Rounding Errors

boley
July 20, 1997

1 introduction

Rounding errors are the errors arising from the use of floating point arithmetic on digital computers. Since
the computer word has only a fixed and finite number of bits or digits, only a finite number of real numbers
can be represented on a computer, and the collection of those real numbers that can be represented on the
computer is called the floating point system for that computer. Since only finitely many real numbers can
be represented exactly, it is possible, indeed likely, that the exact solution to any particular problem is not
part of the floating point system and hence cannot be represented exactly. Ideally, one would hope that one
could obtain the representable number closest to the true exact answer. When doing simple computations
this is usually possible, but is more problematical after long or complicated computations. Even the four
basic operations, addition, subtraction, multiplication, and division, cannot be carried out exactly, so the
intermediate results in any computation will suffer from contamination of rounding errors, and the final
results will suffer from the accumulated effects of all the intermediate rounding errors. The field of numerical
analysis is the study of the behavior of various algorithms when implemented in the floating point system
subject to rounding errors. In this article, we describe the main features typically found in floating point
systems in computers today, and give some examples of unusual effects that are caused by the presence of
rounding errors.

2 representation of floating point numbers.

2.1 mantissa + exponent

All computers today represent floating point numbers in the form mantissa x base®*PONeNt yhere the

mantissa is typically a number less than 2 in absolute value, and the exponent is a small integer. The base
is fixed for all numbers and hence is not actually stored at all. Except for hand-held calculators, the base
is usually 2 except for a few older computers where the base is 8 or 16. The mantissa and exponent are
represented in binary with a fixed number of bits for each. Hence a typical representation is

[S €7 € -+ €y Mgy Moo -+ My mO] (1)

where s is the sign bit for the mantissa, ez, ..., eq are the bits for the exponent, and myg, ..., my are the
bits for the mantissa. If the base is fixed at 2, then the number represented by the bits (1) is

(71)% % (m23) 20 + Mas - 271 R mo - 2723) X 2exponent’ (2)

where the exponent is an 8-bit signed integer. In this example, we have fixed the number of bits for the
mantissa and the exponent to 24 and 8, respectively, but in general these vary from computer to computer,
and even within the computer vary from single to double precision. Notice that the mantissa represented in
(2) has the “binary point” (analog to the usual decimal point) right after the leftmost digit. Regarding the
exponent as a signed integer, it is not typically represented as a ones or twos complement number but more
often in excess 127 notation, which is essentially an unsigned integer representing the number 127 larger
than the true exponent. Again, if we have k bits instead of 8 as in this example, then the 127 is replaced by
2k=1 1.

We illustrate this with a few examples, where we shorten the mantissa to 7 bits plus a sign and the
exponent to 4 bits. Hence the exponent is in ezcess 7 notation:

decimal binary bits remarks
+5/2 +1.01 x 2! 01000 1010000
~5/2 —1.01 x 2! 11000 1010000 3
+20 +1.01 x 24 01011 7010000 (3)

1/3 +1.010101 x 272 00101 1010101 inexact
1/10 +1.100110 x 2=3 00100 71100110 inexact

We remark that this representation, using normalized mantissas and excess notation for the exponents,
allows one to compare two positive floating point numbers using the usual integer compare instructions on
the bit patterns.

2.2 normalization

Notice that in (3) there can be multiple ways to represent any particular decimal number. If the leading digit
of the mantissa is zero, then the number if said to be unnormalized, otherwise it is said to be normalized.
So we could also use the representation

decimal binary bits remarks
+20 +0.00101 x 27 011100001010 unnormalized (4)
1/3 +0.101010 x 2=1 001100101010 inexact & unnorm.

When unnormalized, we lose space for significant digits, hence floating point numbers are always stored in
normalized fashion. We see that in (3), the normalized representation for the number 1/3 captures more
nonzero bits than the unnormalized representation (4). When the base is equal to 2, then the leading digit
of the mantissa is just a bit whose only possible nonzero value is 1, and hence it is not even stored. So in
the representation (1), the bit mgg is always 1 and is not actually stored in the computer. When not stored
in this way, the bit mgs is called an implicit bit. These bits are written in italics in (3).

