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1 introdu
tionRounding errors are the errors arising from the use of 
oating point arithmeti
 on digital 
omputers. Sin
ethe 
omputer word has only a �xed and �nite number of bits or digits, only a �nite number of real numbers
an be represented on a 
omputer, and the 
olle
tion of those real numbers that 
an be represented on the
omputer is 
alled the 
oating point system for that 
omputer. Sin
e only �nitely many real numbers 
anbe represented exa
tly, it is possible, indeed likely, that the exa
t solution to any parti
ular problem is notpart of the 
oating point system and hen
e 
annot be represented exa
tly. Ideally, one would hope that one
ould obtain the representable number 
losest to the true exa
t answer. When doing simple 
omputationsthis is usually possible, but is more problemati
al after long or 
ompli
ated 
omputations. Even the fourbasi
 operations, addition, subtra
tion, multipli
ation, and division, 
annot be 
arried out exa
tly, so theintermediate results in any 
omputation will su�er from 
ontamination of rounding errors, and the �nalresults will su�er from the a

umulated e�e
ts of all the intermediate rounding errors. The �eld of numeri
alanalysis is the study of the behavior of various algorithms when implemented in the 
oating point systemsubje
t to rounding errors. In this arti
le, we des
ribe the main features typi
ally found in 
oating pointsystems in 
omputers today, and give some examples of unusual e�e
ts that are 
aused by the presen
e ofrounding errors.
2 representation of 
oating point numbers.2.1 mantissa + exponentAll 
omputers today represent 
oating point numbers in the form mantissa � baseexponent, where themantissa is typi
ally a number less than 2 in absolute value, and the exponent is a small integer. The baseis �xed for all numbers and hen
e is not a
tually stored at all. Ex
ept for hand-held 
al
ulators, the baseis usually 2 ex
ept for a few older 
omputers where the base is 8 or 16. The mantissa and exponent arerepresented in binary with a �xed number of bits for ea
h. Hen
e a typi
al representation is[ s e7 e6 � � � e0 m23 m22 � � � m1 m0 ℄ (1)where s is the sign bit for the mantissa, e7; : : : ; e0 are the bits for the exponent, and m23 ; : : : ;m0 are thebits for the mantissa. If the base is �xed at 2, then the number represented by the bits (1) is(�1)s � (m23 � 20 +m22 � 2�1 + � � �+m0 � 2�23)� 2exponent; (2)where the exponent is an 8-bit signed integer. In this example, we have �xed the number of bits for themantissa and the exponent to 24 and 8, respe
tively, but in general these vary from 
omputer to 
omputer,and even within the 
omputer vary from single to double pre
ision. Noti
e that the mantissa represented in(2) has the \binary point" (analog to the usual de
imal point) right after the leftmost digit. Regarding theexponent as a signed integer, it is not typi
ally represented as a ones or twos 
omplement number but moreoften in ex
ess 127 notation, whi
h is essentially an unsigned integer representing the number 127 largerthan the true exponent. Again, if we have k bits instead of 8 as in this example, then the 127 is repla
ed by2k�1 � 1.
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We illustrate this with a few examples, where we shorten the mantissa to 7 bits plus a sign and theexponent to 4 bits. Hen
e the exponent is in ex
ess 7 notation:de
imal binary bits remarks+5=2 +1:01� 21 0 1000 1010000�5=2 �1:01� 21 1 1000 1010000+20 +1:01� 24 0 1011 10100001=3 +1:010101� 2�2 0 0101 1010101 inexa
t1=10 +1:100110� 2�3 0 0100 1100110 inexa
t (3)
We remark that this representation, using normalized mantissas and ex
ess notation for the exponents,allows one to 
ompare two positive 
oating point numbers using the usual integer 
ompare instru
tions onthe bit patterns.2.2 normalizationNoti
e that in (3) there 
an be multiple ways to represent any parti
ular de
imal number. If the leading digitof the mantissa is zero, then the number if said to be unnormalized, otherwise it is said to be normalized.So we 
ould also use the representationde
imal binary bits remarks+20 +0:00101� 27 0 1110 0001010 unnormalized1=3 +0:101010� 2�1 0 0110 0101010 inexa
t & unnorm. (4)

