
Rounding ErrorsboleyJuly 20, 1997
1 introdu
tionRounding errors are the errors arising from the use of
oating point arithmeti
 on digital
omputers. Sin
ethe
omputer word has only a �xed and �nite number of bits or digits, only a �nite number of real numbers
an be represented on a
omputer, and the
olle
tion of those real numbers that
an be represented on the
omputer is
alled the
oating point system for that
omputer. Sin
e only �nitely many real numbers
anbe represented exa
tly, it is possible, indeed likely, that the exa
t solution to any parti
ular problem is notpart of the
oating point system and hen
e
annot be represented exa
tly. Ideally, one would hope that one
ould obtain the representable number
losest to the true exa
t answer. When doing simple
omputationsthis is usually possible, but is more problemati
al after long or
ompli
ated
omputations. Even the fourbasi
 operations, addition, subtra
tion, multipli
ation, and division,
annot be
arried out exa
tly, so theintermediate results in any
omputation will su�er from
ontamination of rounding errors, and the �nalresults will su�er from the a

umulated e�e
ts of all the intermediate rounding errors. The �eld of numeri
alanalysis is the study of the behavior of various algorithms when implemented in the
oating point systemsubje
t to rounding errors. In this arti
le, we des
ribe the main features typi
ally found in
oating pointsystems in
omputers today, and give some examples of unusual e�e
ts that are
aused by the presen
e ofrounding errors.
2 representation of
oating point numbers.2.1 mantissa + exponentAll
omputers today represent
oating point numbers in the form mantissa � baseexponent, where themantissa is typi
ally a number less than 2 in absolute value, and the exponent is a small integer. The baseis �xed for all numbers and hen
e is not a
tually stored at all. Ex
ept for hand-held
al
ulators, the baseis usually 2 ex
ept for a few older
omputers where the base is 8 or 16. The mantissa and exponent arerepresented in binary with a �xed number of bits for ea
h. Hen
e a typi
al representation is[s e7 e6 � � � e0 m23 m22 � � � m1 m0 ℄ (1)where s is the sign bit for the mantissa, e7; : : : ; e0 are the bits for the exponent, and m23 ; : : : ;m0 are thebits for the mantissa. If the base is �xed at 2, then the number represented by the bits (1) is(�1)s � (m23 � 20 +m22 � 2�1 + � � �+m0 � 2�23)� 2exponent; (2)where the exponent is an 8-bit signed integer. In this example, we have �xed the number of bits for themantissa and the exponent to 24 and 8, respe
tively, but in general these vary from
omputer to
omputer,and even within the
omputer vary from single to double pre
ision. Noti
e that the mantissa represented in(2) has the \binary point" (analog to the usual de
imal point) right after the leftmost digit. Regarding theexponent as a signed integer, it is not typi
ally represented as a ones or twos
omplement number but moreoften in ex
ess 127 notation, whi
h is essentially an unsigned integer representing the number 127 largerthan the true exponent. Again, if we have k bits instead of 8 as in this example, then the 127 is repla
ed by2k�1 � 1.

1

We illustrate this with a few examples, where we shorten the mantissa to 7 bits plus a sign and theexponent to 4 bits. Hen
e the exponent is in ex
ess 7 notation:de
imal binary bits remarks+5=2 +1:01� 21 0 1000 1010000�5=2 �1:01� 21 1 1000 1010000+20 +1:01� 24 0 1011 10100001=3 +1:010101� 2�2 0 0101 1010101 inexa
t1=10 +1:100110� 2�3 0 0100 1100110 inexa
t (3)
We remark that this representation, using normalized mantissas and ex
ess notation for the exponents,allows one to
ompare two positive
oating point numbers using the usual integer
ompare instru
tions onthe bit patterns.2.2 normalizationNoti
e that in (3) there
an be multiple ways to represent any parti
ular de
imal number. If the leading digitof the mantissa is zero, then the number if said to be unnormalized, otherwise it is said to be normalized.So we
ould also use the representationde
imal binary bits remarks+20 +0:00101� 27 0 1110 0001010 unnormalized1=3 +0:101010� 2�1 0 0110 0101010 inexa
t & unnorm. (4)

