robot example. Figure (a) shows a W-space with the base at
the black circle. Figure (b) is the corresponding C-space. The circles in (b) mark the local
minima in the potential function, and the small dots mark the intermediate waypoints found

by our up-hill search strategy. The hollow circle marks the local minimum very close to the



point corresponding to the configuration in (a).

e o
o ity
..
o () %
-0 B
a"‘

(a) (b)
Figure 1: A 2 dof robot example. (a) shows a W-space with a 2 dof robot with the base
at the black circle. (b) is the corresponding C-space with the origin at the lower-left corner
and the = and y axes representing the first and second joints respectively. The gray regions
are the regions of collision with obstacles. (b) also shows the local minima (large black
circles) and the intermediate points (tiny dots) within the individual hyperplanes found by
the procedure UpStream of Fig. 5. The hollow circle is the local minimum close to the

point corresponding to configuration (a).

The rest of the paper is organized as follows. Section 2 gives an overview of the process
of building a roadmap. Section 3 discusses the potential function and the gradient descent
methods based on that potential function. We use our method for robots with many articu-
lated joints in a static 2 dimensional environment as an example to illustrate the methods.
Section 4 discusses the process of generating a roadmap using the novel up-hill search strat-
egy. Section 5 discusses finding a collision free path using the generated roadmap. Section 6

shows our experimental results, followed by the conclusion in Section 7.



2 Building the Roadmap

The process of building a roadmap is summarized in Figure 2. Local minima are initially
found by descending from randomly chosen feasible positions. From each such local mini-
mum, the method climbs out of the potential well and explores “neighboring valleys” looking
for neighboring local minima. This is accomplished using our novel up-hill search strategy.
Parallelism is obtained by simultaneously starting this search from many randomly chosen
positions. A master process collects all the partial paths generated and assembles the overall
graph.

At the roadmap grows to cover the C-space, new local minima become harder and harder
to find by a purely random process. Also, the need to make sure that all the existing
local minima are connected becomes more critical. Hence at some point we switch to a
more focused search in Phase II. In Phase II, we start from the more isolated local minima
and explore up-hill in the direction toward the largest connected component in the existing
roadmap, with the goal of connecting them.

Phase II is also used when connecting an arbitrary initial or goal configuration to the
roadmap. If the local minimum reached by gradient descent from a given goal configuration
is not already on the roadmap, Phase II is used to connect it up.

The main features of our method are the following. (a) We limit the situations where a
random movement is necessary, (b) we use a potential field to guarantee collision-free paths,
(c) we have a systematic strategy for climbing out of a local minimum to find a low energy
path to other local minima, (d) we use Gauss-Newton directions to descend along shallow
slopes very efficiently, and (e) the overall process easily decomposes for efficient parallel

processing.

3 Gradient Descent using a Potential Function

The use of gradient descent methods requires the use of a potential function that has at
least one derivative (the gradient). Using a more sophisticated method such as Gauss-

Newton requires a potential function with at least two derivatives [1], even though the second



Phase I. Randomized Search.
Repeat until a given percentage of all local minima found are connected

together in a large connected component:

1. Select a random starting position and descend to a local minimum 6.

2. Explore up-hill from that local minimum in a randomly chosen direction
uy by repeated use of the UpStream procedure to find a partial path

to neighboring local minima.
3. Connect the new partial path to the existing graph of partial paths.
Phase II. Focused Search.
Repeat until all the local minima are connected:
1. Select an “isolated” local minimum.

2. Explore up-hill from that local minimum in a randomly chosen direction
uy among those directions leading toward the larger connected graph of

minima, using repeated applications of the UpStream procedure.

3. Connect the new partial path to the existing graph of partial paths.

Figure 2: GraphBuild - create a graph (roadmap) of local minima and their connections.

Each new combination of position 8y and direction uy is discarded if already encountered.

derivative (the Hessian) is not computed explicitly. In our approach, we use a potential
function that has at least two derivatives except at isolated points. The up-hill search
strategy (procedure UpStream) described in the next section is used to carry out a search

in the neighborhood of those isolated points where the derivatives may not exist.

3.1 The Potential Function

We define the potential function over the C-space, though its computation is based on the
W-space configuration. For simplicity, we limit our discussion to revolute joints, though

a very similar formulation could be applied to translational joints. The C-space is a dof



dimensional space of joint angles @ = (6y, 61, ...,04,0-1), where 0 < 0; < 2w and 0 < i < dof.
The base joint angle f; is set to 0 when the first link is pointing at 3’0’clock and increases
counterclockwise. The other joint angles, 6;, are set to 0 (1 < i < dof) when the joint is fully
stretched and increases counterclockwise. The potential function prevents each joint from
going through the fully folded position (6 = +m).