When unnormalized, we lose spa
e for signi�
ant digits, hen
e 
oating point numbers are always stored innormalized fashion. We see that in (3), the normalized representation for the number 1/3 
aptures morenonzero bits than the unnormalized representation (4). When the base is equal to 2, then the leading digitof the mantissa is just a bit whose only possible nonzero value is 1, and hen
e it is not even stored. So inthe representation (1), the bit m23 is always 1 and is not a
tually stored in the 
omputer. When not storedin this way, the bit m23 is 
alled an impli
it bit. These bits are written in itali
s in (3).2.3 spe
ial numbers, over
ow, under
owThe representation (1) with the impli
it bit m23 does not admit the number 0, sin
e 0 would have an all zeromantissa that must be unnormalized. To a

ommodate this, 
ertain spe
ial bit patterns are reserved tozero and 
ertain other spe
ial \numbers". A zero is often represented by a word of all zero bits, whi
h wouldotherwise represent the smallest representable positive 
oating point number. If a 
al
ulation gives rise toan answer less than the smallest representable number (in absolute value), then an under
ow 
ondition issaid to exist. In the past, the result was simply set to zero, but more re
ently, the result was denormalized.The use of gradually denormalized numbers involves those 
oating point numbers whi
h are less (inabsolute value) than the smallest representable normalized number. As dis
ussed in [3℄, there is a relativelybig gap between the the smallest representable normalized number and zero. To �ll this gap, the IEEEde
ided to allow for the use of unnormalized numbers. We 
an illustrate this with the representation in (3).The smallest normalized number representable in (3) is +1:00binary�2�7. However we 
an represent smallernumbers in an unnormalized manner, su
h as +0:10binary � 2�7. Sin
e we have adopted the 
onventionof using the impli
it bit, su
h an unnormalized number 
annot be en
oded in this format. The solution isto provide that the smallest representable normalized number be a
tually +1:00binary � 2�6, reserving thesmallest possible exponent value for unnormalized numbers. This was what has been adopted in the IEEEstandard (see below). Sin
e this smallest exponent value has all its bits equal to zero, the representationof the number zero in this format be
omes just a spe
ial 
ase of su
h unnormalized numbers. As pointedout by [3℄, the use of denormalized numbers also guarantees that the 
omputed di�eren
e of two unequalnumbers will never be zero.A more serious problem o

urs if the result of the 
al
ulation is larger than the largest representablenumber. This is 
alled an over
ow 
ondition, and in most older 
omputers this would generate an error.However in the re
ent IEEE 
oating point standard (dis
ussed below), su
h a result would be repla
ed witha spe
ial bit pattern representing plus-in�nity or minus-in�nity. When two su
h in�nities are 
ombined, theresult 
an be totally unde�ned, so yet another spe
ial bit pattern is reserved for su
h a result. This lastresult is 
alled Not A Number, and is often printed by most 
omputer systems as NaN. By not generating anex
eption upon over
ow, programs may fail more gra
efully.2