When unnormalized, we lose spa
e for signi�
ant digits, hen
e
oating point numbers are always stored innormalized fashion. We see that in (3), the normalized representation for the number 1/3
aptures morenonzero bits than the unnormalized representation (4). When the base is equal to 2, then the leading digitof the mantissa is just a bit whose only possible nonzero value is 1, and hen
e it is not even stored. So inthe representation (1), the bit m23 is always 1 and is not a
tually stored in the
omputer. When not storedin this way, the bit m23 is
alled an impli
it bit. These bits are written in itali
s in (3).2.3 spe
ial numbers, over
ow, under
owThe representation (1) with the impli
it bit m23 does not admit the number 0, sin
e 0 would have an all zeromantissa that must be unnormalized. To a

ommodate this,
ertain spe
ial bit patterns are reserved tozero and
ertain other spe
ial \numbers". A zero is often represented by a word of all zero bits, whi
h wouldotherwise represent the smallest representable positive
oating point number. If a
al
ulation gives rise toan answer less than the smallest representable number (in absolute value), then an under
ow
ondition issaid to exist. In the past, the result was simply set to zero, but more re
ently, the result was denormalized.The use of gradually denormalized numbers involves those
oating point numbers whi
h are less (inabsolute value) than the smallest representable normalized number. As dis
ussed in [3℄, there is a relativelybig gap between the the smallest representable normalized number and zero. To �ll this gap, the IEEEde
ided to allow for the use of unnormalized numbers. We
an illustrate this with the representation in (3).The smallest normalized number representable in (3) is +1:00binary�2�7. However we
an represent smallernumbers in an unnormalized manner, su
h as +0:10binary � 2�7. Sin
e we have adopted the
onventionof using the impli
it bit, su
h an unnormalized number
annot be en
oded in this format. The solution isto provide that the smallest representable normalized number be a
tually +1:00binary � 2�6, reserving thesmallest possible exponent value for unnormalized numbers. This was what has been adopted in the IEEEstandard (see below). Sin
e this smallest exponent value has all its bits equal to zero, the representationof the number zero in this format be
omes just a spe
ial
ase of su
h unnormalized numbers. As pointedout by [3℄, the use of denormalized numbers also guarantees that the
omputed di�eren
e of two unequalnumbers will never be zero.A more serious problem o

urs if the result of the
al
ulation is larger than the largest representablenumber. This is
alled an over
ow
ondition, and in most older
omputers this would generate an error.However in the re
ent IEEE
oating point standard (dis
ussed below), su
h a result would be repla
ed witha spe
ial bit pattern representing plus-in�nity or minus-in�nity. When two su
h in�nities are
ombined, theresult
an be totally unde�ned, so yet another spe
ial bit pattern is reserved for su
h a result. This lastresult is
alled Not A Number, and is often printed by most
omputer systems as NaN. By not generating anex
eption upon over
ow, programs may fail more gra
efully.2

2.4 rounding vs
hoppingAnother issue a�e
ting rounding errors is the
hoi
e of rounding strategy. Given any parti
ular real number,whi
h nearby
oating point number should one use? For example in (3), when we represented 1/3 as anunnormalized number we
hopped away the last bit, but an alternative
hoi
e would be to round up tothe next higher number to yield +0:101011binary � 2�1. The error
ommitted in
hopping in this
aseis .0052 but in rounding is only .0026. But rounding requires slightly more
omputation sin
e the digitsbeing removed must be examined. This issue arises when
onverting a number from an external de
imalrepresentation and when trying to �t the result of an intermediate arithmeti
 operation into a memory word.This is be
ause the arithmeti
 logi
 unit on most
omputers a
tually operate on more digits than
an �t ina word, the extra digits being
alled guard digits dis
ussed below.The IEEE Standard a
tually provides that the default rounding strategy should be a \round to even"strategy. The \round to even" mode is exa
tly the rounding strategy des
ribed above, ex
ept when thenumber being rounded lies exa
tly half way between two representable numbers, as in rounding 12.5 to aninteger. The default \round to even" strategy sele
ts the representable number whose last digit is even, sothat 12.5 would round to 12 and not 13. If the rounding in this
ase were always up, then more numberswould end up being in
reased than de
reased during the rounding pro
ess. If the
ombinations of trailingdigits o