We define a potential function designed to repel the individual robot links away from the
obstacles and from each other. The potential function is expressed in the form of a non-linear

least squares functional
1
B(0) = 53 14(0) (1

where F(0) is the potential , r;(0) are the individual potential functions for each link and
each obstacle, defined over the m dimensional space 8. Each r; is differentiable with respect
to 8. The potential function consists of three parts, the potential between the robot links and
obstacles, the potential between non-consecutive links, and the potential between consecutive

links sharing a joint. We now describe the formulation of each of these components.

The potential resulting from the obstacles and robot links. Thisis the primary force
affecting the robot because we wish to avoid collisions between the robot and the ob-
stacles. In order to compute the potential for a given configuration, a pair of closest
points is computed for each pair of link and obstacle segment. In Figure 3, let us
denote the closest points between i-th link and j-th obstacle segment as P;; and @) ;
respectively. Then the Euclidean distance between them is d;; = ||P; — Qi |]2. Let

1/d; ;. Then

AN . AN AN
m = the number of links, n = the number of obstacles, and r; ., =

the overall potential Fy arising from the obstacles is
1 BOUNDp—1
Eo=5 X ry (2)

=0

where BOUNDp = mn.

The potential between non-consecutive links. This component in the potential is de-
signed to prevent self collisions. The construction is analogous to the construction of

the potential between a link and an obstacle. Let us denote s; ; as the reciprocal of the



j-th obstacle

Figure 3: Computing potential fields. P; ; = the closest point between i-th link and j-th
obstacle on i-th link, (); ; = the closest point between i-th link and j-th obstacle on j-th
obstacle, d; ; = the Euclidean distance between P;; and @);;, [; = distance between the

base of i-th link to F; ;, 0; = i-th joint angle.

distance between i-th link and j-th link, where 2 < ¢ < m and 0 < j <7 —1. Then
the potential between non-consecutive links is as follows:

i— 1 BOUND (o —1

2
Osf,j:§ > T (3)

k=BOUND@

1 m—1
Ene =3 >
i=2

]:
where, for convenience, we change the notation s to the common notation r, using the
common indexing ry = s;; with k = mn+ (i —1)(i —2)/2 + j, and where BOUNDy¢ =

BOUNDg + (m — 2)(m — 3)/2 + (m — 2).

The potential between consecutive links. This component of the potential function is
designed to limit the movement of the joints, so that two consecutive links cannot fold
through each other. Hence, for revolute joints considered in this paper, the poten-
tial function must go to infinity as each joint angle approaches w. Therefore, E¢ is
computed as follows:

1 POUNDG—1

m—1
> 1/llm =65 = 2 Yo (4)
=1

k=BOUND N

Eo =

N | —

where 1 < i < m, and where we again adopt a common indexing with r, = 1/||m — 6|2,



k= (m—2)(m—3)/2+(m—2)+(i—1), and BOUND,; = BOUNDg +BOUNDyc+m — 1.

No potential is applied to #y because the base of the robot is allowed to rotate freely.

The overall potential field considers all these forces in order to insure a feasible path. The

total potential E is as follows:

ET:EO+ENC+EC (5)

3.2 Gradient Descent Algorithms

We use two basic algorithms to follow the gradient descent direction. The basic method
is the steepest descent method. This method works well when the robot is close to the
obstacles. However, it is well known that its convergence rate can be very slow [1]. To
accelerate convergence, we use the Gauss-Newton method as we approach a local minimum.
The Gauss-Newton method tends to work well in descending along a shallow valley with
steep sides. The general descent algorithm first follows the steepest descent (Sec. 3.2.1)
direction for a few steps, after which it switches to Gauss-Newton (Sec. 3.2.2) to find a local
minimum. To account for the possibility of a discontinuity in the derivative at the local
minimum found by Gauss-Newton, some additional probing is carried out around that local

minimum, as discussed in Sec. 3.2.3.

3.2.1 Steepest Descent Method

The gradient of the potential function at @ = (6p,. . .,0, 1)7 is
VE@®)=J"r (6)

where J € RP°"""«*™ ig the Jacobian matrix of r, defined by

87"1'
Tij= 20, (7)

To obtain a descent direction, we simply follow the direction of the negative gradient (6).
This yields the method of steepest descent.
The Jacobian matrix is composed of three parts corresponding to the three parts forming

the potential function.



