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1. Introduction. In this paper, the sensitivity of the algebraic (Kronecker)
structure of rectangular matrix pencils to perturbations in the coefficients is exam-
ined. Eigenvalue perturbation bounds in the spirit of Bauer–Fike are used to develop
computational upper and lower bounds on the distance from a given pencil to one
with a qualitatively different Kronecker structure. A note on notation: All norms ‖ ·‖
used in this paper are the vector or matrix 2-norm, as appropriate.

The main goal of this paper is to present some results regarding matrix pencils, of
the form A−λB, where λ is a free parameter and A, B are n×p matrices with n > p.
In the classical theory of matrix pencils [8], [11], it is well known that any pencil is
equivalent to its Kronecker Canonical Form (KCF), which is a pseudodiagonal matrix
with diagonal blocks of the form L, LT , and/or J , where

L =

[

I
[0, · · · , 0]

]

+ λ

[

[0, · · · , 0]
I

]

is a matrix with one more row than column, and J is a square matrix in Jordan
Canonical Form. We call L a “tall-thin” K-block, LT a “short-fat” K-block, and J
the “regular” part.

In this paper, we deal exclusively with tall-thin pencils. Such pencils always have
at least n− p tall-thin K-blocks. In [3], we showed that the set of all tall-thin pencils
with only tall-thin K-blocks is open and dense in the set of all pencils of the same
shape. Hence, given a tall-thin pencil, the question we attempt to address is if it has
any other types of K-blocks, and if not, what is the distance to the nearest pencil
which does. In [15] and [10], algorithms were proposed that compute the complete
KCF for a given pencil guaranteed to be exact for a pencil close to the original given
pencil (backward stable). If the KCF computed in this way has only tall-thin K-blocks
(the “generic case”), then one is still left with determining how far it is from a pencil
with other types of K-blocks. In this paper, we attempt to estimate this distance from
both above and below. A detailed algebraic analysis for square pencils was given by
Waterhouse [17], but beyond that surprisingly little has been found in the literature
on this topic.

∗ Received by the editors June 27, 1988; accepted for publication (in final revised form) November
2, 1989.

† Computer Science Department, University of Minnesota, Minneapolis, Minnesota 55455.
(boley@umn-cs.cs.umn.edu). This research was partially supported by National Science Founda-
tion grants DCR-8420935, CCR-8813493, and DCR-8519029.

1



We use the following characterization of the Kronecker structure of a pencil.
Definition 1. A matrix pencil A−λB is said to be deficient if there exists some

λ for which it is not full rank, where λ is a complex number or “infinity.” If A − λB
is always full rank for any value of λ, then it is said to be nondeficient.

All tall-thin pencils have at least one tall-thin (L) K-block. The condition that
the pencil be deficient is equivalent to the existence of at least one value λ and vector
x such that (A − λB)x = 0, and it corresponds to the existence of at least a regular
part (J) or a short-fat (LT ) block. We call such a vector x a right annihilating vector

of the pencil associated with the annihilating value λ. These are also a generalized
eigenvector and value, respectively, if they are associated with the regular part, or if
there is no short-fat part. If there is a short-fat part, then every complex number
(including infinity) is an annihilating value, but only a finite number of these can be
generalized eigenvalues as well. The eigenvalues, if any, will be exactly those values
of λ at which the matrix A − λB has a rank less than the overall maximum rank.

The work in this paper was motivated by the many roles matrix pencils play in
control systems theory. We give one example below. Matrix pencils also play roles in
the theory of transmission zeros and in the theory of differential algebraic equations.

Consider a time-invariant linear system

(1) ẋ = Fx + Gu;y = Hx + Du.

A classical result from control theory is the Popov–Belevitch–Hautus (PBH) test (see,
e.g., [11]), which states that the system (1) is controllable if and only if the matrix
pencil

(2) PT (λ) = [λI − F | G] = [−F | G] − λ [−I | 0]

has full rank for any complex value of λ. From a numerical point of view, one may
say that if pencil (2) has a small singular value for some value of λ, then a small
perturbation to the coefficients to (1) can yield an uncontrollable system [12].

