
FAST PARALLEL COMPUTATION OF REDUNDANCY
Daniel Boley

Department of Computer Science
University of Minnesota

ABSTRACT

For redundant manipulators, the inverse kinematics equations are typically solved by taking the pseudo-
inverse of the Jacobian, or by adding enough constraints to algebraically remove the redundancy. Many
popular measures of redundancy also depend on computing the algebraic rank or determinant of the Jaco-
bian. We present fast, parallelizable algorithms to dynamically update all the pseudo-inverse, deter-
minant, rank, and many other redundancy measures and properties as the arm goes through its motions.

INTRODUCTION

When designing a task for a manipulator, the fundamental kinematic equation is the relation between the
position and/or orientation of the end effector and the joint angles, according to the equation

[x , y , z , α, β, γ]T ≡ r = F(θθ), (1)

where θθ is the vector of joint angles, or more generally a point in configuration space, and r is the 6-vec-
tor of end-effector position/orientation in cartesian space. The inverse kinematic problem is to solve for
the joint angles needed to achieve a given position/orientation of the end-effector. The solution of the
nonlinear system of equations (1) by Newton’s method, a simple and effective method to use, requires the
use of the Jacobian J(θθ) of F . Then each Newton iteration is computed by solving the set of linear equa-
tions for the correction θθnew−θθold:

J(θθold) . (θθnew−θθold) = F(θθold). (2)

When the manipulator is following a path in cartesian space, r and θθ become functions of time t . It is
then necessary to control the joint velocities θθ

.
, related by

r
. = J(θθ)θθ

.
. (3)

Both (2) and (3) require the ‘‘inversion’’ of the Jacobian, or rather the solution of a set of linear equations
whose matrix of coefficients is J .

The theory described by (2) or (3) breaks down when (a) the Jacobian is singular (i.e. the manipulator is
in a singular configuration), or (b) the Jacobian is not square (i.e. the number of joints does not match the
degrees of freedom in cartesian space). For the latter case, if there are too many joints, the robot is said to
be redundant, and then equations (2) or (3) will have multiple solutions. The problem is then to select
among all the solutions that particular solution that meets some secondary criterion, either a constraint on
some of the variables or optimality of some performance index. All these involve the solution of systems
of linear equations which are overdetermined, underdetermined, or singular. The object of this paper is to
explore the efficient algorithms currently in use for such problems.

For example, for a redundant manipulator, the kinematic mapping of joint angles to cartesian coordinates
will have a non-square Jacobian with more columns than rows. One method to invert the kinematic map-
ping that has been suggested is the use of the generalized (Moore-Penrose) inverse (see, e.g. [3, p243]),
computed explicitly. The Moore-Penrose inverse is a matrix J is defined as the unique matrix J# which
satisfies the four properties

(i) JJ#J = J (ii) J#JJ# = J# (iii) [JJ#]T = JJ# (iv) [J#J]T = J#J.

The Moore-Penrose inverse is used to parametrize all solutions to the joint equations (3) by



− 2 −

θθ
.

= J#r
. + (I−J#J)y (4)

where the first term J#r
.

specifies the satisfaction of the primary objective (3) and the second term
represents all the excess degrees of freedom. The free vector y is then determined to satisfy a secondary
objective, which may be a constraint on some internal joints or may be to minimize a cost functional
representing joint velocities or distance to obstacles. One main purpose of this paper is to evaluate dif-
ferent methods to solve (4).

COMPUTATIONAL MATRIX METHODS

As noted in [3, p230f], there are methods for solving a rectangular system of equations that are more
accurate and faster than methods based on computing J# explicitly. Typically, all these methods proceed
by finding a vector x that minimizes c c Ax−b c c 2, and selecting the (almost) smallest norm solution in case

there is a choice. Two such methods are the Orthogonal (QR) Decomposition and the Singular Value
Decomposition (SVD). The SVD of am n×m matrix A is A = UΣVT, where U,V are orthogonal matrices
of appropriate dimension, and Σ is a n×m diagonal matrix of singular values σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0,

where p = min{n ,m}. The use of the SVD in the analysis of robotic manipulators has been already inves-
tigated, but it has not been very popular because of its reputation for being expensive.