1. Jacobian due to Eg. The Jacobian matrix is computed directly from (2). Even though
the @;; in Figure 3 change as the robot moves, they are fixed for simplicity of com-
putation. Let us denote P;; = (z;;,vi;) and Q;; = (p,q). Also, the k-th joint is at

(xk, yr). The computation of J due to obstacles is as follows:

OTisim 0 1 0 B
Tivime = m < ) ||Pi,j_Qi,j||21

00, 00 \di,) 00
0 ~1/2
= 5—0k [(xzy - P)2 + (Yij — Q)Q}

ox; j Oyi,j
o (ziy — p) 55t + (Yig — O) g (8)
= 3
(\/(l‘i,j — p)2 + (yi,j - q)Q)

where 0 < i < BOUNDg, and 0 < j < m. The derivative a;a,: is calculated as follows:

aCEZ"j . 0 : v

= = lsin(d_6,)
u=k v=0

= (Yr — ¥iy) (9)
Similarly,
0Yi j
aTk] Tij — Tk (10)
Therefore,
Tie = (Tig — P)(Wig — k) — Wiy — Q) (@ij — ) (1)

3
(\/(r” —p)*+ (i — C])Q)
where [ =i+ 7jm,0<i<m,and 0 < j < n.

Computation of each term in (11) is not too difficult and is needed for collision check-
ing anyway. However, the size of the Jacobian matrix can be quite large. Therefore,
this method may be slow if there are too many obstacles in the W-space. In that case,
the potential function calculation might be simplified, especially for obstacles far from
individual links. By segmenting the entire C-space into regions, it would be a straigh-
forward process to limit the calculation of the potential function to those obstacles

which are close to the relevant links, by examining only those regions holding each link

10



or adjacent to each link. The potential from farther obstacles can be approximated by
grouping them together, or can be disregarded altogether. For simplicity, we do not

consider this here.

2. Jacobian due to Enc. The Jacobian matrix for non consecutive robot links is com-

puted similarly:

jmw%HkZZ(S*MQ*wJ*U*QQ*IU (12)

(V-2 +-a?)

where (s,t) and (p, q) are closest points between i-th link and j-th link respectively,

l=(i—1)(i—2)/247j,2<i<m,and 0<j <i—1.

3. Jacobian due to Ec. By taking the derivative of corresponding components of r, we

obtain:
0 if i 4k
JBOUNDNC-H,IC = (7T:91i)2 if (7T - 01) < 0) (13)
(ﬂila_)Q if (7T — 91) > 0)

where [ =i —1,and 1 <17 < m.

3.2.2 Gauss-Newton Method

We use the Gauss-Newton method [1] to speed up convergence. The Gauss-Newton method
is based on a sequence of linear approximations of r(0). If 6, denotes the current approxi-

mation, then a correction p; is computed as a solution to the linear least squares problem
win [[(6;) + T(0)pl.  p CR™ (14)

and the new approximation is @y, = 0 + o p;, Where « is a step length to be determined.
This linear least squares problem is solved using the QR decomposition of J (6y) [1]. One of
the important properties of the Gauss-Newton direction is that if 8, is not a critical point,
then p, is a descent direction [1].

Because we want to find a path to the local minimum as well as the local minimum itself,
ar must be determined in such a way so as to limit the maximum step movement of the

robot. Starting with ay, = 1/||p||, the stepsize ay is halved repeatly until the new potential

11



o bboo
<00 0o

-
I Pressesteed
e T ey

BN JS3orlrride

2 5p
» b d

; P
2
»
5
2 2
P P
25 5
5
5

»
005000500 p 000500000

00.0.5.0.0.0.5-0

. p-0.

3
st eraaey)

5.0.0.6.0.0.0.00 0-0-0-0-0-0.0% A0 A

I
frevveey
R9RR58
d3agp8

o2
B

00000 p
4E

poaagpos
pappe
0.

Aolbn0000000d

Figure 4. Behavior of gradient descent methods on the example of Figure 1. The left
side indicates the steepest descent direction at each point, and the right side shows the

Gauss-Newton directions.

E(60y+1) is less than the old potential E(6y). If the new potential is already less than the
old potential at the initial stepsize, then the stepsize a4 is doubled until a predefined limit
is reached or the new potential becomes larger than the old potential.

Figure 4 illustrates the behavior of the two gradient descent methods for the C-space of
Fig. 1. The left side of Figure 4 indicates the steepest descent directions, which are almost
perpendicular to the potential walls from the obstacles. In the narrow passage in the C-
space, however, steepest descent method is not very efficient because it tends to oscillate.
The right side of Figure 4 shows the descent path for the Gauss-Newton method, without

the oscillation.

3.2.3 Discontinuity

Normally, a combination of steepest descent and Gauss-Newton is very effective in finding
local minima. Steepest descent is very robust, especially in the steep potential walls near
obstacles, while Gauss-Newton is very effective once one has moved away from the immediate

neighborhood of an obstacle. However, once a possible local minimum is reached, one must

12



carry out some additional probing in order to account for the possibility of a discontinuity
in the derivatives. Such a discontinuity may arise from the way the potential function is
constructed. In our case, the points P, ;, Q; ; (the closest points of approach between a link
and an obstacle) may jump as the configuration changes. For example, the points of closest
approach between the obstacle and the uppermost link shown in Fig. 3 will jump if the link
rotates a little to the right.