ur equally likely, it is generally desirable that the number of times the rounding is up is about equalto the number of times the rounding is down, to try to
an
el out their e�e
t as mu
h as possible.2.5 guard digitsGuard digits are extra digits kept only within the Arithmeti
 Logi
 Unit during the
ourse of individual
oating point operations. They are never stored in memory. The Arithmeti
 Logi
 Unit
arries out theoperation using at least one extra guard digit, then the result is rounded to �t in the register of memoryword. We illustrate the e�e
t of guard digits using the simple addition of two de
imal
oating point numbers1:01 � 10+1 and �9:93 � 100 (this example is from [3℄), where we keep 3 de
imal digits in the mantissa.To a

omplish this, the �rst step for the arithmeti
 logi
 unit is to shift the de
imal point in the se
ondoperand to make the exponents mat
h, yielding �:993 � 10+1. Then the mantissas may be added togetherdire
tly. The a

ura
y of the answer is greatly a�e
ted by the number of digits kept for the
omputation.The simplest approa
h is to use simple
hopping and to keep only the digits
orresponding to the largeroperand. The result in this
ase is 1:01 � 10+1 � 0:99 � 10+1 = 2:00 � 10�1. If, however, we keep at leastone extra guard digit, then we obtain 1:010� 10+1 � 0:993� 10+1 = 1:70� 10�1. The latter answer is exa
twhereas the former result has no
orre
t digits.The reader may ask whether keeping just one guard digit suÆ
es to make a signi�
ant enhan
ement tothe a

ura
y of
oating point arithmeti
 operations. The answer
an be found in [3℄ in whi
h it is provedthat if no guard digit is kept during additions, then the error
ould be so large as to yield no
orre
t digitsin the answer, whereas if just one guard digit is kept during the operation, the result being rounded to �tin the memory word, then the error will be at most the equivalent of 2 units in the last signi�
ant digit. Inthis
ontext, the \
orre
t answer" is regarded as the answer
omputed using all available digits and keeping\in�nite pre
ision" for the intermediate results.2.6 IEEE standardThe previous dis
ussion has shown that there are many
hoi
es to be made in representing
oating pointnumbers, and in the past di�erent manufa
turers have made di�erent, in
ompatible,
hoi
es. The result isthat the behavior of
oating point algorithms
an vary from
omputer to
omputer, even if the pre
ision(number of bits used for exponent and mantissa) stays the same. In an attempt to make the behaviorof algorithms more uniform a
ross platforms, as well as improving the performan
e of su
h algorithms, theIEEE has established a
oating point standard whi
h spe
i�ed some of these
hoi
es [6, 7℄. This standardspe
i�es the kind of rounding that must be used, the use of guard digits, the behavior when under
ow orover
ow o

urs, et
. The �rst standard [6℄ was limited to 32 and 64 bit
oating point words, and providedfor optional extended formats for
omputers with longer words. The se
ond standard [7℄ extended this togeneral length words and bases. The prin
ipal
hoi
es made in [6℄ in
lude the following:� rounding to nearest (also known as round to even).� base 2 with a sign bit and an impli
it bit.
3

