
Local Linear Convergence of the Alternating Direction Method of

Multipliers on Quadratic or Linear Programs

Daniel Boley

University of Minnesota

Minneapolis, MN 55455 USA

Abstract

We introduce a novel matrix recurrence yielding a new spectral analysis of the local transient
convergence behavior of the Alternating Direction Method of Multipliers (ADMM), for the par-
ticular case of a quadratic program or a linear program. We identify a particular combination of
vector iterates whose convergence can be analyzed via a spectral analysis. The theory predicts
that ADMM should go through up to four convergence regimes, such as constant step conver-
gence or linear convergence, ending with the latter when close enough to the optimal solution
if the optimal solution is unique and satisfies strict complementarity.

Keywords: ADMM, linear programming, quadratic programming.

AMS Classification: 65K05, 90C05, 90C20.

1 Introduction

Very large-scale convex optimization problems arise in many applications from economics to signal
processing to machine learning and data mining, and the solution of such problems requires methods
that can scale to large sizes. In [4], there is an excellent survey of applications for which the
Alternating Direction Method of Multipliers (ADMM) has been found to be very effective and
scalable. In this paper we introduce a novel spectral analysis of the local transient convergence
behavior of the ADMM method on a model quadratic or linear program (QP or LP):

min 1/2x
TQx+ cTx s.t. Ax = b, x ≥ 0, (1)

where Q is symmetric positive semi-definite, and Q = 0 for a linear program.
The ADMM method is a specific example out of a class of proximal Douglas-Rachford splitting

methods [6, 11, 13, 19, 22, 23, 36]. This class of methods has seen a recent explosion of interest
because of the wide applicability to problems in machine learning, signal processing, compression,
and many other areas [1, 4, 5, 7, 9, 15, 16, 31, 32, 46, 50, 51, 53, 56, 57]. The ADMM method and
variations have been found to be particularly suitable for very large sparse or separable problems
[2, 3, 17, 40, 41, 55].

Existing convergence results for ADMM include bounds on the sum of the norms of differences
between consecutive iterates during the entire course of the algorithm, yielding a guarantee of
convergence for any initial vector (so-called global convergence), but without specific bounds on
the rate of convergence [4, 13, 21, 23, 38]. A later paper [12] gave linear convergence bounds
for linear programs, depending on a variety of quantities including a bound on the largest iterate

1

encountered during the iteration. Recently, a global linear convergence result in a semi-norm
for a strictly convex objective function (e.g. (1) with Q strictly positive definite) was given in
[10]. A linear convergence bound for sufficiently small step size was shown in [33]. These bounds
were global bounds applying from beginning to end, while ignoring the detailed transient behavior
encountered during the iteration process. There have been a variety of results showing global
sublinear convergence rates (O(1/k) or O(1/k2) where k is the iteration number) under certain
assumptions, following the seminal work of Nesterov [42, 43]. Since our approach and ultimate
goals are completely different, here we limit ourselves to referring the reader to [1, 24, 25, 26, 29,
30, 39, 44, 45, 54], or to recent results for splitting into more than two parts [14, 49].

In contrast to these results, we do not establish a global convergence rate, but rather establish
bounds on the local behavior of a specific variation of the alternating direction method during the
course of the iteration, showing that linear convergence is reached eventually, but not necessarily
from the beginning. We show by example that linear convergence can still be very slow in practice.
Like [1] we analyze the operator that maps the iterate at one pass to the iterate at the next pass,
but unlike [1] we limit ourselves to problems in which we can write this operator explicitly as a
matrix amenable to a detailed spectral analysis, i.e. problems that can be expressed as a QP or
LP. In [30], the authors explicitly handle general linear equality constraints, and examine the linear
mapping from the iterate at one pass to the iterate in the next pass as a matrix operator, but keep
the primal and dual variables separate. In our analysis, we carry the ADMM iteration using a novel
vector recombination of the original primal and dual iterates and examine the linear mapping on
this particular combination.

In this paper we restrict our attention to linear and quadratic programs, as opposed to general
convex problems, and examine a particular splitting in which the inequality and equality constraints
are separated. We focus on the less ambitious problem of local convergence, as opposed to global
convergence. The general model (1) subsumes many special cases of specific interest such a simple
sparse basis pursuit problem [5, 8] min ‖x‖1 s.t. Ax = b, though the splitting one would use for
these special problems would be different from the splitting used on the general model (1). The
details of our analysis is very much tied to the specific splitting, hence we focus on the generic
LP/QP using a standard splitting.