The probing technique we use is based on moving a small step in some probing direction
and then descending along the gradient to a local minimum. In order to explore new posi-
tions, the new gradient descent process is restricted to a hyperplane normal to the original
probing direction in a manner described in the next section. A thorough exploration of the
neighborhood of the original local minimum is accomplished by probing in this manner in
all the coordinate directions. If any probing direction yields a point with a lower potential,

this point replaces the original local minimum.

4 Building the Graph by Connecting Local Minima

Our goal is to build a roadmap consisting of all the found local minima together with
the computed paths connecting them. The previous section discussed the gradient descent
methods used to find a “first” local minimum. To connect different local minima, as well as
to discover new nearby local minima, we use an up-hill ascent process in a given exploration
direction to climb away from a local minimum and find a path to another local minimum.
Our exploration process continues finding new local minima, connecting them to the previous
local minima to form a partial path in the overall graph, in such a way as to avoid doubling
back to a local minimum already visited. This algorithm has the property of passing through
saddle points in the potential function between local minima, which limits the height of the
potential hill traversed by a given path.

The roadmap is built by using the above process to create many partial paths. These
paths are then connected to form the overall graph. In many cases, the paths are already
connected through the random search process, but often a Phase II is needed to focus the

search process in order to complete the connections. which are then connected to form the

13



overall graph.
The heart of the exploration process is the UpStream algorithm, described in Sec. 4.1.
Sections 4.2 and 4.3 discuss the strategy to connect partial paths and the parallelization of

the algorithm. A property of passing through saddle points is proved in the Appendix.

4.1 Moving Up Hill

The task here is to find a path from one local minimum to another. This path will form
part of a partial path, which will eventually be connected to other partial paths to form one
overall connected graph encompassing all the local minima.

The basic up-hill search strategy is given by procedure UpStream in Fig. 5. Starting at
a local minimum, we select a random coordinate direction to move along. We take a small
step in this chosen direction, and then descend “laterally” with a gradient descent search
restricted to the hyperplane normal to the chosen probing direction, as illustrated in Fig. 6.
The procedure is described more formally in Fig. 5. The lateral descent step allows us to
follow the “valley floors,” at least for some small distances, making it easier to find narrow
passageways among the obstacles in C-space. We found that this process is very effective at
reaching otherwise difficult to find local minima such as those with relatively small “descent
basins.” This procedure has already been mentioned as a way to probe in the neighborhood
of a prospective local minimum to verify that it is indeed a local minimum (Sec. 3.2.3).

We remark in step 3 of UpStream that if E(0**Y) < EF(@%)) and E(0* V) < E(OW)
then we are at a top of a hill or “mountain pass.” These points are often saddle points in
the potential function. A precise statement and proof of this property is in the Appendix.

The main use of the UpStream procedure is to search for neighboring local minima,
connecting them together as outlined in Fig. 2. This procedure is used repeatedly throughout
the entire exploration process, but the main use is in Phase I of GraphBuild to explore
paths from found local minima leading to new nearby local minima, and in Phase II to explore
paths leading from isolated local minima leading to local minima within the largest connected
component of the roadmap. Each exploration process consists of repeated passes through

the UpStream procedure, until an obstacle is encountered or a known local minimum is

14



reached.

4.2 Connecting Partial Paths

We found that simply searching for local minima from randomly chosen points is not very
efficient because the method tends to repeatedly land on certain more easily found local
minima while missing many other local minima. The result is that many local minima are
connected together in one large connected component, while other local minima are isolated
by themselves or in very small connected components. If such isolated local minima are
recognized, it is much more efficient to concentrate on such local minima. Our experiments
have shown that after many partial paths are found and attached to the graph, a connected
subgraph emerges containing the majority of the local minima, while the other local minima
are spread among several smaller connected components. Therefore we keep track of the
size of the largest graph. When the largest graph contains more than a given percentage of
all the local minima found, then the algorithm stops generating random partial paths and
switches over to a “Phase II” in which it selects only the local minima in the smaller graphs
for more expansion (Fig. 2). The percentage at which the algorithm switches strategy can
be varied by the user. The biggest effect of varying the percentage is on the overall cost of
the method, as will be seen in Section 6.

The resulting graph consists of vertices representing the local minima in the potential
function. The edges in the graph represent the paths connecting those points (Fig. 6). To
save space within the process, we limit the information stored for each path to just those

items needed to identify and recreate the path when needed (see Sec. 5.3).