� single pre
ision with 8 bit exponent and 23 bit mantissa �elds (not in
luding the impli
it bit).� double pre
ision with 11 bit exponent and 52 bit mantissa �elds (not in
luding the impli
it bit).� the presen
e of �1 and NaN (Not a Number), as well as �0.� gradually denormalized numbers for those numbers unrepresentable as normalized numbers.� user-settable bits to turn on ex
eption handling for over
ow, under
ow, et
. and to vary the roundingstrategies.We have tried to motivate some of these
hoi
es with the above dis
ussion, but detailed formal analyses ofthese
hoi
es
an be found in [3℄.2.7 usual model for round-o� errorIn order to analyse the behavior of algorithms in the presen
e of round-o� errors, a mathemati
al modelfor round-o� errors is de�ned. The usual model is as follows, where � represents any of the four arithmeti
operations: fl(a� b) = (a� b) � (1 + �)where j�j � ma
heps, and ma
heps is
alled the unit round-o� or ma
hine epsilon for the given
omputer.The motivation behind this model is that the best any
omputer
ould do is to perform any individualarithmeti
 operation exa
tly, and then round or
hop to the nearest
oating point number when �nished.The rounding or
hopping involves
hanging the last bit in the (base 2) mantissa, and hen
e the ma
hepsis the value of this last bit { always relative to the size of the number itself. Needless to say, this model
anbe expensive to implement, so some
omputer manufa
turers have designed arithmeti
 operations whi
h donot obey this model, but one
an show that one or two guard digits suÆ
e to be
onsistent with this model.For most users of higher level languages, the details of the
oating point representation (espe
ially thelength of a
omputer word) are generally hidden from the user. Hen
e the ma
heps has a de�nition that
anbe
omputed in a higher level language, not spe
i�
ally by the number of bits in a word. The ma
heps isde�ned by the value of � yielding the minimum inmin�>0 fl(1 + �) > 1: (5)This formula
an be used to
al
ulate ma
heps by trying a sequen
e of trial values for �, ea
h entry onehalf the previous, until equality in (5) is a
hieved. The spe
i�
 value of ma
heps depends on the roundingstrategy. This
an be most easily illustrated with 3 digit de
imal
oating point arithmeti
. The smallest ssu
h that fl(1+ s) > 1 is 1:00� 10�3 in
hopping, 5:00� 10�4 if a traditional rounding strategy is used, and5:01� 10�4 if rounding to even is used. In general, ma
heps in rounding is approximately half that obtainedusing
hopping.
3 examples of
atastrophi
 e�e
ts of round-o� errorTo illustrate how rounding errors
an a

umulate
atastrophi
ally in unexpe
ted ways, we give two exam-ples adapted from [9℄. An extensive introdu
tory dis
ussion on the e�e
ts of rounding error in s
ienti�

omputations involving the use of
oating point
an be found in [9, 4℄.Of the four arithmeti
 operations, subtra
tion and addition are really the same operation. Most lossof signi�
an
e and
an
ellation errors des
ribed below arise from these two operations. Multipli
ation anddivision give rise to problems only if the results over
ow, under
ow or must be denormalized. An unusuale�e
t of the fa
t that
oating point numbers are dis
rete in nature is that the operations no longer obey theusual laws of the real numbers. For example, the asso
iative law for addition does not hold for the
oatingpoint numbers. If s is a positive number less that ma
heps, but more that ma
heps=2, then 1+(s+s) will bestri
tly bigger than 1, but (1 + s) + s will equal 1. This is an extreme
ase, but the order in whi
h numbersare added up
an a�e
t the
omputed sum markedly. This is further illustrated by the �rst example below.It has been pointed out that the use of the denormalized numbers mean that programs
an depend onthe fa
t fl(a� b) = 0 implies a = b. However, it
an still happen that fl(a � b) = a when a 6= 0 and b 6= 1.This
an happen, for example, when a is the smallest representable
oating point number, and b is a numberbetween :6 and 1, when rounding is used. Programs whose logi
 depend on fl(a � b) being always di�erent

4

from a
an su�er very mysterious failures. However, generally, multipli
ation and division do not give riseto
atastrophi
 rounding errors unless numbers near the ends of the exponent range are involved, or when
ombined with other operations.3.1 taylor series for exp(-40)A simple algorithm to
ompute the exponential fun
tion ex is to use the well known Taylor series for it:ex =Xi�0 xii! :When x � 0, this
an yield a

urate results if one is willing to take enough terms, but if used when x < 0,this
an yield to
atastrophi
 results, all due to the �nite word length of the ma
hine. To take an extreme
ase, let x = �40. Then all the terms after the 140-th term are mu
h less than 10�16 and de
ay rapidly, andthe result is also very small: e�40 = 4:2484�10�18. But simply adding up the terms of the Taylor series willyield 1:8654, whi
h is no where near the true answer. The problem is the terms in this series alternate insign, and the intermediate terms rea
h 1:4817 � 10+16 in magnitude, and we end up subtra
ting very largenumbers that are almost equal and opposite. This results in severe
an
ellation.3.2 numeri
al derivative of exp(x) � x=1Suppose we take the naive approa
h to approximate the numeri
al derivative of a fun
tion f :f 0(x) = f(x+ h)� f(x)h ;for some suitable small h. Applying this to f(x) = ex and taking the derivative at x = 1, we �nd that weget as mu
h a