We analyze the local behavior of ADMM as it passes through several phases or “regimes,”
treating each regime separately. We represent the ADMM iteration in a novel way as a matrix
recurrence and apply a spectral analysis on this recurrence to characterize the possible convergence
regimes one can encounter during the course of the iteration. Under normal circumstances, the
theory predicts that ADMM should pass through several stages or “regimes” of four different types,
some of which consist of taking constant steps, but finally reaching a regime of linear convergence
when close enough to the optimal solution. Our theory is a local convergence result, not a global
convergence theory. It says little about how long it might take to reach the final “linear convergence”
regime, and examples suggest this could be made arbitrarily long. The theory does suggest that
any acceleration scheme would be more effective if it were adjusted on the fly to take account of
the particular regime currently in effect.

Unless otherwise specified, all vectors and matrices are real, and all vector and matrix norms are
the ℓ2 norms (e.g., the largest singular value for a matrix). For real symmetric matrices, the matrix
2-norm is the same as the spectral radius (largest absolute value of any eigenvalue), hence we use
those interchangeably for symmetric matrices. In section 6 we use some other norms, described
therein. In all cases the matrix p-norm is the norm induced by the corresponding vector norm:

2

‖A‖p = max‖v‖p=1 ‖Av‖p (called matrix operator norms). We use the notation σ to denote the
spectral radius because the usual notation “ρ” is used here for the proximity parameter.

The rest of this paper is organized as follows. We develop the ADMM iteration for (1) in section
2, give our recombination of the vector iterates in section 3, and show how this leads to a matrix
recurrence in section 4. We show how the spectral properties of the matrix recurrence is reflected
the local behavior of ADMM in general terms in section 5 and then more specifically for the case
of a unique solution in section 6. The spectral properties are used to analyze over-relaxed ADMM
in section 7 and to analyze a few illustrative examples in section 8, leading to some conclusions in
section 9.

2 ADMM Iteration

The Alternating Direction Method of Multipliers is constructed by splitting the primal x variables
into two separate variables such that the minimum with respect to each individual variable can be
easily computed, and then imposing an equality constraint between the two variables. A common
splitting for (1) is to use variables x satisfying the equality constraints and z satisfying the inequality
constraints, together with the constraint x = z (see all the details in, e.g., [4]). The augmented
Lagrangian for the resulting optimization problem is then

Lρ(x, z,y) = 1/2x
TQx+ cTx+ g(z) + yT (x− z) + 1/2ρ‖x− z‖22, s.t. Ax = b, (2)

where y is the vector of Lagrange multipliers for the additional constraint x − z = 0, ρ is a
proximity penalty parameter chosen by the user, and g(z) is the indicator function for the non-
negative orthant:

g(z) =

{
0 if z ≥ 0
∞ if any component of z is negative.

The ADMM method is based on finding the critical points for Lρ(x, z,y), though it is common to
rewrite this Lagrangian in terms of scaled dual variables u = y/ρ [4]:

Lρ(x, z,u) = 1/2x
TQx+ cTx+ g(z) + 1/2ρ‖x− z+ u‖22 −

1/2ρ‖u‖
2
2, s.t. Ax = b, (3)

Using the common splitting [4], the ADMM method for (1) consists of three steps: first minimize
(3) with respect to x, then with respect to z, and then perform one ascent step on the Lagrange
multipliers u:

1. Set x[k+1] = argmin
x

1/2x
TQx+ cTx+ 1/2ρx

Tx+ ρxT (u[k] − z[k])
subject to Ax = b

2. Set z[k+1] = argmin
z
g(z) + 1/2ρz

Tz− ρzT (x[k+1] + u[k])

3. Set u[k+1] = u[k] +∇uLρ(x
[k+1], z[k+1],u).

(4)

We will use the notation u[k],u[k+1] to denote the iterates at the beginning and end of the k-th
pass, respectively, when necessary.

Each step of (4) can be solved in closed form, leading to the ADMM iteration (with no ac-
celeration) consisting of the following steps repeated until convergence, where z[k],u[k] denote the
vectors from the previous pass, and ρ is a given fixed proximity penalty:

3

Algorithm 1: One Pass of ADMM

Start with z[k],u[k].

1. Solve

(
Q+ ρI AT

A 0

)(
x[k+1]

ν

)
=

(
ρ(z[k] − u[k])− c

b

)
for x[k+1],ν.