2.4 rounding vs 
hoppingAnother issue a�e
ting rounding errors is the 
hoi
e of rounding strategy. Given any parti
ular real number,whi
h nearby 
oating point number should one use? For example in (3), when we represented 1/3 as anunnormalized number we 
hopped away the last bit, but an alternative 
hoi
e would be to round up tothe next higher number to yield +0:101011binary � 2�1. The error 
ommitted in 
hopping in this 
aseis .0052 but in rounding is only .0026. But rounding requires slightly more 
omputation sin
e the digitsbeing removed must be examined. This issue arises when 
onverting a number from an external de
imalrepresentation and when trying to �t the result of an intermediate arithmeti
 operation into a memory word.This is be
ause the arithmeti
 logi
 unit on most 
omputers a
tually operate on more digits than 
an �t ina word, the extra digits being 
alled guard digits dis
ussed below.The IEEE Standard a
tually provides that the default rounding strategy should be a \round to even"strategy. The \round to even" mode is exa
tly the rounding strategy des
ribed above, ex
ept when thenumber being rounded lies exa
tly half way between two representable numbers, as in rounding 12.5 to aninteger. The default \round to even" strategy sele
ts the representable number whose last digit is even, sothat 12.5 would round to 12 and not 13. If the rounding in this 
ase were always up, then more numberswould end up being in
reased than de
reased during the rounding pro
ess. If the 
ombinations of trailingdigits o

ur equally likely, it is generally desirable that the number of times the rounding is up is about equalto the number of times the rounding is down, to try to 
an
el out their e�e
t as mu
h as possible.2.5 guard digitsGuard digits are extra digits kept only within the Arithmeti
 Logi
 Unit during the 
ourse of individual
oating point operations. They are never stored in memory. The Arithmeti
 Logi
 Unit 
arries out theoperation using at least one extra guard digit, then the result is rounded to �t in the register of memoryword. We illustrate the e�e
t of guard digits using the simple addition of two de
imal 
oating point numbers1:01 � 10+1 and �9:93 � 100 (this example is from [3℄), where we keep 3 de
imal digits in the mantissa.To a

omplish this, the �rst step for the arithmeti
 logi
 unit is to shift the de
imal point in the se
ondoperand to make the exponents mat
h, yielding �:993 � 10+1. Then the mantissas may be added togetherdire
tly. The a

ura
y of the answer is greatly a�e
ted by the number of digits kept for the 
omputation.The simplest approa
h is to use simple 
hopping and to keep only the digits 
orresponding to the largeroperand. The result in this 
ase is 1:01 � 10+1 � 0:99 � 10+1 = 2:00 � 10�1. If, however, we keep at leastone extra guard digit, then we obtain 1:010� 10+1 � 0:993� 10+1 = 1:70� 10�1. The latter answer is exa
twhereas the former result has no 
orre
t digits.The reader may ask whether keeping just one guard digit suÆ
es to make a signi�
ant enhan
ement tothe a

ura
y of 
oating point arithmeti
 operations. The answer 
an be found in [3℄ in whi
h it is provedthat if no guard digit is kept during additions, then the error 
ould be so large as to yield no 
orre
t digitsin the answer, whereas if just one guard digit is kept during the operation, the result being rounded to �tin the memory word, then the error will be at most the equivalent of 2 units in the last signi�
ant digit. Inthis 
ontext, the \
orre
t answer" is regarded as the answer 
omputed using all available digits and keeping\in�nite pre
ision" for the intermediate results.2.6 IEEE standardThe previous dis
ussion has shown that there are many 
hoi
es to be made in representing 
oating pointnumbers, and in the past di�erent manufa
turers have made di�erent, in
ompatible, 
hoi
es. The result isthat the behavior of 
oating point algorithms 
an vary from 
omputer to 
omputer, even if the pre
ision(number of bits used for exponent and mantissa) stays the same. In an attempt to make the behaviorof algorithms more uniform a
ross platforms, as well as improving the performan
e of su
h algorithms, theIEEE has established a 
oating point standard whi
h spe
i�ed some of these 
hoi
es [6, 7℄. This standardspe
i�es the kind of rounding that must be used, the use of guard digits, the behavior when under
ow orover
ow o