2.3 special numbers, overflow, underflow

The representation (1) with the implicit bit mo3 does not admit the number 0, since 0 would have an all zero
mantissa that must be unnormalized. To accommodate this, certain special bit patterns are reserved to
zero and certain other special “numbers”. A zero is often represented by a word of all zero bits, which would
otherwise represent the smallest representable positive floating point number. If a calculation gives rise to
an answer less than the smallest representable number (in absolute value), then an underflow condition is
said to exist. In the past, the result was simply set to zero, but more recently, the result was denormalized.

The use of gradually denormalized numbers involves those floating point numbers which are less (in
absolute value) than the smallest representable normalized number. As discussed in [3], there is a relatively
big gap between the the smallest representable normalized number and zero. To fill this gap, the IEEE
decided to allow for the use of unnormalized numbers. We can illustrate this with the representation in (3).
The smallest normalized number representable in (3) is _H'Oobinary x2~7. However we can represent smaller
numbers in an unnormalized manner, such as +0'10binary x 277, Since we have adopted the convention
of using the implicit bit, such an unnormalized number cannot be encoded in this format. The solution is
to provide that the smallest representable normalized number be actually _H'Oobinary x 276 reserving the
smallest possible exponent value for unnormalized numbers. This was what has been adopted in the IEEE
standard (see below). Since this smallest exponent value has all its bits equal to zero, the representation
of the number zero in this format becomes just a special case of such unnormalized numbers. As pointed
out by [3], the use of denormalized numbers also guarantees that the computed difference of two unequal
numbers will never be zero.

A more serious problem occurs if the result of the calculation is larger than the largest representable
number. This is called an overflow condition, and in most older computers this would generate an error.
However in the recent IEEE floating point standard (discussed below), such a result would be replaced with
a special bit pattern representing plus-infinity or minus-infinity. When two such infinities are combined, the
result can be totally undefined, so yet another special bit pattern is reserved for such a result. This last
result is called Not A Number, and is often printed by most computer systems as NaN. By not generating an
exception upon overflow, programs may fail more gracefully.

2.4 rounding vs chopping

Another issue affecting rounding errors is the choice of rounding strategy. Given any particular real number,
which nearby floating point number should one use? For example in (3), when we represented 1/3 as an
unnormalized number we chopped away the last bit, but an alternative choice would be to round up to
the next higher number to yield +0'101011binary x 271, The error committed in chopping in this case
is .0052 but in rounding is only .0026. But rounding requires slightly more computation since the digits
being removed must be examined. This issue arises when converting a number from an external decimal
representation and when trying to fit the result of an intermediate arithmetic operation into a memory word.
This is because the arithmetic logic unit on most computers actually operate on more digits than can fit in
a word, the extra digits being called guard digits discussed below.

The IEEE Standard actually provides that the default rounding strategy should be a “round to even”
strategy. The “round to even” mode is exactly the rounding strategy described above, except when the
number being rounded lies exactly half way between two representable numbers, as in rounding 12.5 to an
integer. The default “round to even” strategy selects the representable number whose last digit is even, so
that 12.5 would round to 12 and not 13. If the rounding in this case were always up, then more numbers
would end up being increased than decreased during the rounding process. If the combinations of trailing
digits occur equally likely, it is generally desirable that the number of times the rounding is up is about equal
to the number of times the rounding is down, to try to cancel out their effect as much as possible.

2.5 guard digits

Guard digits are extra digits kept only within the Arithmetic Logic Unit during the course of individual
floating point operations. They are never stored in memory. The Arithmetic Logic Unit carries out the
operation using at least one extra guard digit, then the result is rounded to fit in the register of memory
word. We illustrate the effect of guard digits using the simple addition of two decimal floating point numbers
1.01 x 10T and —9.93 x 10° (this example is from [3]), where we keep 3 decimal digits in the mantissa.
To accomplish this, the first step for the arithmetic logic unit is to shift the decimal point in the second
operand to make the exponents match, yielding —.993 x 107!. Then the mantissas may be added together
directly. The accuracy of the answer is greatly affected by the number of digits kept for the computation.
The simplest approach is to use simple chopping and to keep only the digits corresponding to the larger
operand. The result in this case is 1.01 x 107" — 0.99 x 10! = 2.00 x 10~'. If, however, we keep at least
one extra guard digit, then we obtain 1.010 x 107! — 0.993 x 10*! = 1.70 x 10~!. The latter answer is exact
whereas the former result has no correct digits.