Another decomposition, which is computationally simpler, is the QR Decomposition. If A is a full rank
matrix, then the QR Decomposition, also known as an orthogonal triangularization procedure, reduces A
to upper triangular form by a series of orthogonal transformations such as Householder transformations:
I−2uuT where u is a unit vector [3]. The result is the matrix factorization A = QR , where R is upper tri-
angular and Q is the orthogonal matrix consisting of the accumulation of all the individual Householder
transformations. If A is rectangular with more rows than columns, the factorization will have the form

A = QR = [Q1,Q2]
R
Q 0
R1 H

P = Q1R1, (5)

where R1 is square, upper triangular, and has the same rank as A .

In the case that the matrix A is singular or rank deficient, then the QR factorization is not sufficient to
solve the least squares problem. However, the QR factorization can be extended to include column pivot-
ing at little extra cost [3, p235]. The resulting factorization is the simplest example of a so-called rank-
revealing factorization, and has the form

A = QRPT = [Q1,Q2]
R
J
Q 0

R1

R2

S H
J
P
PT, (6)

where Q is an orthogonal matrix as before, P is a permutation matrix encapsulating the column inter-
changes, and R is an upper triangular, graded matrix, which means that rii

2 ≥ rik
2+ . . . +rkk

2 for all k>i and

all i . Intuitively, this means that any small diagonal entries of R will be pushed to the lower right,
‘‘revealing’’ any rank deficiency. It is then possible to solve the rank deficient least squares problem

min c c Ax−b c c = c c QRPTx−b c c (7)

by treating R2
∼∼ 0 and using the formula [3]

x = P
R
Q 0
R1

−1QTb H
P. (8)

By allowing P to be a general orthogonal matrix, we may further reduce (6) to the complete orthogonal
decomposition (COD):



− 3 −

A = QRPT = [Q1,Q2]
R
J
Q 0

R1

R2

0 H
J
P

R
J
QP2

T

P1
T H

J
P
∼∼ Q1R1P1

T , (9)

where R1 is square and invertible and c c R2 c c is small enough to be treated as zero. With this decomposi-

tion, the solution (8) is then the smallest norm solution to (7). We note that the SVD is a special case of
the COD where R1, R2 are diagonal, but obtained at considerable extra expense. This will be explored

further below. The Moore-Penrose inverse can also be computed from (9) (with the COD or the SVD) by

A# = P

R
J
Q 0

R1
−1

0

0 H
J
PQ

T = P1R1
−1Q1

T.

For the case of redundant robots, J will be n×m rectangular with n<m. It has already been noted that the
QR decomposition can be used to solve (3) when full rank [1]. Here, we outline how the COD can be
used to solve the problem when rank deficient. When J has full rank, the following prescription applies
in the same way, except that we can replace the COD (9) with the QR decomposition (5). We compute
the COD of A = JT, obtaining the form (9). Then J# = Q1R1

−TP1
T , and (4) can be written

θθ
.

= Q1R1
−TP1

Tr
. + Q2Q2

Ty,

where we have used the facts J#J = Q1Q1
T and Q1Q1

T + Q2Q2
T = I . At this point, we may replace y with a

quantity defined by our secondary objective. If the secondary objective is to minimize a potential func-
tion p , then we may simply set y = −k(∂p/∂θθ)T in (5) [8, p131]. If the secondary objective is the satisfac-
tion of a second set of cartesian constraints r

. (2) = J(2)θθ, then the solution is [8, p129]

θθ
.

= J#r
. + Ĵ(r

. (2) − J(2)J#r
.
) + (I−J#J)(I−Ĵ#Ĵ)z,

where Ĵ = J(2)Q1Q1
T . We compute the COD of Ĵ = Q̂1R̂1

−TP̂1
T to obtain the solution

θθ
.

= Q1R1
−TP1

Tr
. + Q̂1R̂1

−TP̂1
T(r

. (2)−J2Q1R1
−TP1

Tr
.
) + Q2Q2

TQ̂2Q̂2
Tz,

parametrized by the free vector z, representing any degrees of freedom left over.