We mention the main results from the perturbation theory of eigenvalues that we
use in this paper. The most important result is the modified Bauer–Fike theorem,
which gives bounds on the changes of the eigenvalues under perturbations in the
underlying matrix.

Proposition 1 (modified Bauer–Fike theorem [6], [9]). We are given an n × n
matrix A with a complete set of eigenvalues λ1, · · · , λn and corresponding left and

right eigenvectors w1, · · · ,wn, v1, · · · ,vn. Let V := [v1, · · · ,vn] be the matrix of

eigenvectors. Let ∆ be another arbitrary n×n matrix, and let λ̄ be any eigenvalue of

A + ∆. Then for at least one λi, 1 ≤ i ≤ n, the following bound holds:

(3) |λ̄ − λi| ≤ Ki‖∆‖,

where

(4) Ki ≡ min

(

‖V ‖ · ‖V −1‖,
n

si

)

with si ≡
|wH

i vi|

‖wi‖ · ‖vi‖
.

On (4) we remark that maxi s−1
i ≤ ‖V ‖ · ‖V −1‖ ≤ s−1

1 + · · ·+ s−1
n ≤ n ·maxi s−1

i

[18, pp. 88-89], so that these quantities are closely related. We use this definition for
Ki instead of just ‖V ‖·‖V −1‖ as in the original Bauer–Fike theorem because for some
i this may yield a somewhat tighter bound. The bounds will be noticeably tighter
only for those i for which si is much larger than some other sj, j 6= i, if there are any.
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We also use the following results regarding the changes to the eigenvectors under
perturbations to a matrix A. We quote three different, but related, bounds in the
following proposition and compare how they fare in the context of our matrix pencil
problem.

Proposition 2 (Stewart [14], Boley (Appendix), Demmel [4], [5]). Let A be some

arbitrary n × n matrix, which we assume for simplicity has distinct eigenvalues. Let

vi, i = 1, · · · , n be the eigenvectors of A, all of unit length. Let A + ∆ be another

arbitrary matrix, and let v̄ be some eigenvector of A + ∆. Let θi be the angle between

v̄ and vi, for i = 1, · · · , n. Finally, define isepA(λi) [14] as ‖(R22 − λiI)−1‖, where

R22 is the trailing (n − 1) × (n − 1) block in the the Schur Decomposition of A:

PHAP = R =

[

λi

0
R12

R22

]

.

Then if ‖∆‖ is small enough to satisfy the condition given below for all i, then the

tangent of at least one angle θi can be bounded by the corresponding expression. We

have three closely related bounds:

(a) (Stewart [14]) If for all i

(5a) ‖∆‖ ≤
1

4 · isepA(λi) · (1 + ‖A‖ · isepA(λi))

then for at least one i

(6a) tan θi ≤ γa

i ≡
isepA(λi)‖∆‖

1 − 2 · isepA(λi)‖∆‖
.

(b) (see Appendix) If for all i

(5b) ‖∆‖ ≤
1

isepA(λi) · (1 + Ki)

then for at least one i

(6b) tan θi ≤ γb

i ≡
isepA(λi)‖∆‖

1 − isepA(λi)‖∆‖(1 + Ki)
.

Note that (5b) means that (6b) applies whenever the denominator is positive.

(c) (Demmel [4], [5]) If for all i

(5c) ‖∆‖ ≤
1

4 · isepA(λi) · s
−1
i

then for at least one i

(6c) tan θi ≤ γc

i ≡
4 · isepA(λi) · ‖∆‖

1 − 4 · isepA(λi) · ‖∆‖ ·
√

s−2
i − 1

.

In each case above, v̄ can be scaled so that for some i

‖v̄ − vi‖ = sin θi ≤
γx

i
√

(γx
i )2 + 1
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where γx
i is defined by (6x), x=a,b,c, whenever these formulas apply.

