
Rounding ErrorsboleyJuly 20, 1997
1 introdutionRounding errors are the errors arising from the use of oating point arithmeti on digital omputers. Sinethe omputer word has only a �xed and �nite number of bits or digits, only a �nite number of real numbersan be represented on a omputer, and the olletion of those real numbers that an be represented on theomputer is alled the oating point system for that omputer. Sine only �nitely many real numbers anbe represented exatly, it is possible, indeed likely, that the exat solution to any partiular problem is notpart of the oating point system and hene annot be represented exatly. Ideally, one would hope that oneould obtain the representable number losest to the true exat answer. When doing simple omputationsthis is usually possible, but is more problematial after long or ompliated omputations. Even the fourbasi operations, addition, subtration, multipliation, and division, annot be arried out exatly, so theintermediate results in any omputation will su�er from ontamination of rounding errors, and the �nalresults will su�er from the aumulated e�ets of all the intermediate rounding errors. The �eld of numerialanalysis is the study of the behavior of various algorithms when implemented in the oating point systemsubjet to rounding errors. In this artile, we desribe the main features typially found in oating pointsystems in omputers today, and give some examples of unusual e�ets that are aused by the presene ofrounding errors.
2 representation of oating point numbers.2.1 mantissa + exponentAll omputers today represent oating point numbers in the form mantissa � baseexponent, where themantissa is typially a number less than 2 in absolute value, and the exponent is a small integer. The baseis �xed for all numbers and hene is not atually stored at all. Exept for hand-held alulators, the baseis usually 2 exept for a few older omputers where the base is 8 or 16. The mantissa and exponent arerepresented in binary with a �xed number of bits for eah. Hene a typial representation is[s e7 e6 � � � e0 m23 m22 � � � m1 m0 ℄ (1)where s is the sign bit for the mantissa, e7; : : : ; e0 are the bits for the exponent, and m23 ; : : : ;m0 are thebits for the mantissa. If the base is �xed at 2, then the number represented by the bits (1) is(�1)s � (m23 � 20 +m22 � 2�1 + � � �+m0 � 2�23)� 2exponent; (2)where the exponent is an 8-bit signed integer. In this example, we have �xed the number of bits for themantissa and the exponent to 24 and 8, respetively, but in general these vary from omputer to omputer,and even within the omputer vary from single to double preision. Notie that the mantissa represented in(2) has the \binary point" (analog to the usual deimal point) right after the leftmost digit. Regarding theexponent as a signed integer, it is not typially represented as a ones or twos omplement number but moreoften in exess 127 notation, whih is essentially an unsigned integer representing the number 127 largerthan the true exponent. Again, if we have k bits instead of 8 as in this example, then the 127 is replaed by2k�1 � 1.

1

We illustrate this with a few examples, where we shorten the mantissa to 7 bits plus a sign and theexponent to 4 bits. Hene the exponent is in exess 7 notation:deimal binary bits remarks+5=2 +1:01� 21 0 1000 1010000�5=2 �1:01� 21 1 1000 1010000+20 +1:01� 24 0 1011 10100001=3 +1:010101� 2�2 0 0101 1010101 inexat1=10 +1:100110� 2�3 0 0100 1100110 inexat (3)
We remark that this representation, using normalized mantissas and exess notation for the exponents,allows one to ompare two positive oating point numbers using the usual integer ompare instrutions onthe bit patterns.2.2 normalizationNotie that in (3) there an be multiple ways to represent any partiular deimal number. If the leading digitof the mantissa is zero, then the number if said to be unnormalized, otherwise it is said to be normalized.So we ould also use the representationdeimal binary bits remarks+20 +0:00101� 27 0 1110 0001010 unnormalized1=3 +0:101010� 2�1 0 0110 0101010 inexat & unnorm. (4)