urs, et
. The �rst standard [6℄ was limited to 32 and 64 bit 
oating point words, and providedfor optional extended formats for 
omputers with longer words. The se
ond standard [7℄ extended this togeneral length words and bases. The prin
ipal 
hoi
es made in [6℄ in
lude the following:� rounding to nearest (also known as round to even).� base 2 with a sign bit and an impli
it bit.
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� single pre
ision with 8 bit exponent and 23 bit mantissa �elds (not in
luding the impli
it bit).� double pre
ision with 11 bit exponent and 52 bit mantissa �elds (not in
luding the impli
it bit).� the presen
e of �1 and NaN (Not a Number), as well as �0.� gradually denormalized numbers for those numbers unrepresentable as normalized numbers.� user-settable bits to turn on ex
eption handling for over
ow, under
ow, et
. and to vary the roundingstrategies.We have tried to motivate some of these 
hoi
es with the above dis
ussion, but detailed formal analyses ofthese 
hoi
es 
an be found in [3℄.2.7 usual model for round-o� errorIn order to analyse the behavior of algorithms in the presen
e of round-o� errors, a mathemati
al modelfor round-o� errors is de�ned. The usual model is as follows, where � represents any of the four arithmeti
operations: fl(a� b) = (a� b) � (1 + �)where j�j � ma
heps, and ma
heps is 
alled the unit round-o� or ma
hine epsilon for the given 
omputer.The motivation behind this model is that the best any 
omputer 
ould do is to perform any individualarithmeti
 operation exa
tly, and then round or 
hop to the nearest 
oating point number when �nished.The rounding or 
hopping involves 
hanging the last bit in the (base 2) mantissa, and hen
e the ma
hepsis the value of this last bit { always relative to the size of the number itself. Needless to say, this model 
anbe expensive to implement, so some 
omputer manufa
turers have designed arithmeti
 operations whi
h donot obey this model, but one 
an show that one or two guard digits suÆ
e to be 
onsistent with this model.For most users of higher level languages, the details of the 
oating point representation (espe
ially thelength of a 
omputer word) are generally hidden from the user. Hen
e the ma
heps has a de�nition that 
anbe 
omputed in a higher level language, not spe
i�
ally by the number of bits in a word. The ma
heps isde�ned by the value of � yielding the minimum inmin�>0 fl(1 + �) > 1: (5)This formula 
an be used to 
al
ulate ma
heps by trying a sequen
e of trial values for �, ea
h entry onehalf the previous, until equality in (5) is a
hieved. The spe
i�
 value of ma
heps depends on the roundingstrategy. This 
an be most easily illustrated with 3 digit de
imal 
oating point arithmeti
. The smallest ssu
h that fl(1+ s) > 1 is 1:00� 10�3 in 
hopping, 5:00� 10�4 if a traditional rounding strategy is used, and5:01� 10�4 if rounding to even is used. In general, ma
heps in rounding is approximately half that obtainedusing 
hopping.
3 examples of 
atastrophi
 e�e
ts of round-o� errorTo illustrate how rounding errors 
an a

umulate 
atastrophi
ally in unexpe
ted ways, we give two exam-ples adapted from [9℄. An extensive introdu
tory dis
ussion on the e�e
ts of rounding error in s
ienti�

omputations involving the use of 
oating point 
an be found in [9, 4℄.Of the four arithmeti
 operations, subtra
tion and addition are really the same operation. Most lossof signi�
an
e and 
an
ellation errors des
ribed below arise from these two operations. Multipli
ation anddivision give rise to problems only if the results over
ow, under
ow or must be denormalized. An unusuale�e
t of the fa
t that 
oating point numbers are dis
rete in nature is that the operations no longer obey theusual laws of the real numbers. For example, the asso
iative law for addition does not hold for the 
oatingpoint numbers. If s is a positive number less that ma
heps, but more that ma
heps=2, then 1+(s+s) will bestri
tly bigger than 1, but (1 + s) + s will equal 1. This is an extreme 
ase, but the order in whi
h numbersare added up 
an a�e
t the 
omputed sum markedly. This is further illustrated by the �rst example below.It has been pointed out that the use of the denormalized numbers mean that programs 
an depend onthe fa
t fl(a� b) = 0 implies a = b. However, it 
an still happen that fl(a � b) = a when a 6= 0 and b 6= 1.This 
an happen, for example, when a is the smallest representable 
oating point number, and b is a numberbetween :6 and 1, when rounding is used. Programs whose logi
 depend on fl(a � b) being always di�erent
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from a 
an su�er very mysterious failures. However, generally, multipli
ation and division do not give riseto 
atastrophi
 rounding errors unless numbers near the ends of the exponent range are involved, or when
ombined with other operations.3.1 taylor series for exp(-40)A simple algorithm to 
ompute the exponential fun
tion ex is to use the well known Taylor series for it:ex =Xi�0 xii! :When x � 0, this 
an yield a