The reader may ask whether keeping just one guard digit suffices to make a significant enhancement to
the accuracy of floating point arithmetic operations. The answer can be found in [3] in which it is proved
that if no guard digit is kept during additions, then the error could be so large as to yield no correct digits
in the answer, whereas if just one guard digit is kept during the operation, the result being rounded to fit
in the memory word, then the error will be at most the equivalent of 2 units in the last significant digit. In
this context, the “correct answer” is regarded as the answer computed using all available digits and keeping
“infinite precision” for the intermediate results.

2.6 IEEE standard

The previous discussion has shown that there are many choices to be made in representing floating point
numbers, and in the past different manufacturers have made different, incompatible, choices. The result is
that the behavior of floating point algorithms can vary from computer to computer, even if the precision
(number of bits used for exponent and mantissa) stays the same. In an attempt to make the behavior
of algorithms more uniform across platforms, as well as improving the performance of such algorithms, the
IEEE has established a floating point standard which specified some of these choices [6, 7]. This standard
specifies the kind of rounding that must be used, the use of guard digits, the behavior when underflow or
overflow occurs, etc. The first standard [6] was limited to 32 and 64 bit floating point words, and provided
for optional extended formats for computers with longer words. The second standard [7] extended this to
general length words and bases. The principal choices made in [6] include the following:

e rounding to nearest (also known as round to even).

e base 2 with a sign bit and an implicit bit.

e single precision with 8 bit exponent and 23 bit mantissa fields (not including the implicit bit).

e double precision with 11 bit exponent and 52 bit mantissa fields (not including the implicit bit).
e the presence of 00 and NaN (Not a Number), as well as +0.

e gradually denormalized numbers for those numbers unrepresentable as normalized numbers.

e user-settable bits to turn on exception handling for overflow, underflow, etc. and to vary the rounding
strategies.

We have tried to motivate some of these choices with the above discussion, but detailed formal analyses of
these choices can be found in [3].

2.7 wusual model for round-off error

In order to analyse the behavior of algorithms in the presence of round-off errors, a mathematical model
for round-off errors is defined. The usual model is as follows, where ® represents any of the four arithmetic
operations:

flla®b)=(a®b)-(1+¢)

where |¢] < macheps, and macheps is called the unit round-off or machine epsilon for the given computer.
The motivation behind this model is that the best any computer could do is to perform any individual
arithmetic operation exactly, and then round or chop to the nearest floating point number when finished.
The rounding or chopping involves changing the last bit in the (base 2) mantissa, and hence the macheps
is the value of this last bit — always relative to the size of the number itself. Needless to say, this model can
be expensive to implement, so some computer manufacturers have designed arithmetic operations which do
not obey this model, but one can show that one or two guard digits suffice to be consistent with this model.

For most users of higher level languages, the details of the floating point representation (especially the
length of a computer word) are generally hidden from the user. Hence the macheps has a definition that can
be computed in a higher level language, not specifically by the number of bits in a word. The macheps is
defined by the value of € yielding the minimum in

131>iloqfl(1—|—e) > 1. (5)

This formula can be used to calculate macheps by trying a sequence of trial values for €, each entry one
half the previous, until equality in (5) is achieved. The specific value of macheps depends on the rounding
strategy. This can be most easily illustrated with 3 digit decimal floating point arithmetic. The smallest s
such that fI(1+s) > 1is 1.00 x 10~ in chopping, 5.00 x 10~ if a traditional rounding strategy is used, and
5.01 x 10~* if rounding to even is used. In general, macheps in rounding is approximately half that obtained
using chopping.

3 examples of catastrophic effects of round-off error

To illustrate how rounding errors can accumulate catastrophically in unexpected ways, we give two exam-
ples adapted from [9]. An extensive introductory discussion on the effects of rounding error in scientific
computations involving the use of floating point can be found in [9, 4].