When unnormalized, we lose spae for signi�ant digits, hene oating point numbers are always stored innormalized fashion. We see that in (3), the normalized representation for the number 1/3 aptures morenonzero bits than the unnormalized representation (4). When the base is equal to 2, then the leading digitof the mantissa is just a bit whose only possible nonzero value is 1, and hene it is not even stored. So inthe representation (1), the bit m23 is always 1 and is not atually stored in the omputer. When not storedin this way, the bit m23 is alled an impliit bit. These bits are written in italis in (3).2.3 speial numbers, overow, underowThe representation (1) with the impliit bit m23 does not admit the number 0, sine 0 would have an all zeromantissa that must be unnormalized. To aommodate this, ertain speial bit patterns are reserved tozero and ertain other speial \numbers". A zero is often represented by a word of all zero bits, whih wouldotherwise represent the smallest representable positive oating point number. If a alulation gives rise toan answer less than the smallest representable number (in absolute value), then an underow ondition issaid to exist. In the past, the result was simply set to zero, but more reently, the result was denormalized.The use of gradually denormalized numbers involves those oating point numbers whih are less (inabsolute value) than the smallest representable normalized number. As disussed in [3℄, there is a relativelybig gap between the the smallest representable normalized number and zero. To �ll this gap, the IEEEdeided to allow for the use of unnormalized numbers. We an illustrate this with the representation in (3).The smallest normalized number representable in (3) is +1:00binary�2�7. However we an represent smallernumbers in an unnormalized manner, suh as +0:10binary � 2�7. Sine we have adopted the onventionof using the impliit bit, suh an unnormalized number annot be enoded in this format. The solution isto provide that the smallest representable normalized number be atually +1:00binary � 2�6, reserving thesmallest possible exponent value for unnormalized numbers. This was what has been adopted in the IEEEstandard (see below). Sine this smallest exponent value has all its bits equal to zero, the representationof the number zero in this format beomes just a speial ase of suh unnormalized numbers. As pointedout by [3℄, the use of denormalized numbers also guarantees that the omputed di�erene of two unequalnumbers will never be zero.A more serious problem ours if the result of the alulation is larger than the largest representablenumber. This is alled an overow ondition, and in most older omputers this would generate an error.However in the reent IEEE oating point standard (disussed below), suh a result would be replaed witha speial bit pattern representing plus-in�nity or minus-in�nity. When two suh in�nities are ombined, theresult an be totally unde�ned, so yet another speial bit pattern is reserved for suh a result. This lastresult is alled Not A Number, and is often printed by most omputer systems as NaN. By not generating anexeption upon overow, programs may fail more graefully.2

2.4 rounding vs hoppingAnother issue a�eting rounding errors is the hoie of rounding strategy. Given any partiular real number,whih nearby oating point number should one use? For example in (3), when we represented 1/3 as anunnormalized number we hopped away the last bit, but an alternative hoie would be to round up tothe next higher number to yield +0:101011binary � 2�1. The error ommitted in hopping in this aseis .0052 but in rounding is only .0026. But rounding requires slightly more omputation sine the digitsbeing removed must be examined. This issue arises when onverting a number from an external deimalrepresentation and when trying to �t the result of an intermediate arithmeti operation into a memory word.This is beause the arithmeti logi unit on most omputers atually operate on more digits than an �t ina word, the extra digits being alled guard digits disussed below.The IEEE Standard atually provides that the default rounding strategy should be a \round to even"strategy. The \round to even" mode is exatly the rounding strategy desribed above, exept when thenumber being rounded lies exatly half way between two representable numbers, as in rounding 12.5 to aninteger. The default \round to even" strategy selets the representable number whose last digit is even, sothat 12.5 would round to 12 and not 13. If the rounding in this ase were always up, then more numberswould end up being inreased than dereased during the rounding proess. If the ombinations of trailingdigits our equally likely, it is generally desirable that the number of times the rounding is up is about equalto the number of times the rounding is down, to try to anel out their e�et as muh as possible.2.5 guard digitsGuard digits are extra digits kept only within the Arithmeti Logi Unit during the ourse of individualoating point operations. They are never stored in memory. The Arithmeti Logi Unit arries out theoperation using at least one extra guard digit, then the result is rounded to �t in the register of memoryword. We illustrate the e�et of guard digits using the simple addition of two deimal oating point numbers1:01 � 10+1 and �9:93 � 100 (this example is from [3℄), where we keep 3 deimal digits in the mantissa.To aomplish this, the �rst step for the arithmeti logi unit is to shift the deimal point in the seondoperand to make the exponents math, yielding �:993 � 10+1. Then the mantissas may be added togetherdiretly. The auray of the answer is greatly a�eted by the number of digits kept for the omputation.The simplest approah is to use simple hopping and to keep only the digits orresponding to the largeroperand. The result in this ase is 1:01 � 10+1 � 0:99 � 10+1 = 2:00 � 10�1. If, however, we keep at leastone extra guard digit, then we obtain 1:010� 10+1 � 0:993� 10+1 = 1:70� 10�1. The latter answer is exatwhereas the former result has no orret digits.The reader may ask whether keeping just one guard digit suÆes to make a signi�ant enhanement tothe auray of oating point arithmeti operations. The answer an be found in [3℄ in whih it is provedthat if no guard digit is kept during additions, then the error ould be so large as to yield no orret digitsin the answer, whereas if just one guard digit is kept during the operation, the result being rounded to �tin the memory word, then the error will be at most the equivalent of 2 units in the last signi�ant digit. Inthis ontext, the \orret answer" is regarded as the answer omputed using all available digits and keeping\in�nite preision" for the intermediate results.2.6 IEEE standardThe previous disussion has shown that there are many hoies to be made in representing oating pointnumbers, and in the past di�erent manufaturers have made di�erent, inompatible, hoies. The result isthat the behavior of oating point algorithms an vary from omputer to omputer, even if the preision(number of bits used for exponent and mantissa) stays the same. In an attempt to make the behaviorof algorithms more uniform aross platforms, as well as improving the performane of suh algorithms, theIEEE has established a oating point standard whih spei�ed some of these hoies [6, 7℄. This standardspei�es the kind of rounding that must be used, the use of guard digits, the behavior when underow oroverow ours, et. The �rst standard [6℄ was limited to 32 and 64 bit oating point words, and providedfor optional extended formats for omputers with longer words. The seond standard [7℄ extended this togeneral length words and bases. The prinipal hoies made in [6℄ inlude the following:� rounding to nearest (also known as round to even).� base 2 with a sign bit and an impliit bit.
3