4.3 Parallel Implementation of Graph Generation

In order to construct the roadmap, we need to connect the generated partial paths together.
Each partial path can be generated independently and in parallel. The only communication
required occurs when a partial path is complete and must be connected to the existing graph.
Hence the overall process is quite suitable for parallel processing. We use a master-slave

scheme for the parallel implementation. The master program is responsible for accepting

15



1. Follow the selected direction uy for a small distance o.

2. Find the value ¢(k+1) in the hyperplane yielding the local minimum in
min (8% + upa + Ug)
¢
(the “lateral” movement), and set the new position,
0"t = 0% + uga +UPHY,

where U is a matrix whose columns form an orthonormal basis of the hyperplane

normal to uy.

3. If E(@%Y) > E(@™) and E(O% ") > E(@™) | record a new ‘valley” and con-
struct a “side path” using a standard gradient descent method to find the local
minimum in the new “valley.” (Duplicate local minima found this way are dis-

carded.)

4. Repeat this process setting k£ := k£ 4 1 until an obstacle is encountered.

Figure 5: UpStream — Probe in a given selected direction ug.

Tsearch direction path
7
_____________ RREEEEEEE
7 i+1

___________ ____________hyperplanes

v

; I
_________ el - — - m - — - - = -

/E/IEII

______ ko _____._

/7
7
i,
local minimum

Figure 6: Illustration of procedure UpStream of Fig. 5, repeated several times. Each
iteration consists of two parts: 1. a fixed movement along the chosen search direction, and
2. a descent to a local minimum within the hyperplane normal to the chosen direction. The
iteration is repeated from that intermediate local minimum. Each FE; represents the potential

at each intermediate local minimum.

16



@ start [ ] [ ] [ ]

local minimum discard

@ (b) () (d) local minima

Figure 7: Connecting local minima using repeated passed through procedure UpStream.
The planner (a) starts from a random configuration to find the local minimum; (b) looks for
“valleys” as the starting points for seeking new local minima; (c) finds the local minima by

gradient descent, merging those found; (d) probes to find exact local minima.

partial paths and connecting the nodes and edges to the graph, and the slave programs keep
generating and sending partial paths to the master program. Generating each partial path
generally takes 2 orders of magnitude more computation than gluing it to the graph. The
messages in both directions are very short. Therefore we expect linear speedup for up to at

least a few hundred processors.

5 Finding a Path from Start to Goal Position

A path connecting two given configurations is found by connecting those configurations to
the roadmap and seeking a path connecting those configurations within the roadmap. In
this section we discuss the relatively simple process of using the roadmap to connect two
given configurations. In the following, Section 5.1 deals with connecting the initial and goal
configurations to the graph, Section 5.2 describes the graph search method that was used,
and Section 5.3 discusses how to regenerate the detailed path from the path found by the
graph search.

5.1 Connecting Input Configurations to Graph

In order to find a path from the initial to the goal configurations, the input configurations

must be connected to the graph first. This is done by a straightforward application of

17



the gradient descent methods of Sec. 3, starting from the initial and goal configurations
and descending to their respective local minima. These local minima are often already on
the graph, otherwise Phase II of the graph building algorithm (Fig. 2) is used to compute
a connection. To be more precise, Phase II of the graph construction algorithm tries to
connect small graphs to the largest graph. Therefore, if a local minimum is not found in
the graph, it is viewed as a non-connected small subgraph, and a Phase II search is used to
connect it to the large graph.

In our implementation, only the local minima and the exploration directions used to
climb out of the local minima (the “uy” in Fig. 5) were saved; the rest of the partial path
information was thrown away. Therefore, after the topological path is found in the graph,
the planner regenerates the actual path. Of course, one could preserve the partial paths as
they are generated during the graph construction phase, but the process of regenerating the
detailed partial paths is relatively inexpensive.

One implementation decision is the condition under which the graph building process
should switch over from Phase I to Phase II (Fig. 2). Initially we thought that it pays to
switch over once we thought that we had found a large fraction of the local minima and
had connected most of the found local minima into a large graph. This would make it much
more likely that any given new configuration could be easily connected to the roadmap
by a simple gradient descent process leading to a local minimum already on the roadmap.
However, we discovered experimentally that finding a large fraction of the local minima can
be too expensive. In addition, even if the gradient descent process from a given configuration
does not reach a local minimum on the roadmap, the Phase II process is very effective in
connecting it up. From our experiments, a typical graph contains about half of all the
possible local minima, so the probability of finding the local minima in the graph at the
first attempt is 50%. However, the graph having half of all the possible local minima can be
considered to be very dense in the sense that the planner can find the connections from the
other local minima to the graph very easily. Typically, it takes just one or two expansions

to reach the graph, in our scenarios.