Asymptotically as ‖∆‖ goes to zero, all three bounds are the same, at least
qualitatively, but we mention all three because each may yield the tighter bound for
different values of ‖∆‖. For example, it is evident that (6a) is tighter than (6b)
when they both apply according to (5a) and (5b); but when (6a) does not apply, (6b)
may still apply and hence be the tighter bound. Likewise, since the limit (5c) is the
largest, the bound (6c) applies over the widest range for ‖∆‖; it can, however, be less
tight than (6a) and/or (6b) when they all apply. The numerical examples below will
illustrate how one bound is best in some cases and another bound is best in other
cases, but qualitatively they are all similar. As the anonymous reviewers pointed out,
all these bounds can, and should, be further refined.

The rest of this paper is organized as follows. First we examine a method for
computing whether or not a given pencil is deficient. Next we develop an upper
bound for the distance to the nearest deficient pencil, and finally we develop a lower
bound for this distance, using the eigensystem perturbation theory outlined above.
We end with some numerical examples and conclusions. In the Appendix, we briefly
sketch the derivation of the eigenvector bound (6b).

2. Find pencil rank deficiency. In this section we address the problem of
determining whether a given rectangular pencil is deficient or not. Specifically, given
an n× p pencil A− λB, with n > p, determine whether or not A− λB loses rank for
any λ, including possibly λ infinite. This is equivalent to asking whether or not the
pencil has any short-fat K-blocks or regular part. If B has full column rank, and the
pencil never loses rank for any finite value of λ, then there are no short-fat blocks and
no regular part.

Consider an n×p pencil A−λB with n > p. Choose arbitrary n×(n−p) matrices
C, D. We can then examine the square n × n generalized eigenvalue problem

(7) [A, C]v = λ[B, D]v.

We partition the vector v as vT ≡ [xT ,yT ], where x is a p-vector, and y is an
(n − p)-vector. It is then a simple matter to derive the following proposition.

Proposition 3. Given an n × p pencil A − λB with n > p, and given arbitrary

full-rank n × (n − p) matrices C, D, the following are equivalent:

(a) A − λB is a deficient pencil.

(b) Equation (7) has an annihilating vector v0 whose last n − p components y0

are zero. Call the corresponding annihilating value λ0.

Furthermore, we have the following:

(c) If B has full column rank, then all the annihilating vectors v0 and correspond-

ing values λ0 are exactly the generalized eigenpairs for the regular part of the

pencil.

Proof. Both (a) and (b) are equivalent to the following statement:
(d) There is an n-vector x and scalar λ0 which satisfies Ax = λ0Bx, or else

Bx = 0. In the latter case, we say λ0 = ∞. If B has full column rank, then
there can be no short-fat blocks. Hence it follows that there is a regular part,
and that the λ0’s are exactly the eigenvalues of that regular part. Otherwise,
there is no regular part. 2

Based on this proposition, we have a simple procedure for computing the existence
of a regular part or short-fat block in a pencil. Given a tall-thin n × p pencil, choose
the n× (n− p) augmentation matrices C, D to obtain the square eigenvalue problem
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(7). If there are any annihilating vectors of (7) whose last n− p entries are zero, then
there is a regular part or short-fat block; otherwise, there is not.

In the special case that B = [I, 0]T , choose D = [0, I]T to turn (7) into an or-
dinary eigenproblem, and the annihilating vectors above into ordinary eigenvectors.
If the last n − p entries of any of those eigenvectors are zero, then the correspond-
ing eigenvalues are exactly the eigenvalues of the regular part of the original pencil.
Otherwise, there is no regular part.

However, this method gives no hint as to the sensitivity of the result to pertur-
bations in the coefficients. Therefore, in the next sections, we develop some bounds
that indicate whether a given pencil is “numerically close” to a deficient pencil.