� single preision with 8 bit exponent and 23 bit mantissa �elds (not inluding the impliit bit).� double preision with 11 bit exponent and 52 bit mantissa �elds (not inluding the impliit bit).� the presene of �1 and NaN (Not a Number), as well as �0.� gradually denormalized numbers for those numbers unrepresentable as normalized numbers.� user-settable bits to turn on exeption handling for overow, underow, et. and to vary the roundingstrategies.We have tried to motivate some of these hoies with the above disussion, but detailed formal analyses ofthese hoies an be found in [3℄.2.7 usual model for round-o� errorIn order to analyse the behavior of algorithms in the presene of round-o� errors, a mathematial modelfor round-o� errors is de�ned. The usual model is as follows, where � represents any of the four arithmetioperations: fl(a� b) = (a� b) � (1 + �)where j�j � maheps, and maheps is alled the unit round-o� or mahine epsilon for the given omputer.The motivation behind this model is that the best any omputer ould do is to perform any individualarithmeti operation exatly, and then round or hop to the nearest oating point number when �nished.The rounding or hopping involves hanging the last bit in the (base 2) mantissa, and hene the mahepsis the value of this last bit { always relative to the size of the number itself. Needless to say, this model anbe expensive to implement, so some omputer manufaturers have designed arithmeti operations whih donot obey this model, but one an show that one or two guard digits suÆe to be onsistent with this model.For most users of higher level languages, the details of the oating point representation (espeially thelength of a omputer word) are generally hidden from the user. Hene the maheps has a de�nition that anbe omputed in a higher level language, not spei�ally by the number of bits in a word. The maheps isde�ned by the value of � yielding the minimum inmin�>0 fl(1 + �) > 1: (5)This formula an be used to alulate maheps by trying a sequene of trial values for �, eah entry onehalf the previous, until equality in (5) is ahieved. The spei� value of maheps depends on the roundingstrategy. This an be most easily illustrated with 3 digit deimal oating point arithmeti. The smallest ssuh that fl(1+ s) > 1 is 1:00� 10�3 in hopping, 5:00� 10�4 if a traditional rounding strategy is used, and5:01� 10�4 if rounding to even is used. In general, maheps in rounding is approximately half that obtainedusing hopping.
3 examples of atastrophi e�ets of round-o� errorTo illustrate how rounding errors an aumulate atastrophially in unexpeted ways, we give two exam-ples adapted from [9℄. An extensive introdutory disussion on the e�ets of rounding error in sienti�omputations involving the use of oating point an be found in [9, 4℄.Of the four arithmeti operations, subtration and addition are really the same operation. Most lossof signi�ane and anellation errors desribed below arise from these two operations. Multipliation anddivision give rise to problems only if the results overow, underow or must be denormalized. An unusuale�et of the fat that oating point numbers are disrete in nature is that the operations no longer obey theusual laws of the real numbers. For example, the assoiative law for addition does not hold for the oatingpoint numbers. If s is a positive number less that maheps, but more that maheps=2, then 1+(s+s) will bestritly bigger than 1, but (1 + s) + s will equal 1. This is an extreme ase, but the order in whih numbersare added up an a�et the omputed sum markedly. This is further illustrated by the �rst example below.It has been pointed out that the use of the denormalized numbers mean that programs an depend onthe fat fl(a� b) = 0 implies a = b. However, it an still happen that fl(a � b) = a when a 6= 0 and b 6= 1.This an happen, for example, when a is the smallest representable oating point number, and b is a numberbetween :6 and 1, when rounding is used. Programs whose logi depend on fl(a � b) being always di�erent