2. Set z[k+1] = max{0,x[k+1] + u[k]} (where “max” is taken elementwise).

3. Set u[k+1] = u[k] + x[k+1] − z[k+1].

Result is z[k+1],u[k+1] for next pass.

Lemma 1. After every pass, the vectors z[k+1],u[k+1] satisfy
a. z[k+1] ≥ 0,
b. u[k+1] ≤ 0,

c. z
[k+1]
i · u

[k+1]
i = 0, ∀i (a complementarity condition).

d. x[k+1] satisfies the equality constraints Ax[k+1] = b.

Proof: In Algorithm 1 step 2: if xi+ui ≥ 0 then z
[k+1]
i = xi+ui ≥ 0 and u

[k+1]
i = ui+xi−(xi+ui) =

0. If xi + ui ≤ 0 then z
[k+1]
i = 0 and u

[k+1]
i = ui + xi ≤ 0. Point d follows directly from step 1.

So we can assume z[k],u[k] satisfy these conditions at the beginning of each pass, including the
very beginning if we start with z = u = 0.

Lemma 2. If in Algorithm 1 step 1 x[k+1] = z[k], and z[k],u[k] satisfy the complementarity
condition Lemma 1(c), then z[k+1] = z[k], and x[k+1], ν, y[k] = ρu[k] satisfy the first order KKT
conditions for (1), where ν, y[k] are the Lagrange multipliers for the equality and inequality con-
straints, respectively.
Proof: We temporarily omit the pass number [k]. Let xi = zi, ∀i. By the complementarity con-

dition, either zi = xi = 0 or ui = 0. In the latter case, xi + ui = xi ≥ 0 so z
[k+1]
i = xi. In

the former case, xi + ui = ui ≤ 0 so z
[k+1]
i = 0 = xi. In either case u

[k+1]
i = ui. From step 1:

Qx + ρx + AT
ν = ρz − ρu − c, which simplifies to Qx + AT

ν = y − c. This, combined with the
previous lemma, form the first order KKT conditions.

3 Auxiliary Variables with Locally Monotonic Behavior

Instead of carrying the iteration using variables z[k],u[k], we use two auxiliary variables to carry
the iteration. One variable exhibits smooth (almost monotonic) behavior, with linear convergence
locally around a fixed point, and the other variable is simply a binary vector of flags marking which
inequality constraints are active.

Let w = z− u, and let d be a vector of flags such that

di = +1 iff ui = 0
di = −1 iff ui 6= 0.

Because of the complementarity condition, zi = 1/2(1 + di)wi and ui = −1/2(1 − di)wi. If D =
Diag(d) (the diagonal matrix with elements of vector d on the diagonal), then 1/2(I−D)w = −u

4

and 1/2(I+D)w = z. The flags indicate which inequality constraints are actively enforced on z at
each pass. Then we can write ADMM steps 2 and 3 elementwise as follows:

z
[k+1]
i =

{
0 if x

[k+1]
i + u

[k]
i < 0

x
[k+1]
i + u

[k]
i if x

[k+1]
i + u

[k]
i ≥ 0

u
[k+1]
i =

{
u
[k]
i + x

[k+1]
i if x

[k+1]
i + u

[k]
i < 0

0 if x
[k+1]
i + u

[k]
i ≥ 0

(5)

and so (using u
[k]
i = −1/2(1−d

[k]
i)w

[k]
i)

d
[k+1]
i =

{
−1 if x

[k+1]
i − 1/2(1−d

[k]
i)w

[k]
i ≤ 0

+1 if x
[k+1]
i − 1/2(1−d

[k]
i)w

[k]
i > 0

w
[k+1]
i = |x

[k+1]
i + u

[k]
i | = d

[k+1]
i (x

[k+1]
i − 1/2(1−d

[k]
i)w

[k]
i)

(6)

where d
[k+1]
i = ±1 to match the effect of the absolute value sign. In matrix form, the modified

ADMM iteration using the new variables can be written as:

Algorithm 2: One Pass of Modified ADMM

Start with w[k], D[k].

1. Solve

(
Q/ρ+ I AT /ρ

A 0

)(
x[k+1]

ν

)
=

(
w[k] − c/ρ

b

)
for x[k+1],ν.

2. Set w[k+1] = |x[k+1]− 1/2(I−D
[k])w[k]| = D[k+1](x[k+1]− 1/2(I−D

[k])w[k]),

where D[k] = Diag(d[k]), and the new D[k+1] = Diag(±1, . . . ,±1) to
match the effect of taking absolute values.