Of the four arithmetic operations, subtraction and addition are really the same operation. Most loss
of significance and cancellation errors described below arise from these two operations. Multiplication and
division give rise to problems only if the results overflow, underflow or must be denormalized. An unusual
effect of the fact that floating point numbers are discrete in nature is that the operations no longer obey the
usual laws of the real numbers. For example, the associative law for addition does not hold for the floating
point numbers. If s is a positive number less that macheps, but more that macheps/2, then 1+ (s+s) will be
strictly bigger than 1, but (1 + s) + s will equal 1. This is an extreme case, but the order in which numbers
are added up can affect the computed sum markedly. This is further illustrated by the first example below.

It has been pointed out that the use of the denormalized numbers mean that programs can depend on
the fact fl(a — b) = 0 implies a = b. However, it can still happen that fl(a *b) = a when a # 0 and b # 1.
This can happen, for example, when a is the smallest representable floating point number, and b is a number
between .6 and 1, when rounding is used. Programs whose logic depend on fI(a * b) being always different

from a can suffer very mysterious failures. However, generally, multiplication and division do not give rise
to catastrophic rounding errors unless numbers near the ends of the exponent range are involved, or when
combined with other operations.

3.1 taylor series for exp(-40)

A simple algorithm to compute the exponential function e” is to use the well known Taylor series for it:

xl
i>0
When z > 0, this can yield accurate results if one is willing to take enough terms, but if used when = < 0,
this can yield to catastrophic results, all due to the finite word length of the machine. To take an extreme
case, let = —40. Then all the terms after the 140-th term are much less than 10~ !¢ and decay rapidly, and
the result is also very small: e~ = 4.2484 x 1078, But simply adding up the terms of the Taylor series will
yield 1.8654, which is no where near the true answer. The problem is the terms in this series alternate in
sign, and the intermediate terms reach 1.4817 x 10*!¢ in magnitude, and we end up subtracting very large
numbers that are almost equal and opposite. This results in severe cancellation.

3.2 numerical derivative of exp(x) @ x=1

Suppose we take the naive approach to approximate the numerical derivative of a function f:

AN CalE)

for some suitable small h. Applying this to f(z) = e* and taking the derivative at z = 1, we find that we
get as much accuracy with h = 2 x 107% as with A = 107! on a machine with approximately 16 decimal
digits in the mantissa. In both cases, the error is about 3 x 107%, and less than half the computed digits
are good. Here again we have severe cancellation from subtracting numbers that are almost equal. Hence
simply making the stepsize h smaller does not lead to more accuracy.

4 Effect on algorithms

4.1 round-off causes perturbation to data and to intermediate results

The examples above are extreme cases showing that catastrophic loss of accuracy can result if floating point
arithmetic is not used carefully. The effect of round-off error is applied to each intermediate result and is
guaranteed to be small relative to those intermediate results. However, in some cases those intermediate
results can be larger than the final desired results, leading to errors much larger than would be expected
from just the sizes of the input and final output of a particular algorithm. However, in some algorithms
such as when simulating an ordinary differential equation (such as a control system) & = Az + f where f is
a forcing function, the intermediate results may not be any larger than than the final or initial values, yet
severe loss of accuracy can result. One source of error is the propagation of intermediate errors, and in nasty
cases the effect of those intermediate errors can grow becoming more and more significant as the algorithm
proceeds

4.2 algorithm stability vs conditioning of problem

In an attempt to analyse and alleviate the effects of rounding errors, numerical analysts have developed
paradigms for the analysis of the behavior of numerical algorithms and have used these paradigms to develop
algorithms themselves for which one can prove that the effect of rounding errors is bounded. It is useful
to describe these paradigms. The first and most fundamental is the concept of algorithm stability versus
conditioning of the problem. The latter refers to the ill-posedness of the problem. If a problem is ill-posed,
then slight variations to the coefficients in the problem will yield massive changes to the exact solution. In
this case, no floating point algorithm will be able to compute a solution with high accuracy. If the problem is
well-posed, then one would expect a good algorithm to compute a solution with full accuracy. An algorithm
that fails that requirement is called unstable. An algorithm that is able to compute solutions with reasonable
accuracy for well-posed problems, and does not lose more accuracy on ill-posed problems than the ill-posed
problems deserve, is called stable.