The same techniques used to solve the non-square or singular systems can also be used to estimate many
other quantities in kinematics and dynamics. For example, many of the measures of dexterity that have
been proposed in the literature can be computed using the COD. Examples of such measures of dexterity
that have been proposed include a measure based on the determinant of JJ# [10], the trace [2], minimum
singular value [6], etc.), but they all amount to various ways to determine the algebraic singularity of the
matrix. Though the COD itself may be sufficient to expose the rank of the matrix, these other measures
can be easily estimated from the COD, or more computed more precisely from the SVD.

Besides finding the least squares solution, many methods have been proposed based on the use of the
Moore-Penrose pseudo-inverse of the Jacobian to achieve combined compliance control [9], or the
nullspace of the Jacobian to find the "best" solution within the space of all solutions [5], or the projectors
corresponding to the range and nullspaces [4], as examples. All of these tasks can be computed via the
COD. Many of these tasks, as well as others, involve the re-computation of the Jacobian as the configura-
tion changes, hence there is a need for efficient algorithms for the factorization of the Jacobian as well as
its derived forms: pseudo-inverse, nullspace, projectors, as the case may be. It is also useful to be able to
update the factorizations as the Jacobian undergoes small changes. We explore this in the next section.

A FAST PARALLEL ALGORITHM AND UPDATING PROCEDURE

The use of an efficient updating algorithm for the SVD for robotics applications was proposed in [7].
They showed that by using an adaptive iterative algorithm, based on the Kogbetliantz method (derived
from the Jacobi method for the symmetric eigenproblem) one can substantially reduce the computational



− 4 −

effort to obtain the SVD at many points along a trajectory by a factor of 5 or 6 on a serial computer.

Unlike many other methods, the Kogbetliantz method for the computation of the SVD does not require an
initial reduction to any particular form. To compute the SVD of J , it applies a sequence of orthogonal
transformations from the right, where each orthogonal transformation is based on a plane rotation
Q = R

Q−s
c

c
s H

P, where c2 + s2 = 1. Each rotation acts on two columns of J (costing 2n operations), and is con-

structed to make those two columns mutually orthogonal. A sweep is complete when every column has
been paired exactly once with every other column. Of course, each rotation destroys the orthogonality
created by the previous rotation, but it can be shown that after several sweeps, the matrix gradually con-
verges to A(∞) with all columns mutually orthogonal. Typical numerical experience indicates that the
number of sweeps needed to converge is proportional to log n for an n×n matrix. On an n×n mesh of
parallel processors, one can order the rotations so that an entire sweep can be completed in n−1 steps [3,
p450].

At convergence, we have the relation JV = A(∞), where V is the accumulation of all the individual orthog-
onal transformations, and A(∞) has mutually orthogonal columns. Then the SVD of J can be recovered by
scaling the columns of A(∞) to unit length, obtaining JV = UΣ where Σ is the diagonal matrix of scale fac-
tors, which are exactly the singular values.

A robot following a path gives rise to a slowly varying Jacobian, and [7] proposed to take advantage of
this fact to speed up the convergence of the Kogbetliantz method. If we have the SVD of a given
J = UΣVT, then we can obtain the SVD of a slightly modified J + ∆J by forming the matrix
A(0) = (J + ∆J)V . This matrix will have columns that are almost mutually orthogonal, so often one sweep
of the Kogbetliantz method will be sufficient for convergence, depending on the size of the perturbation
∆J and the existence of a singularity.

COST COMPARISON

We compare the cost of the various methods using the following ‘‘model problem:’’

min c c θθ
.
c c 2

2 s.t. Jθθ
.

= r
.
, (10)

where J is the p×n Jacobian matrix with rank r ≤ p ≤ n . Intuitively, we want to find the joint velocities θθ
.

which achieve a given end-effector velocity r
.
, and which has the smallest norm among all such solutions.

Because space does not permit a fuller analysis here, we restrict our attention to the model problem and
assume for simplicity that the desired end-effector velocity is feasible.