Result is w[k+1], D[k+1] for next pass.

Next, we focus on step 1 and find an explicit formula for x in terms of w. (We omit the [k]

temporarily.) The ultimate goal is to eliminate x,ν entirely from the formulas. We do this by
explicitly inverting the matrix in Algorithm 2 step 1.

(
x

ν

)
=

(
Q/ρ+ I AT /ρ

A 0

)−1 (
w − c/ρ

b

)

=

(
N RATS

ρSAR −ρS

)(
w − c/ρ

b

)
,

(7)

where R = (Q/ρ+I)−1 is the resolvent of Q, S = (ARAT)−1 is the inverse of the Schur complement,
and N = R−RATSAR. The operator N satisfies the following spectral properties.

Lemma 3. The operator N = R − RATSAR is positive semi-definite and ‖N‖2 ≤ ‖R‖2 ≤ 1. If
Q is strictly positive definite, then also ‖R‖2 < 1.
Proof:

a. For symmetric matrices, the 2-norm is the same as the spectral radius σ, so we can use them
interchangeably [34]. If the eigenvalues of Q are 0 ≤ λn ≤ · · · ≤ λ1, then the eigenvalues of

R are 0 < (λ1/ρ + 1)−1 ≤ · · · ≤ (λn/ρ + 1)−1 ≤ 1. Hence ‖R‖2 ≤ 1. The inequalities in
the boxes are strict iff Q is strictly positive definite.

5

b. Let LLT = R be its Cholesky factorization, and let Ã = AL. Then we can write N =
R−RATSAR = L[I−ÃT (ÃÃT)−1Ã]LT = L[· · ·]LT where the part within the square brackets
is an orthogonal projector with eigenvalues 0 or 1. The matrix N is positive semi-definite
because xTL[· · ·]LTx ≥ 0 for any vector x. The eigenvalues of N are the same as the
eigenvalues of LTL[· · ·] (where [· · ·] stands for the orthogonal projector), and so we have
‖N‖2 = σ(LTL[· · ·]) ≤ ‖LTL[· · ·]‖2 ≤ ‖L

TL‖2 = ‖LL
T ‖2 = ‖R‖2.

So we can use (7) to write the first ADMM step as

x[k+1] = Nw[k] −Nc/ρ+RATSb = Nw[k] + h, (8)

for a constant vector h = RATSb−Nc/ρ, dropping the vector ν.

Remark 4. We remark that in the case of a linear program, Q = 0, we have R = I, S = (AAT)−1,
so the recurrence matrix N = I − A+A reduces to the orthogonal projector onto the nullspace of
A (as noted in [12]), and the constant vector h can be written h = A+b − Nc/ρ, where A+ is
the Moore-Penrose pseudo-inverse of A. In this case, N is guaranteed to have only eigenvalues 0
and 1 with various multiplicities. We also remark that in this case, the matrix N is completely
independent of ρ.

4 ADMM as a Matrix Recurrence

Next we focus on the entire ADMM iteration. The input at each pass consists of the vector w[k]

and the diagonal matrix of flags D[k]. Substituting (8) into step 1 of Algorithm 2, we can reduce
the entire ADMM pass to the following simple procedure.

Algorithm 3: One Pass of Reduced ADMM

Start with w[k], D[k].
1. D[k+1] = Diag(sign(N − 1/2(I−D

[k]))w[k] + h)

2. w[k+1] = D[k+1](N − 1/2(I−D
[k]))w[k] +D[k+1]h

Result is w[k+1], D[k+1] for next pass.

This procedure is mathematically equivalent to Alg. 1 and is designed solely for the purpose of
analysis, but is not so suitable for computation. It is seen that M [k] = D[k+1](N − 1/2(I−D

[k]))
plays a critical role in the convergence of this procedure. Hence we now establish some spectral
properties of M [k]. First we recall some theory relating the spectral radius to the matrix norm from
[27, 35, 47].

Theorem 5. Let σ(M) denote the spectral radius of an arbitrary square real matrix M , and let
‖M‖2 = max‖x‖2=1 ‖Mx‖2 denote the matrix 2-norm (maximum singular value). Then

a. For any matrix operator norm, σ(M) ≤ ‖M‖p.

b. If ‖M‖2 = σ(M) then for any eigenvalue λ such that |λ| = σ(M), the algebraic and geometric
multiplicities of λ are the same (all Jordan blocks for λ are 1 × 1). Such a matrix is said to
be a member of Class M [35].

c. For any normal matrix M (i.e., satisfying MMT = MTM), σ(M) = ‖M‖2. This includes all
real symmetric matrices.