ura
y with h = 2 � 10�6 as with h = 10�10 on a ma
hine with approximately 16 de
imaldigits in the mantissa. In both
ases, the error is about 3 � 10�6, and less than half the
omputed digitsare good. Here again we have severe
an
ellation from subtra
ting numbers that are almost equal. Hen
esimply making the stepsize h smaller does not lead to more a

ura
y.
4 E�e
t on algorithms4.1 round-o�
auses perturbation to data and to intermediate resultsThe examples above are extreme
ases showing that
atastrophi
 loss of a

ura
y
an result if
oating pointarithmeti
 is not used
arefully. The e�e
t of round-o� error is applied to ea
h intermediate result and isguaranteed to be small relative to those intermediate results. However, in some
ases those intermediateresults
an be larger than the �nal desired results, leading to errors mu
h larger than would be expe
tedfrom just the sizes of the input and �nal output of a parti
ular algorithm. However, in some algorithmssu
h as when simulating an ordinary di�erential equation (su
h as a
ontrol system) _x = Ax+ f where f isa for
ing fun
tion, the intermediate results may not be any larger than than the �nal or initial values, yetsevere loss of a

ura
y
an result. One sour
e of error is the propagation of intermediate errors, and in nasty
ases the e�e
t of those intermediate errors
an grow be
oming more and more signi�
ant as the algorithmpro
eeds4.2 algorithm stability vs
onditioning of problemIn an attempt to analyse and alleviate the e�e
ts of rounding errors, numeri
al analysts have developedparadigms for the analysis of the behavior of numeri
al algorithms and have used these paradigms to developalgorithms themselves for whi
h one
an prove that the e�e
t of rounding errors is bounded. It is usefulto des
ribe these paradigms. The �rst and most fundamental is the
on
ept of algorithm stability versus
onditioning of the problem. The latter refers to the ill-posedness of the problem. If a problem is ill-posed,then slight variations to the
oeÆ
ients in the problem will yield massive
hanges to the exa
t solution. Inthis
ase, no
oating point algorithm will be able to
ompute a solution with high a

ura
y. If the problem iswell-posed, then one would expe
t a good algorithm to
ompute a solution with full a

ura
y. An algorithmthat fails that requirement is
alled unstable. An algorithm that is able to
ompute solutions with reasonablea

ura
y for well-posed problems, and does not lose more a

ura
y on ill-posed problems than the ill-posedproblems deserve, is
alled stable. 5

4.3 relevan
e to fault toleran
eThe study of rounding errors is relevant to fault toleran
e in two ways. At the most elementary level,the presen
e of rounding errors means that no
omputed solution will be exa
t, and we
annot
he
k forthe presen
e of faults by
he
king if the
omputed solution satis�es some
ondition exa
tly. Any faultdete
tion system would have to allow for the presen
e of errors in the solution arising naturally from normalrounding errors. This thus leads to the diÆ
ult task of distinguishing between errors arising from naturalrounding errors and errors arising from faults. If the underlying problem is ill-posed to any degree (
alledill-
onditioned) then one is also fa
ed with the issue that the a

ura
y of the
omputed solution will be verypoor, even if that solution were
omputed
orre
tly.On the other hand, many numeri
al algorithms have been shown to be stable in a
ertain sense. Al-gorithms arising in matrix
omputations have been espe
ially well studied. In parti
ular, in the domain ofsolving systems of linear equations,
ertain algorithms have been shown to
ompute the exa
t solution to asystem within a small multiple of ma
heps of the original system of equations, even when the system is mod-erately ill-posed. In some
ases, pre
ise bounds on the possible dis
repan
y have been derived. These
anbe used to develop
onditions that
an be used to
he
k for faults. Note that even if the
omputed solutionexa
tly satis�es a nearby system of equations, that does not imply that the error in the solution is small,unless the system of equations are very well
onditioned. As a
onsequen
e, any validation pro
edure forfault dete
tion
an only
he
k for the
orre
tness of the
omputed solutions indire
tly, and not by
omputingthe a