urate results if one is willing to take enough terms, but if used when x < 0,this 
an yield to 
atastrophi
 results, all due to the �nite word length of the ma
hine. To take an extreme
ase, let x = �40. Then all the terms after the 140-th term are mu
h less than 10�16 and de
ay rapidly, andthe result is also very small: e�40 = 4:2484�10�18. But simply adding up the terms of the Taylor series willyield 1:8654, whi
h is no where near the true answer. The problem is the terms in this series alternate insign, and the intermediate terms rea
h 1:4817 � 10+16 in magnitude, and we end up subtra
ting very largenumbers that are almost equal and opposite. This results in severe 
an
ellation.3.2 numeri
al derivative of exp(x) � x=1Suppose we take the naive approa
h to approximate the numeri
al derivative of a fun
tion f :f 0(x) = f(x+ h)� f(x)h ;for some suitable small h. Applying this to f(x) = ex and taking the derivative at x = 1, we �nd that weget as mu
h a

ura
y with h = 2 � 10�6 as with h = 10�10 on a ma
hine with approximately 16 de
imaldigits in the mantissa. In both 
ases, the error is about 3 � 10�6, and less than half the 
omputed digitsare good. Here again we have severe 
an
ellation from subtra
ting numbers that are almost equal. Hen
esimply making the stepsize h smaller does not lead to more a

ura
y.
4 E�e
t on algorithms4.1 round-o� 
auses perturbation to data and to intermediate resultsThe examples above are extreme 
ases showing that 
atastrophi
 loss of a

ura
y 
an result if 
oating pointarithmeti
 is not used 
arefully. The e�e
t of round-o� error is applied to ea
h intermediate result and isguaranteed to be small relative to those intermediate results. However, in some 
ases those intermediateresults 
an be larger than the �nal desired results, leading to errors mu
h larger than would be expe
tedfrom just the sizes of the input and �nal output of a parti
ular algorithm. However, in some algorithmssu
h as when simulating an ordinary di�erential equation (su
h as a 
ontrol system) _x = Ax+ f where f isa for
ing fun
tion, the intermediate results may not be any larger than than the �nal or initial values, yetsevere loss of a

ura
y 
an result. One sour
e of error is the propagation of intermediate errors, and in nasty
ases the e�e
t of those intermediate errors 
an grow be
oming more and more signi�
ant as the algorithmpro
eeds4.2 algorithm stability vs 
onditioning of problemIn an attempt to analyse and alleviate the e�e
ts of rounding errors, numeri
al analysts have developedparadigms for the analysis of the behavior of numeri
al algorithms and have used these paradigms to developalgorithms themselves for whi
h one 
an prove that the e�e
t of rounding errors is bounded. It is usefulto des
ribe these paradigms. The �rst and most fundamental is the 
on
ept of algorithm stability versus
onditioning of the problem. The latter refers to the ill-posedness of the problem. If a problem is ill-posed,then slight variations to the 
oeÆ
ients in the problem will yield massive 
hanges to the exa
t solution. Inthis 
ase, no 
oating point algorithm will be able to 
ompute a solution with high a

ura
y. If the problem iswell-posed, then one would expe
t a good algorithm to 
ompute a solution with full a

ura
y. An algorithmthat fails that requirement is 
alled unstable. An algorithm that is able to 
ompute solutions with reasonablea

ura
y for well-posed problems, and does not lose more a

ura
y on ill-posed problems than the ill-posedproblems deserve, is 
alled stable. 5