18



5.2 Graph Search

Many methods for finding a path in a state-space graph or tree have been proposed in [11],
[16], [15]. In our case, the graph search is a lot simpler because: (a) all the nodes and
edges are known and fixed, (b) typically, the number of nodes is modest, on the order of
thousands. The physical length of the path is not considered in our current implementation.
In future work, we will use more advanced methods which take the actual path length into
consideration and which are more suitable when the number of nodes becomes very large.
Since we do not consider the physical length of the path, breadth-first search (or BFS
[11], [16], [15]) is used, which is simple to implement and reasonably fast. In the worst case,
BFES will explore every node in the graph. Thus, this method is complete in the sense that
the method will find a path if there is one in the graph. Usually, breadth-first-search can
suffer from a large space requirement that is exponential in the depth of the solution. In
our case, however, we start with a graph in which all the nodes and edges are known and
fixed. Furthermore, the number of nodes rarely exceeds one thousand. Another reason BFS
is successful is that even though the branching factor is high, the majority of the newly
expanded nodes are already in the BFS queue. In any case, the total number of nodes
cannot exceed the total number of local minima. Graphs of this size can be easily handled
by modern computers, even by PC-level computers. The experimental results show that BFS
can find the solutions in a fraction of a second on a single processor Pentium Pro 200MHz
with 64MB of main memory. Of course, in more complex domains, the graph search problem

could become a more significant issue.

5.3 Regenerating the Actual Paths

To save space stored within the roadmap and to reduce the volume of information transfered
between parallel processors, we discarded the detailed partial path information generated
during the graph construction algorithm, leaving only the information necessary to regenerate
the paths. The edges in the graph have the following information: (a) the location of the
first local minimum, (b) the location of the second local minimum connected thereto, (c) the

probing direction in which the planner explored to connect the first local minimum to the

19



next. Given just this limited information, it is straightforward to regenerate the path with
all its intermediate points. Regenerating each partial path can be done in parallel. The path
regeneration algorithm takes advantage of this and the regeneration of each component of
all the partial paths are done in parallel. Usually, the number of tasks (each corresponding
to each component to be generated) is much larger than the number of processors available.
The cost of each task can vary a lot depending on the length of each component and the
number of valley points traversed. Therefore, a dynamic approach for load balancing is used.

The outline of the algorithm is presented below:

1. The master program decomposes all the partial paths and stores them in a list. Each
element in the list is the “command” and the information needed to regenerate a

component,.
2. The master program sends to each processor a “command” from the list.

3. As a slave processor sends the partial path, the master program collects the path and

allocates a new “command” (if any) to the slave processor.

4. Once the master program has received all the components, the whole path is returned

and the program is finished.

In our experiments we found that the parallel performance of the path regeneration process
suffered because of the variability in the lengths of the individual partial paths. Nevertheless,
the entire path regeneration process never took longer than 21 seconds with 16 processors

in the most complex cases, having about 16 local minima in a single path.

6 Experimental Results

We tested our method on many examples, including a 7 dof and an 8 dof manipulator
illustrated in figures 8 and 9. We used an SGI Challenge Cluster consisting of 3 Challenge L
machines and 1 Challenge XL machine. Each Challenge L machine has 4 R10000 processors
and Challenge XL has 8 R10000 processors. We used PVM3 (Parallel Virtual Machine) for

20



T T T T T T T/&Vﬁ
|

(a) (b) (c) (d)

I I I I

[

(e) (f) (9) (h)

Figure 8: A 7 dof robot example from start(a) to goal(h) configuration.

ratio | mode count | graph build time | graph search time | path regen. time

P count dev | aver dev worst | aver dev worst | aver dev worst

30% | 698 105 | 237 85 350 3 2 6 10 10 21
60% | 954 162 | 463 144 634 2 2 Y 8 6 15
80% | 993 83 | 482 97 620 2 1 3 8 2 11

Table I: Performance for Figure 8 with respect to Phase |l switch-over ratio P with 16

processors. “aver”, “ dev”, “worst” stand for average, standard deviation, and worst case,

respectively. The node count is the number of local minima found. Times are in seconds.

the parallel processing. Figures 8 and 9 show the actual paths connecting the start and goal
configurations found by our method.