4.3 relevance to fault tolerance

The study of rounding errors is relevant to fault tolerance in two ways. At the most elementary level,
the presence of rounding errors means that no computed solution will be exact, and we cannot check for
the presence of faults by checking if the computed solution satisfies some condition ezactly. Any fault
detection system would have to allow for the presence of errors in the solution arising naturally from normal
rounding errors. This thus leads to the difficult task of distinguishing between errors arising from natural
rounding errors and errors arising from faults. If the underlying problem is ill-posed to any degree (called
ill-conditioned) then one is also faced with the issue that the accuracy of the computed solution will be very
poor, even if that solution were computed correctly.

On the other hand, many numerical algorithms have been shown to be stable in a certain sense. Al-
gorithms arising in matrix computations have been especially well studied. In particular, in the domain of
solving systems of linear equations, certain algorithms have been shown to compute the exact solution to a
system within a small multiple of macheps of the original system of equations, even when the system is mod-
erately ill-posed. In some cases, precise bounds on the possible discrepancy have been derived. These can
be used to develop conditions that can be used to check for faults. Note that even if the computed solution
exactly satisfies a nearby system of equations, that does not imply that the error in the solution is small,
unless the system of equations are very well conditioned. As a consequence, any validation procedure for
fault detection can only check for the correctness of the computed solutions indirectly, and not by computing
the accuracy of the solution itself.

The result of this analysis has been the development of conditions to check the correctness numerical
computations, mainly in the domain of matrix computations and signal processing. These conditions all
involve the determination of a set of precise tolerances that are tight enough to enforce sufficient accuracy
in the solutions, yet guaranteed to be loose enough to be satisfiable even when solving problems that are
moderately ill-posed. Principal approaches in this area involve the use of checksums, the use of backward error
assertions and the use of mantissa checksums. In all cases, it has been found that applying these techniques
to series of operations instead of checksumming each individual operation has been most successful.

Instead of using tolerances, an alternative approach that has been used with some success is interval
arithmetic. Space does not permit a full treatment here, since most software, languages, compilers and
architectures do not provide interval arithmetic as part of their built-in features. A synopsis of interval
arithmetic, including its uses and applications can be found in [10]. In this article we limit our discussion to
a short description. The easiest way to view interval arithmetic is to consider replacing each real number or
floating point number in the computer with two numbers representing an interval [a, b] in which the “true”
result is supposed to lie. Arithmetic operations are performed on the intervals. For example, addition would
result in [aq,b1] + [ag, ba] = [a1 + a2,b; + by]. If all endpoints are positive, then multiplication of intervals
would be computed by [ay, b1]-[ag, ba] = [a1 - a2, by -ba]. All the other arithmetic operations and more general
situations can be defined similarly. However, if no special precautions are taken, the size of the intervals can
grow too large to give useful bounds on the location of the “true” answers. So most successful applications
involve more sophisticated analysis of whole series of arithmetic operations such as an inner product rather
than analysing each individual operation, or else use some statistical techniques to narrow the intervals. As
pointed out in [3], in order to maintain the guarantee that computed intervals contain the “true” answer, it
is necessary to round down the left endpoint and round up the right end point of each computed interval.
This requires the user to vary the rounding strategy used within the computer. The IEEE standards provide
that the hardware provide a way for the user to vary the rounding strategy as well as some other parameters
of the arithmetic, but as pointed out by Prof. Kahan [8] most compilers and systems today do not actually
provide the user access to that level of hardware.

The remaining part of this article is devoted to a discussion of some of these fault tolerance techniques.