6

d. If a λ such that |λ| = σ(M) has a Jordan block of dimension larger than 1 (the geometric
multiplicity is strictly less than the algebraic multiplicity), then for any ǫ > 0 there exists a
matrix norm ‖ · ‖P (based on a non-singular matrix P) such that σ(M) < ‖M‖P ≤ σ(M)+ ǫ.

Proof: Part (a): Mx = λx =⇒ |λ|‖x‖ = ‖Mx‖ ≤ ‖M‖‖x‖. Part (b) holds for any induced
matrix operator norm. The proof in general is based on the Jordan Canonical Form, or the Schur
form for normal matrices. For details see [47, sec. 1.3] or [35, sec. 2.3]. We need the result just
for the matrix 2-norm, for which the following is a sketch of the proof. Assume without loss of
generality that M is scaled so that ‖M‖2 = 1. Form the Schur decomposition M = PRPH where
P is unitary (possibly complex), R is upper triangular (possibly complex) with the eigenvalues
on the diagonal, and PH denotes the complex conjugate transpose of P [27, 47]. We can assume
repeated eigenvalues appear consecutively. From part (a), 1 = ‖M‖2 = ‖R‖2 ≥ ‖ri‖2, where ri is
any individual row or column or R. If ri is a row or column containing one of the eigenvalues λ
with |λ| = 1, then the only way it can have norm at most 1 is for that row or column be all zero
except for that diagonal entry. Hence M − λI must have n(λ) all zero columns where n(λ) is the
algebraic multiplicity of λ. That is: the geometric multiplicity must match n(λ). Part (c): If M
is normal, then the R in the Schur decomposition is diagonal. Part (d): Use a diagonal scaling
transformation to shrink the strict upper triangle of R. The detailed construction is given in proof
of Lemma 12 below.

Lemma 6. ‖M‖2 = ‖D
[k+1](N − 1/2(I−D

[k]))‖2 ≤ 1. Any eigenvalues of M = D[k+1](N − 1/2(I−

D[k])) on the unit circle must have a complete set of eigenvectors (no Jordan blocks larger than
1× 1).
Proof: Proved as part of the proof of the next lemma.

A special case occurs when D[k+1] = D[k], i.e., the set of active inequality constraints enforced
on the vector iterate z does not change from one pass to the next. It is often observed in practice
that the set of active constraints do not change over many consecutive passes through the iteration,
whether the iteration appears to be either stagnating or converging, especially if ρ is large. Hence
we use a spectral analysis of this special case to provide insight into the behavior during these
consecutive passes.

Lemma 7. Using the same notation as Lemma 6, if D = D[k+1] = D[k] (the flags remain un-
changed), then all eigenvalues of D(N − 1/2(I−D)) must lie in the closed disk in the complex plane
with center 1/2 and radius 1/2, denoted D(

1/2,
1/2). The only possible eigenvalue on the unit circle

is +1, and if present must have a complete set of eigenvectors. In the case of a linear program,
Q = 0, N is an orthogonal projector, and all the eigenvalues of M = D(N − 1/2(I−D)) lie on the
boundary of D(1/2,

1/2).
Proof: Returning to Lemma 6, we have M [k] = D[k+1](N − 1/2(I−D[k])) = D[k+1]D[k]D[k](N −
1/2(I−D

[k])) = D[k+1]D[k](D[k](N − I/2)+ I/2). Here we have used the fact D2 = I. From Lemma
3, N is symmetric positive semidefinite with norm at most 1. Hence the eigenvalues of N are in
the interval [0, 1], where the right end will be open if Q is strictly positive definite. (If Q is strictly
positive definite, then ‖N‖2 < 1, but N is still singular with nullspace equal to the row space of A,
so ‖N − 1/2(I−D

[k])‖ could still have norm equal to 1 (say with D = −I) and hence so could the
resulting M . Such a flag matrix D might never occur, but could be made to occur in certain cases
by careful choice of starting iterates z[0] = 0, u[0] < 0, with u[0] ∈ nullspace(N), if this exists.)