3. Upper bounds. In this section, we examine the problem of computing an
upper bound on the distance to a deficient pencil. Specifically, consider a nondeficient
n × p pencil A − λB. In this case, we know that B has full rank. We would like to
estimate the size of the perturbation E to the matrix A that is needed to obtain a
deficient pencil A + E − λB. This perturbed pencil will have a regular part, but no
“short-fat” blocks. In this section we develop a simple upper bound for ‖E‖.

In [7] and [12], it was shown that the smallest perturbation E can be obtained by
solving the minimization problem

(8) min
s

σmin(A − sB),

where σmin(M) denotes the smallest singular value of the matrix M , and s varies over
the entire complex plane. If we denote by σ∗ and s∗ the minimum in (8) and the
value of s achieving that minimum, respectively, then ‖E‖ = σ∗. In [3], we discussed
an expensive descent method that would often converge to the minimum (8). In this
section, we would like to address a much simpler scheme that can be used to obtain
an upper bound, which often not only provides a good estimate for ‖E‖, but also
provides an estimate for that value of s that yields the minimum in (8).

We start with the n×p pencil A−λB. Choose some arbitrary full-rank n×(n−p)
matrices C, D. And, in the case B = [I, 0]T , choose D = [0, I]T . Let

(9) λi,vi ≡

[

xi

yi

]

, i = 1, · · · , k

be the generalized eigenvalues and vectors for (7), where xi denotes the first p com-
ponents of vi. For each i, we have the equation [A, C]vi = λi[B, D]vi. We can
rewrite this as (λiB − A)xi = (C − λiD)yi. We define the residual for each i by
ri := (A − λiB)xi, and the perturbation Ei to be

(10) Ei := −
rix

T
i

‖xi‖2
≡ (λiB − A)

xix
T
i

‖xi‖2
= (C − λiD)

yi

‖xi‖
·

xT
i

‖xi‖
.

Then A + Ei − λB is a deficient pencil, losing rank exactly at λ = λi, for each i. Let
σi, ui, wi be, respectively, the smallest singular value and the corresponding left and
right singular vectors of A−λiB, for each i. Then E′

i := −σiuiw
T
i is another smaller

perturbation yielding a deficient pencil.
By taking norms of (10), we obtain a bound for these perturbations: ‖E′

i‖ ≤
‖Ei‖ ≤ ‖(C − λiD)yi‖/‖xi‖. If E denotes that perturbation with smallest norm
yielding a deficient pencil, then E satisfies

(11)

‖E‖ ≡ σ∗ ≤ β2 ≡ min
i

‖E′

i‖ ≡ min
i

σmin(A − λiB)

≤ β1 ≡ min
i

‖Ei‖ ≡ min
i

‖(C − λiD)yi‖

‖xi‖
.
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Regarding the two bounds β1, β2, we remark that β1 can be computed directly from
the solution to the eigenproblem (7), whereas β2 requires computing the singular
value decomposition (SVD) at some extra expense. We can summarize the result in
the following proposition.

Proposition 4. Let A − λB be an n × p pencil, with n > p. Let C, D be two

arbitrary full-rank n × (n − p) matrices. Then the smallest perturbation E such that

A+E−λB is a deficient pencil satisfies the bound (11), where λi,vi, i = 1, · · · , k are

the eigenpairs of the generalized eigenproblem (7), and yi are defined by (9).
Proof: This follows from the above discussion. All we must note is that from

Proposition 3, if the pencil A − λB is already deficient, then E = 0 automatically
satisfies (11). In fact, if B has full column rank, one of the yi should be zero by
Proposition 3, so the bound will be hard. 2

One question is how to choose C, D. One goal is to make the augmented square
eigenproblem as well conditioned as possible. So far, the only requirement we have
stated is that C, D have full column rank. To keep the condition number as low as
possible, it is best to choose C, D to each have orthonormal columns. Two possible
choices are (a) orthonormal basis of a random space, and (b) orthonormal basis of
the space orthogonal to the columns of A and B. This last choice has the effect
of limiting the increase to the condition numbers of [A, C] and [B, D] with respect
to inversion, and hence is a heuristic attempt to obtain a reasonably low condition
number with respect to the eigenproblem. In any case, the algorithms are intended
to provide a posteriori estimates for a given pencil, and in that context it is easy to
check that the condition number of the resulting eigenproblem is reasonably small.
Most of the numerical examples below were carried out with choice (b). We note that
in the special case B = [I, 0]T , we choose D = [0, I]T to turn (7) into an ordinary
eigenproblem.