In Table I, each experiment was run 10 times. Along with the average values, the standard
deviations and worst cases are shown. The symbol P represents the ratio of the largest
connected component size vs the total number of nodes at which we switch over from Phase
I (random generation) to Phase II (focused search). It took about 7 minutes to compute the
graph for Figure 8 with the Phase II switch-over percentage of 60%. The time for connecting

the Figure 8(a) and Figure 8(h) to the graph after pre-processing was 2 seconds. Regenerating

21



@

(b)

e

(c)

(d)

(e)

(f)

(9)

(h)

Figure 9: An 8 dof robot example from start(a) to goal(h) configuration.

ratio | mode count | graph build time | graph search time | path regen. time
P | count dev | aver dev worst | aver dev worst | aver dev worst
60% | 182 25| 87 11 96 1210 23 6 7 16
70% | 193 26 93 14 105 11 8 22 5 3 10
80% | 257 171 | 209 155 442 10 3 14 5 1 7

Table Il: Performance for Figure 9 with respect to Phase Il switch-over ratio with 16 proces-

sors, using same notation as in Table I. Times are in seconds.

the path in W-space took about 8 seconds. For this example, the performance of actually
finding the path is quite consistent because obstacles are rather evenly distributed in the W-
space. Changing the Phase II switch-over ratio directly affects the number of nodes generated
and it also affects the path regeneration time. If the ratio is set too low, the resulting graph
has fewer nodes and the path generated may not be as good. However, the fastest total
time to construct a roadmap and compute a path was obtained by using a relatively low
switch-over ratio of 30%.

For the second example (Figure 9), the fastest pre-processing time for Figure 9 was 47

seconds when the Phase II switch-over ratio was set to 60%. However, the performance of

22



no. procs | graph build time | speedup | efficiency

NP aver dev worst SU SC

1 6684 913 7692 1.00 1.00

4 1750 280 2120 3.82 0.95
8 921 153 1100 7.26 0.91
16 482 97 620 | 13.87 0.87

Table Ill: Graph build time for Figure 8 with respect to number of processors.

finding the actual path depended more on the location of the input configuration, because
if it was in a difficult to find location, extra applications of Phase Il were often needed to
connect it to the roadmap. Nevertheless, the time to connect a given configuration to the
graph never exceeded 10 seconds.

Table IIT shows the time to build the graph for Figure 8 with a varying number of
processors. The Phase II switch-over ratio was set to 80%. NP is the number of processors,
SU represents the speed-up, and SC = SU/NP. The scalability is quite good as expected
up to 16 processors. Future work will include testing scalability on more massively parallel

testbeds.

7 Conclusion and Future Work

In this paper, we presented a novel method to combine randomized search and potential
fields to solve motion planning problems in 2 dimensional W-space and high dimensional C-
space. The experimental results show that this method is very efficient even for very difficult
problems with a short period of preprocessing. The results show that even an incomplete
roadmap can be a very effective tool for exploring a workspace, and attempting a-priori to
find all the local minima may not be the most efficient approach. This is true even when there
are hard-to-find local minima such as those in narrow passageways or with small “descent
basins.” Further study on the effect of varying the switch-over ratio from the general Phase
I search to the focused Phase II search is needed.

The differentiable potential function and the up-hill ascent strategies used in this paper

23



are easily adaptable to 3D W-spaces. From our experiments, the complexity of the problem
in terms of local minima has more impact on the performance than the degrees of freedom.
In previous work ([4], [5]), the C-space resulting from 3D W-space tends to be simpler than
2D cases. We expect the 3D implementation of our method will have a performance similar
to 2D cases, since the complexity of the mathematical computations should not increase by
much. If there are many obstacles, it may become necessary to approximate the potential
function by speeding up the calculation of the contributions from obstacles that are far from
the links. The number of local minima, and hence the size of our graphs, may increase,
leading to the need to more specialized graph search algorithms. These aspects, as well as a

study of the saddle points in the potential function, will be a focus of our future research.

References

(1] A. Bjorck. Numerical Methods for Least Squares Problems. STAM, 1989.

(2] P. Adolphs and H. Tolle. Collision-free real-time path-planning in time varying environ-
ment. In Proc. IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pages 445-452,
1992.

(3] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field techniques for
robot path planning. IEEE Trans. Systems, Man, and Cybernetics, SMC-22(2):224 241,
March/April 1992.

[4] D. Challou. Parallel search algorithms for robot motion planning. Ph.D. dissertation,
The University of Minnesota, 1995.

[5] D. Challou, M. Gini, and V. Kumar. Toward real-time motion planning. In H. Kitano,
V. Kumar, and C. B. Suttner, editors, Parallel Processing for Artificial Intelligence, 2.
Elsevier, 1994.

(6] D. Henrich. A review of parallel processing approaches to motion planning. In Proc.

IEEFE Int’l Conf. on Robotics and Automation, 1996.

24



[7] Y.K. Hwang and N. Ahuja. Gross motion planning — a survey. ACM Computing Surveys,

[10]

[14]

[15]

[16]

24(3):219-291, 1992.

L. Kavraki. Randomized preprocessing of C-space for fast path planning. In Proc. IEEE
Int’l Conf. on Robotics and Automation, pages 21382145, 1994.

Lydia Kavraki, J.C. Latombe, Petr Svestka, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.

Robotics and Automation, 12(4):566 580, 1996.