In general, the cost associated with each method is heavily dominated by the computation of the associ-
ated factorization. The basic cost in floating point operations for each associated factorization is reported
in Table 1 [3, p239, 248, 450]. The extra costs for using the factorization to solve the problem are much
smaller. We present three typical situations: (i) a square, nonsingular, nonredundant system, (ii) a highly
redundant but full rank system, and (iii) a nonredundant but singular system. For the full rank situations
(i) and (ii), the COD reduces to the QR decomposition. This table shows that the optimal method
depends on the situation. For (i), any of the first three methods have comparable cost, though it is well
known that the normal equations suffers in accuracy [3, p230]. For a highly redundant situation (ii), the
normal equations is the cheapest, but if we are near a singularity, it tends to break down, so we must use
the COD. For the singular case (iii), only the last three methods can be used, and of those three, the COD
is the cheapest. There are two limitations to the COD. First, the ‘‘rank revealing nature’’ of the COD is
only a heuristic which can fail. It is possible to make it more robust at some minor extra expense.
Second, the SVD (either full or updated) is required for the norm constrained least squares problem [7]

min c c Jθθ
.

− r
.
c c 2 s.t. c c θθ

.
c c 2 ≤ θ

.
max.



− 5 −

Method (i) (ii) (iii)
n = p = r n >> p = r n = p >> r

Normal Equations 4/3 n3 np2 + 1/3 p3 (not applicable)

QR Decomposition 4/3 n3 2np2 − 2/3 p3 (not applicable)

COD 4/3 n3 2np2 − 2/3 p3 4n2r − 8/3 r3

Full SVD 12n3 2np2 + 11p3 12n3

Updated SVD 4n3 4np2 4n3

Table 1. Cost to solve model problem (10) by different methods under various conditions.

CONCLUSIONS

In comparing the matrix computation algorithms applicable to kinematic problems, we have found that
the choice of method depends critically on the degree of redundancy of the manipulator and how close to
singularity is the configuration. One can achieve a high degree of robustness using the SVD, at a large
computational cost. But the other methods proposed may achieve accuracy quite sufficient for mechani-
cal systems.

On a parallel computing architecture with sufficient number of processors, the SVD can be reduced to
O(n) cost using the method outlined above. Similar reductions can be achieved for the QR decomposi-
tion, but of the methods applicable to singular problems, the SVD is the most easily parallelizable, and
thus may the choice for real-time applications.

REFERENCES

[1] K. Anderson, J. Angeles, Kinematic Inversion of Robotic Manipulators in the Presence of Redun-
dancies, Intl. J. Robotics Res. 8, pp. 80-97, 1989.

[2] J. Baillieul, A Constraint Oriented Approach to Inverse Problems for Kinematically Redundant
Manipulators, in Proc 1985 IEEE Intl. Conf. Robot. Automat., pp. 244-250, 1987.

[3] G. H. Golub, C. Van Loan, Matrix Computations 2/e, Johns Hopkins, 1989.

[4] M. Z. Huang, K. R. Harendra Varma, Optimal Rate Allocation in Kinematically Redundant
Manipulators -- The Dual Projection Method, in IEEE Int’l Conf. Robotics and Automation, pp.
702-707, April 9-11, 1991, Sacramento CA, 1991.

[5] K. R. Harendra Varma, M. Z. Huang, A Jacobian Minor-Based Algorithm for Rate Coordination
of Redundant Serial Chain Manipulators, in IEEE/RSJ IROS Conference, pp. 1741-1746, July 7-10,
1992, Raleigh NC, 1992.

[6] C. A. Klein, B. E. Blaho, Dexterity Measures for the Design and Control of Kinematically Redun-
dant Manipulators, Int. J. Robotics Res. 6, pp. 72-83, 1987.

[7] A. A. Maciejewski, C. A. Klein, The SVD: Computation and Application to Robotics, Int. J.
Robot. Res. 8, pp. 73-78, 1989.

[8] Y. Nakamura, Advanced Robotics, Redundancy and Optimization, Addison Wesley, 1991.

[9] K. Yokoi, H. Maekawa, K. Tanie, A Method of Compliance Control for a Redundant Manipula-
tor, in IEEE/RSJ IROS Conference, pp. 1927-1934, July 7-10, 1992, Raleigh NC, 1992.

[10] T. Yoshikawa, Analysis and Control of Robot Manipulators With Redundancy, in Robotics
Research: The First International Symposium (M. Brady, R. Paul ed.), pp. 735-747, MIT Press,
1984.