4. Lower bounds. In this section, we show how to extend the results of the
previous section for the special case of pencils A−λB such that B = [I, 0]T , to obtain
some lower bounds and to obtain a disk in the complex plane in which the value s
achieving the minimum in (8) must be located. The first lower bound is based just on
the Bauer–Fike theorem whereas the other lower bounds are based on the eigenvector
perturbation theorem (Proposition 2). It will be seen that the first lower bound is not
as tight as the others, but it is much simpler to derive and much cheaper to compute,
since it does not require the “isep” function.

Let s∗ be the complex value achieving the minimum in (8), and let σ∗ be the
smallest singular value of A− s∗B. Augment A− sB as before with extra columns C
and D = [0, I]T , obtaining the square matrix [A, C], so that (7) becomes the ordinary
eigenproblem for the matrix [A, C]. Then the smallest singular value τ of [A, C]− s∗I
satisfies τ ≤ σ∗, since augmenting with extra columns can only reduce the smallest
singular value [9]. So s∗ is an exact eigenvalue of [A, C] + τ∆, for some matrix ∆
such that ‖∆‖ = 1. Denote the eigenvalues of [A, C] by λ1, · · · , λn. Then, for at least
one such eigenvalue, the modified Bauer–Fike theorem implies that |λi − s∗| ≤ τKi,
where Ki is defined in (4).

Next, let α be the smallest singular value of A − λiB. Then

(12) |α − σ∗| ≤ ‖(A − λiB) − (A − s∗B)‖ ≤ |λi − s∗| ≤ τKi ≤ σ∗Ki.

From this formula, we can draw two conclusions. One is that α ≤ σ∗(Ki +1), yielding
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the lower bound on σ∗:

(13) σ∗ ≥
α

Ki + 1
≥

β2

Ki + 1
,

where β2 is the upper bound β2 defined in (11).
The other conclusion from (12) is

(14) |λi − s∗| ≤ σ∗Ki ≤ β2Ki.

We can summarize this in the following proposition.
Proposition 5. Given a pencil A − sB, where B = [I, 0]T , and an arbitrary

(full-rank) augmentation of this pencil to a square matrix [A, C] as in (7), then

(a) The value of s that achieves the minimum in σ∗ ≡ mins σmin(A − sB) is

located within a disk in the complex plane whose center is on an eigenvalue

λi of Q and whose radius is bounded by (14), for some i.
(b) A lower bound on σ∗ is provided by (13).
By using the eigenvector bounds in Proposition 2, we can derive some tighter

lower bounds on σ∗. We base our development on (5a)/(6a), but by analogy the
exact same development goes through with (5b)/(6b) or with (5c)/(6c). Given a
pencil A − sB with B = [I, 0]T , the eigenvectors (9) of the augmented matrix [A, C]
are defined. If A + E − sB is a deficient pencil, then the matrix [A + E, C] must
have at least one eigenvector of the form v̄ = [x̄T , 0]T , where v̄ is partitioned as in
(9). That is, the square matrix [A, C] must be perturbed to a matrix which has an
eigenvector v̄ whose y part is zero. But then the bound (5a)/(6a) directly yields a
lower bound on the norm of the perturbation to [A, C] so that an eigenvector of the
resulting matrix has the indicated form. The resulting lower bound is

(15a) σ∗ ≥ δa ≡ min
i

min















(i)
[isep−1

A (λi)]
2

4(isep−1
A (λi) + ‖A‖)

,

(ii)
ηi

isep[A,C](λi)(1 + 2ηi)















,

where

ηi ≡
yi

√

1 − y2
i

.