4

from a an su�er very mysterious failures. However, generally, multipliation and division do not give riseto atastrophi rounding errors unless numbers near the ends of the exponent range are involved, or whenombined with other operations.3.1 taylor series for exp(-40)A simple algorithm to ompute the exponential funtion ex is to use the well known Taylor series for it:ex =Xi�0 xii! :When x � 0, this an yield aurate results if one is willing to take enough terms, but if used when x < 0,this an yield to atastrophi results, all due to the �nite word length of the mahine. To take an extremease, let x = �40. Then all the terms after the 140-th term are muh less than 10�16 and deay rapidly, andthe result is also very small: e�40 = 4:2484�10�18. But simply adding up the terms of the Taylor series willyield 1:8654, whih is no where near the true answer. The problem is the terms in this series alternate insign, and the intermediate terms reah 1:4817 � 10+16 in magnitude, and we end up subtrating very largenumbers that are almost equal and opposite. This results in severe anellation.3.2 numerial derivative of exp(x) � x=1Suppose we take the naive approah to approximate the numerial derivative of a funtion f :f 0(x) = f(x+ h)� f(x)h ;for some suitable small h. Applying this to f(x) = ex and taking the derivative at x = 1, we �nd that weget as muh auray with h = 2 � 10�6 as with h = 10�10 on a mahine with approximately 16 deimaldigits in the mantissa. In both ases, the error is about 3 � 10�6, and less than half the omputed digitsare good. Here again we have severe anellation from subtrating numbers that are almost equal. Henesimply making the stepsize h smaller does not lead to more auray.
4 E�et on algorithms4.1 round-o� auses perturbation to data and to intermediate resultsThe examples above are extreme ases showing that atastrophi loss of auray an result if oating pointarithmeti is not used arefully. The e�et of round-o� error is applied to eah intermediate result and isguaranteed to be small relative to those intermediate results. However, in some ases those intermediateresults an be larger than the �nal desired results, leading to errors muh larger than would be expetedfrom just the sizes of the input and �nal output of a partiular algorithm. However, in some algorithmssuh as when simulating an ordinary di�erential equation (suh as a ontrol system) _x = Ax+ f where f isa foring funtion, the intermediate results may not be any larger than than the �nal or initial values, yetsevere loss of auray an result. One soure of error is the propagation of intermediate errors, and in nastyases the e�et of those intermediate errors an grow beoming more and more signi�ant as the algorithmproeeds4.2 algorithm stability vs onditioning of problemIn an attempt to analyse and alleviate the e�ets of rounding errors, numerial analysts have developedparadigms for the analysis of the behavior of numerial algorithms and have used these paradigms to developalgorithms themselves for whih one an prove that the e�et of rounding errors is bounded. It is usefulto desribe these paradigms. The �rst and most fundamental is the onept of algorithm stability versusonditioning of the problem. The latter refers to the ill-posedness of the problem. If a problem is ill-posed,then slight variations to the oeÆients in the problem will yield massive hanges to the exat solution. Inthis ase, no oating point algorithm will be able to ompute a solution with high auray. If the problem iswell-posed, then one would expet a good algorithm to ompute a solution with full auray. An algorithmthat fails that requirement is alled unstable. An algorithm that is able to ompute solutions with reasonableauray for well-posed problems, and does not lose more auray on ill-posed problems than the ill-posedproblems deserve, is alled stable. 5