Thierry Laliberte and Clement Gosselin. Efficient algorithms for the trajectory plan-
ning of redundant manipulators with obstacle avoidance. In Proc. IEEE Int’l Conf. on

Robotics and Automation, pages 2044 2049, 1994.

Pat Langley. Systematic and nonsystematic search strategies. In Proc. Int’l Conf. on

Al Planning Systems, pages 145 152, College Park, Md, 1992.
J. C. Latombe. Robot Motion Planning. Kluwer Academic Publ., Norwell, MA, 1991.

V. Lumelsky and Edward Cheng. Real-time collision avoidance in teleoperated whole
sensitive robot arm manipulators. IEEE Trans. Systems, Man, and Cybernetics, SMC-

23(1):194 203, Jan/Feb 1993.

E. Mazer, J.M. Ahuactzin, and P. Bessiere. The ariadne’s clew algorithm. J. Artif.
Intel. Res., 9:295 316, 1998.

E. Rich. Artificial Intelligence. McGraw-Hill, 1991.

P. Winston. Artificial Intelligence. Addison-Wesley, June 1992.

Appendix: Saddle Points

In this Appendix, we prove that under certain conditions, the partial paths generated by

repeated passes through the UpStream process passes through saddle points in the poten-

tial function. Let uy denote the given search direction. We assume that we have a path

25



0, 0. 0@ ... in C-space, where each 8% is the local minimum found within the hyper-
plane normal to ug in step 2 of Fig. 5. We assume that the stepsize « is small enough that
the points 0(0), 0(1), 0(2), ... lie on a continuous path of configurations where each point on
the path is the local minimum with the hyperplane passing through that point, normal to
ug. On this continuous path, we denote by 8, a point where the potential function reaches
a local maximum along the path, and x =2 6 — 6, the deviation from that point of local
maximum. We let U be constructed such that [uy, U] is an orthonormal matrix.

In a neighborhood of the local maximum x = 0, the potential function is locally a

quadratic F' of the form:

A

1
E(x) =~ F(x) §XTAX —blx+ec (15)

where A = V3E(x)| x_0,b = ~VxE(x)| x_0,c= a constant.

For each step «, we denote by w, the local minimum within the hyperplane in the
basis parametrizing the hyperplane. Specifically, w, = the solution of w that minimizes
F(ouy +Uw) over all w € R™ ! in the neighborhood of 0, Vo in the neighborhood of 0,
where m is the dimension of the search space:

A

w, = Argin F(au, + Uw). (16)

The points x, = aug+Uw, define the path parameterized by « in a neighborhood of v = 0
with potential function G(«).

G(a) = F(aug +Uw,,). (17)
In particular, xg = X,| a—0 = 0.
We can now state the theorem that under certain conditions, the point 6y which is a
local maximum on the path is a saddle point.
Theorem Assume (A1) the Hessian A and the Hessian restricted to the hyperplane U” AU
are non-singular, and (A2) w, exists and is unique Vo in a neighborhood of a = 0. If G(«)
achieves a local maximum at o = 0, then x, is a saddle point of the potential F'.

Proof By substituting auy + Uw,, for x in (15), we get

F(OAU(} + Uw)

= 1o?ulAuy — ab"uy + auf AUW + IwU" AUW — D UW + ¢

(18)

26



1. First, we prove that the Hessian matrix A is indefinite.

(2)

If we take the first derivative of (18) with respect to w,
VwEF(auy +Uw) = w' U AU — [b"U — aul AU] (19)
The Hessian matrix of (18) is
Vi, Flauy +Uw) = U AU (20)
Since wq is a local minimum in the hyperplane, the Hessian U’ AU is positive

definite.

By setting equation (19) equal to 0, we have
wWo = [UTAU] U b — aAuy] (21)
At o =0 we get wy = [UT AU]'U"b = 0, which by assumption (A1) implies
U™ =0 (22)

and therefore,

b = Aug (23)

for some A. (21) reduces to w, = —a[U” AU]'U" Au,.

Define B = U[U" AU|"'U" A. Then (17) can be written

G(a) = F(a(Z— B)uy)

- %ug(z “B)'AZ - B)uy - ob" (T B)ug+c (24)

The second derivative of the function G' with respect to a must be negative because

it is a local maximum along the curve:

d*G

- = uj(Z-B)"A(Z - B)u, < 0. (25)

=0

From (a) and (b), it follows that the Hessian A is indefinite.

27



2. We still need to show that the gradient —b = 0.

0 = %|a:0
— oul(T - B)TA(T - B)uy — b'(Z — B)u,
= b'(Z - B)u,
= b"u; — b" By,
= b u, — b UUT AU U v,
= b’y (from (22))
= Aulu (from (23))

Therefore, A = 0 and b = 0.

From 1 and 2, it follows that x; is a saddle point of the potential function. ]

28