Bounds (i),(ii) come from (5a),(6a), respectively. Alternatively, we can use part (b)
of Proposition 2 (this always satisfies the limit (5b)):

(15b) σ∗ ≥ δb = min
i

ηi

isep[A,C](λi)(1 + ηi(1 + Ki))

or part (c) of Proposition 2:

(15c) σ∗ ≥ δc = min
i

min



















(i)
1

4 · isep[A,C](λi) · s
−1
i

,

(ii)
ηi

4 · isep[A,C](λi)(1 + ηi

√

s−2
i − 1)



















.

We note that the backward stability of these methods depends on the backward
stability of the method used to obtain the eigendecompositions. If the eigenvalue
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method is backward stable, then these bounds will be exact for a pencil numerically
close to the original pencil, and the residual from the eigenvalue method will indicate
how far from that original pencil we have strayed. But in the cases we have tried, the
size of this residual was never more than 1E-11, much less than the computed bounds
themselves.

5. Numerical examples. We illustrate the bounds with the examples taken
from [3]. Each example represents a time-invariant linear system of the general form
ẋ = Fx + Gu, from which we form the pencil (2). Example 1 is defined by

F =

[

0
−1

1
0

]

and G =

[

1
0

]

.

In Example 2, we start with a single-input system already in staircase form [13], [15],
with G = [1, 0, · · · , 0]T , and

F =





















−1 −1 −1 −1 −1 −1 7
1 −1 −1 −1 −1 −1 6
0 1 −1 −1 −1 −1 5
0 0 1 −1 −1 −1 4
0 0 0 1 −1 −1 3
0 0 0 0 1 −1 2
0 0 0 0 0 1 1





















.

Example 3 is one with a particularly ill-conditioned eigenvalue problem. The system
is defined by

F =





−149 537 −27
−50 180 −9

−154 546 −25



 and G =





1
1
1



 .

The poles (eigenvalues) for this system are 1, 2, and 3.
The staircase algorithm [13], [1] applied to a single input system (i.e. G has

only one column) transforms F into an upper Hessenberg form, with G a multiple
of e1. The pencil (2) has a regular part if and only if a subdiagonal element of the
Hessenberg form is zero, so an obvious upper bound is simply the magnitude of the
smallest subdiagonal element. This is the second column of Table 1. In the third
column are shown upper bounds obtained by the expensive experimental descent
method described in [3]. In the last column of Table 1 are lower bounds from the
theory in [2], which was based on using the product of the subdiagonal elements.

We report in Table 2 the upper bounds computed using the formula (11). It is
seen that the bound β2 is always tighter than β1 and is in fact fairly close to the
“optimal” upper bound reported in Table 1. In Table 3 we report the various lower
bounds. For reference, we copied the tightest lower bound found for each example
to Table 2 to show the spread between the upper and lower bounds. It is seen that
the best lower bound is obtained from formula (15a) (ii) when it applies; otherwise,
the tightest bound is obtained from (15b). We note that upper bound 1 and lower
bound 0 take only O(n + p)3 work to obtain, so the computation is relatively fast.
Upper bound 2 requires computing the smallest singular value at some extra expense,
but we do not address here possible ways to speed this up. The other lower bounds
would also be fast to obtain, except for the computation of the rather expensive “isep”
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function. Note that the upper bounds from [3] in Table 1 are tighter, but are much
more expensive to obtain.

In Table 4, we give the eigenvalue λi of the augmented matrix at which the upper
bounds were taken, together with the radius (14) about this value within which the
minimum in (8) is located.

Table 1.

Bounds from older methods.

Example Upper bound Upper bound Lower bound
# staircase [1] from [3] from [2]
1 1.0 6.6144E-01 1.2500E-01
2 1.0 6.7690E-04 4.3654E-08
3 1.1610E-02 4.3715E-03 8.5774E-07

Table 2.