4.3 relevan
e to fault toleran
eThe study of rounding errors is relevant to fault toleran
e in two ways. At the most elementary level,the presen
e of rounding errors means that no 
omputed solution will be exa
t, and we 
annot 
he
k forthe presen
e of faults by 
he
king if the 
omputed solution satis�es some 
ondition exa
tly. Any faultdete
tion system would have to allow for the presen
e of errors in the solution arising naturally from normalrounding errors. This thus leads to the diÆ
ult task of distinguishing between errors arising from naturalrounding errors and errors arising from faults. If the underlying problem is ill-posed to any degree (
alledill-
onditioned) then one is also fa
ed with the issue that the a

ura
y of the 
omputed solution will be verypoor, even if that solution were 
omputed 
orre
tly.On the other hand, many numeri
al algorithms have been shown to be stable in a 
ertain sense. Al-gorithms arising in matrix 
omputations have been espe
ially well studied. In parti
ular, in the domain ofsolving systems of linear equations, 
ertain algorithms have been shown to 
ompute the exa
t solution to asystem within a small multiple of ma
heps of the original system of equations, even when the system is mod-erately ill-posed. In some 
ases, pre
ise bounds on the possible dis
repan
y have been derived. These 
anbe used to develop 
onditions that 
an be used to 
he
k for faults. Note that even if the 
omputed solutionexa
tly satis�es a nearby system of equations, that does not imply that the error in the solution is small,unless the system of equations are very well 
onditioned. As a 
onsequen
e, any validation pro
edure forfault dete
tion 
an only 
he
k for the 
orre
tness of the 
omputed solutions indire
tly, and not by 
omputingthe a

ura
y of the solution itself.The result of this analysis has been the development of 
onditions to 
he
k the 
orre
tness numeri
al
omputations, mainly in the domain of matrix 
omputations and signal pro
essing. These 
onditions allinvolve the determination of a set of pre
ise toleran
es that are tight enough to enfor
e suÆ
ient a

ura
yin the solutions, yet guaranteed to be loose enough to be satis�able even when solving problems that aremoderately ill-posed. Prin
ipal approa
hes in this area involve the use of 
he
ksums, the use of ba
kward errorassertions and the use of mantissa 
he
ksums. In all 
ases, it has been found that applying these te
hniquesto series of operations instead of 
he
ksumming ea
h individual operation has been most su

essful.Instead of using toleran
es, an alternative approa
h that has been used with some su

ess is intervalarithmeti
. Spa
e does not permit a full treatment here, sin
e most software, languages, 
ompilers andar
hite
tures do not provide interval arithmeti
 as part of their built-in features. A synopsis of intervalarithmeti
, in
luding its uses and appli
ations 
an be found in [10℄. In this arti
le we limit our dis
ussion toa short des
ription. The easiest way to view interval arithmeti
 is to 
onsider repla
ing ea
h real number or
oating point number in the 
omputer with two numbers representing an interval [a; b℄ in whi
h the \true"result is supposed to lie. Arithmeti
 operations are performed on the intervals. For example, addition wouldresult in [a1; b1℄ + [a2; b2℄ = [a1 + a2; b1 + b2℄. If all endpoints are positive, then multipli
ation of intervalswould be 
omputed by [a1; b1℄ � [a2; b2℄ = [a1 �a2; b1 �b2℄. All the other arithmeti
 operations and more generalsituations 
an be de�ned similarly. However, if no spe
ial pre
autions are taken, the size of the intervals 
angrow too large to give useful bounds on the lo
ation of the \true" answers. So most su