Hence we have the following (using D ≡ D[k] to reduce clutter)

7

a. The eigenvalues of N are in the interval [0, 1].

b. The eigenvalues of N − I/2 are in [−1/2,+
1/2].

c. ‖N − I/2‖2 ≤
1/2, since N is symmetric.

d. ‖D(N − I/2)‖2 ≤
1/2, and ‖D(N − I/2) + I/2‖2 = ‖D(N − 1/2(I−D))‖2 ≤ 1.

e. The eigenvalues of D(N−I/2) lie in the closed circular disk on the complex plane with center
0 and radius 1/2, denoted D(0,

1/2).

f. The eigenvalues of D(N − I/2) + I/2 lie in the disk D(1/2,
1/2), which is entirely in the open

right half plane plus the origin.

g. In particular, if D(N − 1/2(I−D)) has any eigenvalue with absolute value 1 = ‖D(N − 1/2(I−
D))‖2, then that eigenvalue must be exactly 1 and must have a complete set of eigenvectors
(no non-trivial Jordan blocks).

h. The above proves Lemma 7 for the case D[k+1] = D[k]. In the general case of Lemma 6,
‖M [k]‖2 = ‖D[k+1]D[D(N − 1/2(I−D))]‖2 ≤ ‖D

[k+1]D‖2 · ‖D(N − 1/2(I−D))‖2 ≤ 1, since

D[k+1]D is a unitary matrix.

In the case of a linear program, we have the following for D[k+1] = D[k].

i. Q = 0 in (1), N is an orthogonal projector (see Remark 4), so that N2 = N = NT . Hence
2(N − I/2) is an orthogonal matrix: 2(N − I/2)T 2(N − I/2) = 4(N2 −N + I/4) = I.

j. 2D(N − I/2) is also an orthogonal matrix since it is the product of orthogonal matrices.

k. All the eigenvalues of 2D(N − I/2) lie on the unit circle. Hence all the eigenvalues of M =
D(N − I/2) + I/2 lie on the boundary of D(1/2,

1/2).

We conclude this section by noting that we can write the heart of Algorithm 3 as a homogeneous
matrix recurrence. We will use this form to characterize its convergence properties. Step 2 of
Algorithm 3 is written as follows:

(
w[k+1]

1

)
= M

[k]
aug

(
w[k]

1

)
=

(
M [k] D[k+1]h

0 1

)(
w[k]

1

)

=

(
D[k+1](N − 1/2(I−D

[k])) D[k+1]h

0 1

)(
w[k]

1

)
,

(9)

where h = RATSb−Nc/ρ as in (8).

5 Convergence Properties

We show how the spectral properties of (9) are reflected in the possible convergence “regimes” that
ADMM can encounter.

8

5.1 Spectral Properties

The eigenvalues of the augmented matrix Maug in (9) consist of those of M plus an extra eigenvalue
equal to 1. If M already has an eigenvalue equal to 1, then the extra eigenvalue 1 might or might
not add a corresponding eigenvector.

We state two lemmas regarding the spectral properties of Maug. The first lemma gives limits
on the properties of the eigenvalue 1 for any matrix of the general form of Maug, while the second
relates the corresponding eigenvector(s) to the original QP/LP.

Lemma 8. Let Maug =

(
M p

0 1

)
be any block upper triangular matrix with a 1 × 1 lower

right block. The matrix Maug has an eigenvalue λ1 = 1; suppose a corresponding eigenvector has a

non-zero last element. We scale that eigenvector to take the form

(
w
1

)
= Maug

(
w
1

)
.

Suppose the upper left block M either has no eigenvalue equal to 1 or the eigenvalue 1 of M
has a complete set of eigenvectors. Then λ1 = 1 has no non-trivial Jordan block. Furthermore, if

the given eigenvector

(
w
1

)
is unique, then M has no eigenvalue equal to 1.

Proof: We can block diagonalize the upper left block M = P

(
M̃11 0
0 I

)
P−1 with a suitable

transformation matrix P , where M̃11 has no eigenvalue equal to 1. Then

(
P−1 0
0 1

)
Maug

(
P 0
0 1

)
=

M̃11 0 p̃1

0 I p̃2

0 0 1

 ,

Then we must have for

(
w̃1

w̃2

)
= P−1w:

w̃1

w̃2

1

 =

(
P−1 0
0 1

)
Maug

(
P 0
0 1

)

w̃1

w̃2

1

 =

M̃11 0 p̃1

0 I p̃2

0 0 1

w̃1

w̃2

1

 =

M̃11w̃1 + p̃1

w̃2 + p̃2

1

This implies that p̃2 = 0, i.e., the eigenvalue 1 of the entire matrix Maug has a complete set of
eigenvectors. Regarding uniqueness: any value for w̃2 would yield an eigenvector for λ1 = 1, so
such an eigenvector is unique iff the w̃2 block is empty (i.e., absent).