Upper bounds from formula (11).
Example Upper Upper Best lower

# bound 1 bound 2 bound from
β1 β2 Table 3

1 7.2561E-01 7.0545E-01 3.7272E-01 (15b)
2 8.8790E-04 7.3074E-04 6.5105E-04 (15a)
3 1.1507E-02 4.6607E-03 1.0313E-03 (15b)

Table 3.

Lower bounds from methods in this paper.

(Bounds from equation (15) come from (ii) except those marked “*.”)
Example Lower Lower Lower Lower

# bound 0 bound a bound b bound c
(13) (15a) (15b) (15c)

1 3.1480E-01 *1.9409E-01 3.7272E-01 1.7264E-01
2 7.2095E-05 6.5105E-04 6.4726E-04 1.6279E-04
3 8.6385E-04 *1.7989E-05 1.0313E-03 2.6339E-04

Table 4.

Values of λ at which upper bounds in Table 2 were obtained.

Example λi achieving min in Radius about
# mini σmin(A − λiB) ≡ β2 given λi

(11) (14)
1 −1.6899E−01+1.1509E+00i 8.7545E−01
2 +1.9998E+00+6.5937E−16i 6.6758E−03
3 +2.4534E+00+0.0000E+00i 2.0485E−02

When the staircase algorithm is applied to Example 3, we obtain (items in paren-
thesis are close to the machine epsilon) the following:

Fnew = Gnew =
2.8300E+02 6.9026E+02 -1.3400E+02 -1.7321E+00
-1.1458E+02 -2.7946E+02 5.4837E+01 (-2.5339E-16)
(-1.6584E-15) -1.1610E-02 2.4570E+00 (4.2062E-16)
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In Table 5, we illustrate the effect of using a different way to augment the matrix
rather than an orthonormal basis to the space orthogonal to the column space of A.
These numbers were obtained with Example 2. The first two lines were obtained using
an orthonormal basis for two different random spaces. The third line was obtained by
using random columns, not orthonormal, but with elements uniformly distributed in
the interval [−1, 1]. The fourth line was obtained by adding a random perturbation
to A of norm 1E-5 and then following the original prescription used for Tables 2 and
3. The fifth line was copied from Table 2 for comparison. Generally, the bounds from
Table 2 are at least as tight, except for the SVD-based upper bound β2 (11), for which
using a random set of orthonormal columns was better.

Table 5.

Bounds on Example 2using different random schemes.

Example Upper Upper Lower Best lower
# bound 1 bound 2 bound 0 bound, all

β1 (11) β2 (11) (13) from (15a)
Rand 1 7.6641E-04 6.8228E-04 6.5806E-05 6.4203E-04
Rand 2 7.6697E-04 6.8038E-04 6.5224E-05 6.3977E-04

Non-ortho 8.9135E-04 6.8256E-04 6.3614E-05 6.0989E-04
Perturbed 8.8983E-04 7.3232E-04 7.2426E-05 6.5245E-04
Table 2 8.8790E-04 7.3074E-04 7.2095E-05 6.5105E-04

6. Conclusions. We have given a scheme for estimating the distance from a
given pencil to the nearest pencil of different Kronecker structure. In the context of
dynamical systems, this yields estimates of the distance to the nearest uncontrollable
system. Unlike the staircase-type algorithms, the scheme presented here does not
depend on the recursive computation of the singular values of small matrix subblocks,
so it is less sensitive to the particular choice of zero tolerance. Though there is no
a priori guarantee that the bounds obtained using the methods from this paper will
be good, the spread between the upper and lower bounds will automatically give a
measure of the quality of the bounds themselves. Furthermore, since we also have
localized the location of the minimum in (8) to within certain small disks, we also
have good values with which to start an iterative procedure to refine the estimate of
the location of this minimum (for example, using the experimental descent method
proposed in [3], for which a good starting value is critical for successful convergence).