5 Synopsis of fault tolerance techniques for Linear Algebra

We present a short synopsis of various techniques that have been proposed for the verification of floating point
computations, mostly in the area of linear algebra. The use of checksums was made popular by Abraham
[6]. This method takes advantage of the fact that the result of most computations in linear algebra bears
a linear relation to the arguments originally supplied. So a linear combination of those results bears the
same linear relation to that same linear combination of the original data. For example, the row operations
in Gaussian Elimination (used to solve systems of linear equations) can be checksummed by taking linear
combinations of the entries in each row. When two rows are added in a row operation, the checksums are

also added and compared with the checksum generated from scratch from the new computed row. In a
floating point environment, the checksums will be corrupted by round-off error, and hence a tolerance must
be sued to decide if they match. This tolerance depends on the condition number of the matrix of checksum
coefficients [2].

Diskless Checkpoint [11] methods are an alternative approach based on saving simple combinations of
preselected intermediate states (e.g. checksums) on several independent processors. They can save informa-
tion at low cost so that once an error has been detected, a correction can easily be applied. The simplest
approach is the generate periodic checkpoints of the state of each processor, and keep an “exclusive or” of
those checkpoints on yet another processor. If one processor has a failure, the checkpoint that was on that
processor can be reconstructed from all the other checkpoints. This process is generally independent of the
floating point representation.

Another class of methods involve comparing the results with certain error tolerances. For matrix mul-
tiplication the error tolerances are forward error bounds (“how far is the computed answer from the true
answer?”) [12]. For solving systems of linear equations, the error tolerances are backward error bounds
(“how well does the computed answer fit the original problem” or more precisely “how much must the orig-
inal problem be changed so that the computed answer fits it exactly?”) [1]. In these methods, the error
bounds used depend critically on the properties of the arithmetic, particularly the macheps, and in some
cases on the conditioning of the underlying system being solved. Hence these techniques can sometimes
detect violations of the mathematical assumptions of solvability due to ill-posedness of the problem.

Yet a third class of methods is derived by considering only the mantissas alone. It turns out that for
certain floating point operations (like addition), one can compute checksums of the mantissas alone treating
them as integers [ref?]. Then the checksum computed the same way derived from the mantissa of the result
must match the combination of the original mantissa checksums. Since the checksums are computed using
integer arithmetic, round-off errors do not apply. The only limitation to this approach is that this technique
cannot be applied to all floating point operations (like multiplication), but can be used to check the addition
part of inner products.

References

[1] D. L. Boley, G. H. Golub, S. Makar, N. Saxena, and E. J. McCluskey. Floating point fault tolerance
using backward error assertions, 1995.

[2] D. L. Boley and F. T. Luk. A well conditioned checksum scheme for algorithmic fault tolerance.
Integration, the VLSI Journal, 12:21-32, 1991.

[3] D. Goldberg. What every computer scientist should know about floating point arithmetic. ACM
Computing Surveys, 23(1):5-48, March 1991.

[4] M. Heath. Scientific Computing, An Introductory Survey. McGraw Hill, 1997.

[6] K. H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations. IEEE Trans.
Comput., C-33(6):518 528, June 1984.

[6] IEEE. ANSI/IEEE Standard 754-1985 for Binary Floating Point Arithmetic. IEEE, 1985.
[7] IEEE. ANSI/IEEE Standard 854-1987 for Radiz-Independent Floating Point Arithmetic. IEEE, 1985.

[8] W. Kahan. The baleful effect of computer languages and benchmarks upon applied mathematics, physics
and chemistry. presented at the STAM Annual Meeting (Stanford Calif), 1997.

[9] D. K. Kahaner, C. Moler, and S. Nash. Numerical Methods and Software. Prentice Hall, 1989.

[10] R. B. Kearfott. Interval computations: Introduction, uses, and resources. Euromath Bulletin, 2(1):95
112, 1996.

[11] J. S. Plank, Y. Kim, and J. Dongarra. Algorithm-based diskless checkpointing for fault tolerant matrix
operations. In 25th International Symposium on Fault-Tolerant Computing, pages 351-360, 1995. IEEE
Computer Society.

[12] A. Roy-Chowdhury and P. Banerjee. Tolerance determination for algorithm based checks using simple
error analysis techniques. In Fault Tolerant Computing Symp. FTCS-23, pages 290 298, 1993. IEEE
Press.