Lemma 9. Let Maug be the matrix in (9) and assume D = D[k+1] = D[k] is a flag matrix of the

formDiag(±1, . . . ,±1). Suppose

(
w
1

)
is an eigenvector corresponding to eigenvalue 1 of the matrix

Maug and furthermore suppose w ≥ 0. Then the primal variables defined by x = z = 1/2(I+D)w and
dual variables y = ρu = −ρ/2(I−D)w satisfy the first order KKT conditions for (1). Conversely,

if x = z,u satisfy the KKT conditions, then

(
w
1

)
is an eigenvector of Maug corresponding to

eigenvalue 1, where w = z − u, and Maug is defined as in (9) with D[k+1] = D[k] = D = Diag(d)
with entries di = +1 if zi > 0, di = −1 if ui < 0, else di = ±1 (either sign).
Proof:

a. Let z = 1/2(I+D)w, u = −1/2(I−D)w. By construction, z ≥ 0, u ≤ 0, zTu = 0.

9

b. By assumption we have

w = D[Nw − 1/2(I−D)]w +DRATSb−DNc/ρ.

This equation can be rewritten

0 = DN(w − c/ρ)− 1/2(I+D)w +DRATSb,

or
z = 1/2(I+D)w = DN(w − c/ρ) +DRATSb.

Noting that Dz = z, D2 = I, and w = z− u, we see that z satisfies

(
z

ν

)
=

(
N RATS

ρSAR −ρS

)(
z− u− c/ρ

b

)

c. Inverting the matrix above, as in (7), the above means that z satisfies the equation

(
Q+ ρI AT

A 0

)(
z

ν

)
=

(
ρ(z− u)− c

b

)

d. We have thus satisfied all the KKT conditions:
(1) the gradients satisfy Qz+AT

ν + y = 0;
(2) the equality constraints are satisfied: Az = b;
(3) the inequality constraints are satisfied: z ≥ 0;
(4) the multipliers have the right sign: y ≤ 0;
(5) the complementarity conditions are satisfied: yT z = 0;
where y = ρu are the multipliers for the inequality constraints and ν are the multipliers for
the equality constraints.

e. The converse follows from Lemma 2.

Since the ADMM iteration has been converted into a variation of an eigenproblem, we can
study the convergence in terms of the spectral properties of the operator Maug defined by (9). The

spectral properties of M
[k]
aug are summarized in terms of its possible Jordan canonical form as given

in the following Lemma.

Lemma 10. The matrix M
[k]
aug defined by (9) for any flag matrices D[k+1] and D[k] has a spectral

decomposition M
[k]
aug = PJP−1, where J is a block diagonal matrix:

J =

J1 0 0 0
0 J2 0 0
0 0 J3 0
0 0 0 J4

 =

(
1 1
0 1

)
0 0 0

0 I 0 0
0 0 J3 0
0 0 0 J4

, (10)

where J1 is a single 2 × 2 Jordan block for eigenvalue 1 (possibly absent), I is an identity matrix
(possibly empty), J3 is a diagonal matrix with diagonal entries all having absolute value 1, but

10

not equal to 1, and J4 is a matrix with spectral radius strictly less than 1 (possibly empty). If
D[k+1] = D in (9), then the J3 block is absent.
Proof: The upper left block of (9) satisfies Lemma 6 and hence contributes blocks of the form I,
J3, J4. No eigenvalue with absolute value 1 can have a non-diagonal Jordan block, so the blocks
corresponding to those eigenvalues must be diagonal. Embedding that upper left block M into the
entire matrix yields a matrix Maug with the exact same set of eigenvalues with the same algebraic
and geometric multiplicities, except for the eigenvalue 1.

If the upper left block of Maug (9) has no eigenvalue equal to 1, then Maug has a simple eigen-
value 1. In general for eigenvalue 1, the algebraic multiplicity goes up by one and the geometric
multiplicity can either stay the same or increase by 1. In other words, Maug either satisfies the
conditions of Lemma 8, or the algebraic and geometric multiplicities of eigenvalue 1 for Maug differ
by 1, meaning we have a single 2× 2 Jordan block.