4.3 relevane to fault toleraneThe study of rounding errors is relevant to fault tolerane in two ways. At the most elementary level,the presene of rounding errors means that no omputed solution will be exat, and we annot hek forthe presene of faults by heking if the omputed solution satis�es some ondition exatly. Any faultdetetion system would have to allow for the presene of errors in the solution arising naturally from normalrounding errors. This thus leads to the diÆult task of distinguishing between errors arising from naturalrounding errors and errors arising from faults. If the underlying problem is ill-posed to any degree (alledill-onditioned) then one is also faed with the issue that the auray of the omputed solution will be verypoor, even if that solution were omputed orretly.On the other hand, many numerial algorithms have been shown to be stable in a ertain sense. Al-gorithms arising in matrix omputations have been espeially well studied. In partiular, in the domain ofsolving systems of linear equations, ertain algorithms have been shown to ompute the exat solution to asystem within a small multiple of maheps of the original system of equations, even when the system is mod-erately ill-posed. In some ases, preise bounds on the possible disrepany have been derived. These anbe used to develop onditions that an be used to hek for faults. Note that even if the omputed solutionexatly satis�es a nearby system of equations, that does not imply that the error in the solution is small,unless the system of equations are very well onditioned. As a onsequene, any validation proedure forfault detetion an only hek for the orretness of the omputed solutions indiretly, and not by omputingthe auray of the solution itself.The result of this analysis has been the development of onditions to hek the orretness numerialomputations, mainly in the domain of matrix omputations and signal proessing. These onditions allinvolve the determination of a set of preise toleranes that are tight enough to enfore suÆient aurayin the solutions, yet guaranteed to be loose enough to be satis�able even when solving problems that aremoderately ill-posed. Prinipal approahes in this area involve the use of heksums, the use of bakward errorassertions and the use of mantissa heksums. In all ases, it has been found that applying these tehniquesto series of operations instead of heksumming eah individual operation has been most suessful.Instead of using toleranes, an alternative approah that has been used with some suess is intervalarithmeti. Spae does not permit a full treatment here, sine most software, languages, ompilers andarhitetures do not provide interval arithmeti as part of their built-in features. A synopsis of intervalarithmeti, inluding its uses and appliations an be found in [10℄. In this artile we limit our disussion toa short desription. The easiest way to view interval arithmeti is to onsider replaing eah real number oroating point number in the omputer with two numbers representing an interval [a; b℄ in whih the \true"result is supposed to lie. Arithmeti operations are performed on the intervals. For example, addition wouldresult in [a1; b1℄ + [a2; b2℄ = [a1 + a2; b1 + b2℄. If all endpoints are positive, then multipliation of intervalswould be omputed by [a1; b1℄ � [a2; b2℄ = [a1 �a2; b1 �b2℄. All the other arithmeti operations and more generalsituations an be de�ned similarly. However, if no speial preautions are taken, the size of the intervals angrow too large to give useful bounds on the loation of the \true" answers. So most suessful appliationsinvolve more sophistiated analysis of whole series of arithmeti operations suh as an inner produt ratherthan analysing eah individual operation, or else use some statistial tehniques to narrow the intervals. Aspointed out in [3℄, in order to maintain the guarantee that omputed intervals ontain the \true" answer, itis neessary to round down the left endpoint and round up the right end point of eah omputed interval.This requires the user to vary the rounding strategy used within the omputer. The IEEE standards providethat the hardware provide a way for the user to vary the rounding strategy as well as some other parametersof the arithmeti, but as pointed out by Prof. Kahan [8℄ most ompilers and systems today do not atuallyprovide the user aess to that level of hardware.The remaining part of this artile is devoted to a disussion of some of these fault tolerane tehniques.
5 Synopsis of fault tolerane tehniques for Linear AlgebraWe present a short synopsis of various tehniques that have been proposed for the veri�ation of oating pointomputations, mostly in the area of linear algebra. The use of heksums was made popular by Abraham[5℄. This method takes advantage of the fat that the result of most omputations in linear algebra bearsa linear relation to the arguments originally supplied. So a linear ombination of those results bears thesame linear relation to that same linear ombination of the original data. For example, the row operationsin Gaussian Elimination (used to solve systems of linear equations) an be heksummed by taking linearombinations of the entries in eah row. When two rows are added in a row operation, the heksums are