ura
y of the solution itself.The result of this analysis has been the development of
onditions to
he
k the
orre
tness numeri
al
omputations, mainly in the domain of matrix
omputations and signal pro
essing. These
onditions allinvolve the determination of a set of pre
ise toleran
es that are tight enough to enfor
e suÆ
ient a

ura
yin the solutions, yet guaranteed to be loose enough to be satis�able even when solving problems that aremoderately ill-posed. Prin
ipal approa
hes in this area involve the use of
he
ksums, the use of ba
kward errorassertions and the use of mantissa
he
ksums. In all
ases, it has been found that applying these te
hniquesto series of operations instead of
he
ksumming ea
h individual operation has been most su

essful.Instead of using toleran
es, an alternative approa
h that has been used with some su

ess is intervalarithmeti
. Spa
e does not permit a full treatment here, sin
e most software, languages,
ompilers andar
hite
tures do not provide interval arithmeti
 as part of their built-in features. A synopsis of intervalarithmeti
, in
luding its uses and appli
ations
an be found in [10℄. In this arti
le we limit our dis
ussion toa short des
ription. The easiest way to view interval arithmeti
 is to
onsider repla
ing ea
h real number or
oating point number in the
omputer with two numbers representing an interval [a; b℄ in whi
h the \true"result is supposed to lie. Arithmeti
 operations are performed on the intervals. For example, addition wouldresult in [a1; b1℄ + [a2; b2℄ = [a1 + a2; b1 + b2℄. If all endpoints are positive, then multipli
ation of intervalswould be
omputed by [a1; b1℄ � [a2; b2℄ = [a1 �a2; b1 �b2℄. All the other arithmeti
 operations and more generalsituations
an be de�ned similarly. However, if no spe
ial pre
autions are taken, the size of the intervals
angrow too large to give useful bounds on the lo
ation of the \true" answers. So most su

essful appli
ationsinvolve more sophisti
ated analysis of whole series of arithmeti
 operations su
h as an inner produ
t ratherthan analysing ea
h individual operation, or else use some statisti
al te
hniques to narrow the intervals. Aspointed out in [3℄, in order to maintain the guarantee that
omputed intervals
ontain the \true" answer, itis ne
essary to round down the left endpoint and round up the right end point of ea
h
omputed interval.This requires the user to vary the rounding strategy used within the
omputer. The IEEE standards providethat the hardware provide a way for the user to vary the rounding strategy as well as some other parametersof the arithmeti
, but as pointed out by Prof. Kahan [8℄ most
ompilers and systems today do not a
tuallyprovide the user a

ess to that level of hardware.The remaining part of this arti
le is devoted to a dis
ussion of some of these fault toleran
e te
hniques.
5 Synopsis of fault toleran
e te
hniques for Linear AlgebraWe present a short synopsis of various te
hniques that have been proposed for the veri�
ation of
oating point
omputations, mostly in the area of linear algebra. The use of
he
ksums was made popular by Abraham[5℄. This method takes advantage of the fa
t that the result of most
omputations in linear algebra bearsa linear relation to the arguments originally supplied. So a linear
ombination of those results bears thesame linear relation to that same linear
ombination of the original data. For example, the row operationsin Gaussian Elimination (used to solve systems of linear equations)
an be
he
ksummed by taking linear
ombinations of the entries in ea
h row. When two rows are added in a row operation, the
he
ksums are