Appendix. We briefly sketch the derivation of the bound (6b). Let A be a
matrix with a simple eigenvalue λ and associated eigenvector v, with ‖v‖ = 1. We
can then find a unitary matrix P whose first column is v such that

(A1) PHAP = R =

[

λ
0

R12

R22

]

,

where R22 is an (n − 1) × (n − 1) matrix, none of whose eigenvalues equals λ. The
eigenvector of R corresponding to λ is e1 ≡ [1, 0, · · · , 0]T . We examine how this eigen-
vector changes under perturbations E to R. Let E be a (small) perturbation matrix
and let λ̄ be any eigenvalue of R + E, with corresponding eigenvector f ≡ [1,xT ]T ,
partitioned conformally with (A1), and which is scaled to have first component equal
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to 1. If θ is the angle between e1 and f , then ‖x‖ ≡ tan θ. We then have the relation

(A2) 0 = (R + E − λ̄I)f =

[

λ + e11 − λ̄
E21

R12 + E12

R22 + E22 − λ̄I

] [

1
x

]

,

where

E ≡

[

e11

E21

E12

E22

]

is partitioned as in (A1). Define the (n − 1) × (n − 1) matrices M ≡ R22 − λI,
and −N ≡ E22 + (λ − λ̄)I and note that M is nonsingular. If ‖M−1N‖ < 1, then
(M − N)−1 exists and can be bounded by ‖(M − N)−1‖ ≤ ‖M−1‖/(1 − ‖M−1N‖)
[9]. Then the last n− 1 equations of (A2) can be written as just (M − N)x = −E21,
yielding the bound

(A3) ‖x‖ ≤
‖M−1‖ · ‖E21‖

pos(1 − ‖M−1N‖)
≤

‖M−1‖ · ‖E‖

pos(1 − ‖M−1‖(‖E‖ + |λ − λ̄|))
,

where “pos” is a function defined by pos(r) ≡ r for r > 0, and pos(r) ≡ 0 for
r ≤ 0. The “pos” function simply expresses the fact that (A3) always holds, but only
vacuously if the denominator is not positive. For example, this would occur if f is
orthogonal to e1. We summarize the above in the following lemma.

Lemma A1. Let the upper triangular matrix R be partitioned as in (A1), λ, e1

be a simple eigenpair for R, M ≡ R22 − λI, E be some arbitrary matrix, and λ̄, f be

any eigenpair for R + E. Then f can be scaled so that the difference e1 − f satisfies

‖e1 − f‖ = sin θ, where tan θ ≡ ‖x‖ satisfies the bound (A3).
We note that if one expands (A3) in a power series in ‖E‖, the first-order term will

be identical to the first-order bound in [16]. Since R and A are related by a unitary
transformation, this lemma leads directly to a corresponding bound for the change in
the eigenvectors for an arbitrary matrix A. We can apply the modified Bauer–Fike
theorem directly to the lemma to obtain the following proposition. We define the
inverse “separation” function (following [14]) to be isepA(λ) ≡ ‖(R22 − λI)−1‖.

Proposition A1. Let A be some arbitrary n×n matrix with all distinct eigenval-

ues, and denote by V the matrix of eigenvectors of A. Let A+∆ be another arbitrary

matrix, and let λ̄, v̄ be any eigenpair for A+∆. Let θi denote the angle between v̄ and

the i-th unit eigenvector vi of A, i = 1, · · · , n. Then for some i we have the bound

(A4) tan θi ≤ γb

i ≡
isepA(λi)‖∆‖

pos(1 − isepA(λi)‖∆‖(1 + Ki))
.

Furthermore, v̄ can be scaled so that we have the bound on the distance to some

eigenvector vi of A, for some i:

(A5) ‖vi − v̄‖ = sin θi ≤
γb

i
√

1 + (γb

i )2
.

Note that this gives a nonvacuous bound as long as ‖∆‖ is small enough to make the

denominator in (A4) positive.
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