6

also added and ompared with the heksum generated from srath from the new omputed row. In aoating point environment, the heksums will be orrupted by round-o� error, and hene a tolerane mustbe sued to deide if they math. This tolerane depends on the ondition number of the matrix of heksumoeÆients [2℄.Diskless Chekpoint [11℄ methods are an alternative approah based on saving simple ombinations ofpreseleted intermediate states (e.g. heksums) on several independent proessors. They an save informa-tion at low ost so that one an error has been deteted, a orretion an easily be applied. The simplestapproah is the generate periodi hekpoints of the state of eah proessor, and keep an \exlusive or" ofthose hekpoints on yet another proessor. If one proessor has a failure, the hekpoint that was on thatproessor an be reonstruted from all the other hekpoints. This proess is generally independent of theoating point representation.Another lass of methods involve omparing the results with ertain error toleranes. For matrix mul-tipliation the error toleranes are forward error bounds (\how far is the omputed answer from the trueanswer?") [12℄. For solving systems of linear equations, the error toleranes are bakward error bounds(\how well does the omputed answer �t the original problem" or more preisely \how muh must the orig-inal problem be hanged so that the omputed answer �ts it exatly?") [1℄. In these methods, the errorbounds used depend ritially on the properties of the arithmeti, partiularly the maheps, and in someases on the onditioning of the underlying system being solved. Hene these tehniques an sometimesdetet violations of the mathematial assumptions of solvability due to ill-posedness of the problem.Yet a third lass of methods is derived by onsidering only the mantissas alone. It turns out that forertain oating point operations (like addition), one an ompute heksums of the mantissas alone treatingthem as integers [ref?℄. Then the heksum omputed the same way derived from the mantissa of the resultmust math the ombination of the original mantissa heksums. Sine the heksums are omputed usinginteger arithmeti, round-o� errors do not apply. The only limitation to this approah is that this tehniqueannot be applied to all oating point operations (like multipliation), but an be used to hek the additionpart of inner produts.
Referenes[1℄ D. L. Boley, G. H. Golub, S. Makar, N. Saxena, and E. J. MCluskey. Floating point fault toleraneusing bakward error assertions, 1995.[2℄ D. L. Boley and F. T. Luk. A well onditioned heksum sheme for algorithmi fault tolerane.Integration, the VLSI Journal, 12:21{32, 1991.[3℄ D. Goldberg. What every omputer sientist should know about oating point arithmeti. ACMComputing Surveys, 23(1):5{48, Marh 1991.[4℄ M. Heath. Sienti� Computing, An Introdutory Survey. MGraw Hill, 1997.[5℄ K. H. Huang and J. A. Abraham. Algorithm-based fault tolerane for matrix operations. IEEE Trans.Comput., C-33(6):518{528, June 1984.[6℄ IEEE. ANSI/IEEE Standard 754-1985 for Binary Floating Point Arithmeti. IEEE, 1985.[7℄ IEEE. ANSI/IEEE Standard 854-1987 for Radix-Independent Floating Point Arithmeti. IEEE, 1985.[8℄ W. Kahan. The baleful e�et of omputer languages and benhmarks upon applied mathematis, physisand hemistry. presented at the SIAM Annual Meeting (Stanford Calif), 1997.[9℄ D. K. Kahaner, C. Moler, and S. Nash. Numerial Methods and Software. Prentie Hall, 1989.[10℄ R. B. Kearfott. Interval omputations: Introdution, uses, and resoures. Euromath Bulletin, 2(1):95{112, 1996.[11℄ J. S. Plank, Y. Kim, and J. Dongarra. Algorithm-based diskless hekpointing for fault tolerant matrixoperations. In 25th International Symposium on Fault-Tolerant Computing, pages 351{360, 1995. IEEEComputer Soiety.

7

[12℄ A. Roy-Chowdhury and P. Banerjee. Tolerane determination for algorithm based heks using simpleerror analysis tehniques. In Fault Tolerant Computing Symp. FTCS-23, pages 290{298, 1993. IEEEPress.

8