essful appli
ationsinvolve more sophisti
ated analysis of whole series of arithmeti
 operations su
h as an inner produ
t ratherthan analysing ea
h individual operation, or else use some statisti
al te
hniques to narrow the intervals. Aspointed out in [3℄, in order to maintain the guarantee that 
omputed intervals 
ontain the \true" answer, itis ne
essary to round down the left endpoint and round up the right end point of ea
h 
omputed interval.This requires the user to vary the rounding strategy used within the 
omputer. The IEEE standards providethat the hardware provide a way for the user to vary the rounding strategy as well as some other parametersof the arithmeti
, but as pointed out by Prof. Kahan [8℄ most 
ompilers and systems today do not a
tuallyprovide the user a

ess to that level of hardware.The remaining part of this arti
le is devoted to a dis
ussion of some of these fault toleran
e te
hniques.
5 Synopsis of fault toleran
e te
hniques for Linear AlgebraWe present a short synopsis of various te
hniques that have been proposed for the veri�
ation of 
oating point
omputations, mostly in the area of linear algebra. The use of 
he
ksums was made popular by Abraham[5℄. This method takes advantage of the fa
t that the result of most 
omputations in linear algebra bearsa linear relation to the arguments originally supplied. So a linear 
ombination of those results bears thesame linear relation to that same linear 
ombination of the original data. For example, the row operationsin Gaussian Elimination (used to solve systems of linear equations) 
an be 
he
ksummed by taking linear
ombinations of the entries in ea
h row. When two rows are added in a row operation, the 
he
ksums are
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also added and 
ompared with the 
he
ksum generated from s
rat
h from the new 
omputed row. In a
oating point environment, the 
he
ksums will be 
orrupted by round-o� error, and hen
e a toleran
e mustbe sued to de
ide if they mat
h. This toleran
e depends on the 
ondition number of the matrix of 
he
ksum
oeÆ
ients [2℄.Diskless Che
kpoint [11℄ methods are an alternative approa
h based on saving simple 
ombinations ofpresele
ted intermediate states (e.g. 
he
ksums) on several independent pro
essors. They 
an save informa-tion at low 
ost so that on
e an error has been dete
ted, a 
orre
tion 
an easily be applied. The simplestapproa
h is the generate periodi
 
he
kpoints of the state of ea
h pro
essor, and keep an \ex
lusive or" ofthose 
he
kpoints on yet another pro
essor. If one pro
essor has a failure, the 
he
kpoint that was on thatpro
essor 
an be re
onstru
ted from all the other 
he
kpoints. This pro
ess is generally independent of the
oating point representation.Another 
lass of methods involve 
omparing the results with 
ertain error toleran
es. For matrix mul-tipli
ation the error toleran
es are forward error bounds (\how far is the 
omputed answer from the trueanswer?") [12℄. For solving systems of linear equations, the error toleran
es are ba
kward error bounds(\how well does the 
omputed answer �t the original problem" or more pre
isely \how mu
h must the orig-inal problem be 
hanged so that the 
omputed answer �ts it exa
tly?") [1℄. In these methods, the errorbounds used depend 
riti
ally on the properties of the arithmeti
, parti
ularly the ma
heps, and in some
ases on the 
onditioning of the underlying system being solved. Hen
e these te
hniques 
an sometimesdete
t violations of the mathemati
al assumptions of solvability due to ill-posedness of the problem.Yet a third 
lass of methods is derived by 
onsidering only the mantissas alone. It turns out that for
ertain 
oating point operations (like addition), one 
an 
ompute 
he
ksums of the mantissas alone treatingthem as integers [ref?℄. Then the 
he
ksum 
omputed the same way derived from the mantissa of the resultmust mat
h the 
ombination of the original mantissa 
he
ksums. Sin
e the 
he
ksums are 
omputed usinginteger arithmeti
, round-o� errors do not apply. The only limitation to this approa
h is that this te
hnique
annot be applied to all 
oating point operations (like multipli
ation), but 
an be used to 
he
k the additionpart of inner produ
ts.
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