6

also added and
ompared with the
he
ksum generated from s
rat
h from the new
omputed row. In a
oating point environment, the
he
ksums will be
orrupted by round-o� error, and hen
e a toleran
e mustbe sued to de
ide if they mat
h. This toleran
e depends on the
ondition number of the matrix of
he
ksum
oeÆ
ients [2℄.Diskless Che
kpoint [11℄ methods are an alternative approa
h based on saving simple
ombinations ofpresele
ted intermediate states (e.g.
he
ksums) on several independent pro
essors. They
an save informa-tion at low
ost so that on
e an error has been dete
ted, a
orre
tion
an easily be applied. The simplestapproa
h is the generate periodi

he
kpoints of the state of ea
h pro
essor, and keep an \ex
lusive or" ofthose
he
kpoints on yet another pro
essor. If one pro
essor has a failure, the
he
kpoint that was on thatpro
essor
an be re
onstru
ted from all the other
he
kpoints. This pro
ess is generally independent of the
oating point representation.Another
lass of methods involve
omparing the results with
ertain error toleran
es. For matrix mul-tipli
ation the error toleran
es are forward error bounds (\how far is the
omputed answer from the trueanswer?") [12℄. For solving systems of linear equations, the error toleran
es are ba
kward error bounds(\how well does the
omputed answer �t the original problem" or more pre
isely \how mu
h must the orig-inal problem be
hanged so that the
omputed answer �ts it exa
tly?") [1℄. In these methods, the errorbounds used depend
riti
ally on the properties of the arithmeti
, parti
ularly the ma
heps, and in some
ases on the
onditioning of the underlying system being solved. Hen
e these te
hniques
an sometimesdete
t violations of the mathemati
al assumptions of solvability due to ill-posedness of the problem.Yet a third
lass of methods is derived by
onsidering only the mantissas alone. It turns out that for
ertain
oating point operations (like addition), one
an
ompute
he
ksums of the mantissas alone treatingthem as integers [ref?℄. Then the
he
ksum
omputed the same way derived from the mantissa of the resultmust mat
h the
ombination of the original mantissa
he
ksums. Sin
e the
he
ksums are
omputed usinginteger arithmeti
, round-o� errors do not apply. The only limitation to this approa
h is that this te
hnique
annot be applied to all
oating point operations (like multipli
ation), but
an be used to
he
k the additionpart of inner produ
ts.
Referen
es[1℄ D. L. Boley, G. H. Golub, S. Makar, N. Saxena, and E. J. M
Cluskey. Floating point fault toleran
eusing ba
kward error assertions, 1995.[2℄ D. L. Boley and F. T. Luk. A well
onditioned
he
ksum s
heme for algorithmi
 fault toleran
e.Integration, the VLSI Journal, 12:21{32, 1991.[3℄ D. Goldberg. What every
omputer s
ientist should know about
oating point arithmeti
. ACMComputing Surveys, 23(1):5{48, Mar
h 1991.[4℄ M. Heath. S
ienti�
 Computing, An Introdu
tory Survey. M
Graw Hill, 1997.[5℄ K. H. Huang and J. A. Abraham. Algorithm-based fault toleran
e for matrix operations. IEEE Trans.Comput., C-33(6):518{528, June 1984.[6℄ IEEE. ANSI/IEEE Standard 754-1985 for Binary Floating Point Arithmeti
. IEEE, 1985.[7℄ IEEE. ANSI/IEEE Standard 854-1987 for Radix-Independent Floating Point Arithmeti
. IEEE, 1985.[8℄ W. Kahan. The baleful e�e
t of
omputer languages and ben
hmarks upon applied mathemati
s, physi
sand
hemistry. presented at the SIAM Annual Meeting (Stanford Calif), 1997.[9℄ D. K. Kahaner, C. Moler, and S. Nash. Numeri
al Methods and Software. Prenti
e Hall, 1989.[10℄ R. B. Kearfott. Interval
omputations: Introdu
tion, uses, and resour
es. Euromath Bulletin, 2(1):95{112, 1996.[11℄ J. S. Plank, Y. Kim, and J. Dongarra. Algorithm-based diskless
he
kpointing for fault tolerant matrixoperations. In 25th International Symposium on Fault-Tolerant Computing, pages 351{360, 1995. IEEEComputer So
iety.

7

[12℄ A. Roy-Chowdhury and P. Banerjee. Toleran
e determination for algorithm based
he
ks using simpleerror analysis te
hniques. In Fault Tolerant Computing Symp. FTCS-23, pages 290{298, 1993. IEEEPress.

8