If D[k+1] = D[k], then the upper left block of (9) satisfies Lemma 7, hence the J3 block must be
absent (the only eigenvalue with absolute value 1 is 1 itself).

5.2 Regimes

Lemma 10 immediately yields the possible local behaviors or “regimes” that can arise from the
ADMM iteration, in terms of the recurrence (9). There are four possible regimes that can

arise, depending on the flag matrix and the eigenvalues of the augmented matrix M
[k]
aug. When the

flag matrix remains the same over several passes of the iteration process, the operator remains
invariant over those passes, so that the structure of the spectrum for that specific operator controls
the convergence behavior of the process during these passes. When the flag matrix does change,
it means the set of active constraints at the current pass in the process has changed, and the
current pass is a transition to a different operator with a different eigenstructure. This is where
the algorithm takes on a combinatorial aspect while it is searching for the correct set of active
constraints. Hence we treat separately the case where the flag matrix remains the same, and
treat all the transitional cases together in their own regime [d]. The specific possible regimes are

distinguished by the eigenstructure of the operator M
[k]
aug summarized as follows.

[a] The spectral radius of M [k] is strictly less than 1. If close enough to the optimal solution (if
it exists), the result is linear convergence to that solution.

[b] M [k] has an eigenvalue equal to 1 which results in a 2× 2 Jordan block for M
[k]
aug. The process

tends to a constant step, either diverging, or driving some component negative, resulting in
a change in the operator M [k].

[c] M [k] has an eigenvalue equal to 1, but M
[k]
aug still has no non-diagonal Jordan block for eigen-

value 1; If close enough to the optimal solution (if it exists), the result is linear convergence
to that solution.

One of the above regimes must occur when D[k+1] = D[k]. If D[k+1] 6= D[k], then also the following
eigenstructure is possible.

[d] M [k] has have an eigenvalue of absolute value 1, but not equal to 1. This can occur when the
iteration transitions to a new set of active constraints.

11

If D[k+1] 6= D[k], then regardless of the eigenstructure, the next pass [k+1] will be using a different
operator with different flags, so this pass represents a transition to a different operator. Hence we
treat this as part of regime [d], and limit regimes [a], [b], [c] to the cases when D[k+1] = D[k].

The four possible eigenstructures correspond to four possible configurations in the diagonal-
ization (10). The resulting behavior depends on the corresponding spectral properties. The first
three regimes correspond to the non-transitional passes when the flag matrix remains unchanged:
D[k+1] = D[k] and hence can be thought of as the eigenvalue power method [27, 35, 47] applied to
Maug. In detail the four possible eigenstructures are as follows.

[a] The spectral radius of M [k] is strictly less than 1, so the blocks J1,J3 are absent from (10),
and the block J2 = I is 1 × 1. As long as the flags do not change, the recurrence (9) hence
will converge linearly to a unique fixed point which is an eigenvector of Maug corresponding
to eigenvalue 1 with a non-zero last element, according to the theory for the power method.
If that eigenvector is non-negative, then the eigenvector satisfies the KKT conditions for (1).

[b] The matrix M [k] has an eigenvalue equal to 1, and the augmented matrix Maug has a non-
trivial Jordan block (J1). There is no other eigenvalue on the unit circle, so the block J3

is absent, and the theory of the power method implies the vector iterate will converge to
the invariant subspace corresponding to the largest eigenvalue 1 [35]. The presence of J1

means there is a Jordan chain [20]: two non-zero vectors q, r such that (Maug − I)q = r,
(Maug − I)r = 0. Any vector which includes a component of the form αq + βr will be
transformed by Maug into Maug(αq+βr) = αq+(α+β)r, i.e., each pass would add a constant
vector αr, plus fading lower order terms from the other lesser eigenvalues [35, sec. 7.3]. As
long as the flags do not change, this will result in constant steps: the difference between

consecutive iterates,

(
w[k+1]

1

)
−

(
w[k]

1

)
, would converge to a constant vector, asymptotically

as the effects of the smaller eigenvalues fade. That constant vector is an eigenvector for
eigenvalue 1. The ADMM iteration will not converge unless and until a sign change in w[k]

forces a change in the flags D[k]. If we satisfy the conditions for global convergence of ADMM,
then such a sign change is guaranteed to occur.

[c] The matrix M [k] has an eigenvalue equal to 1 but the block J1 is absent. There are no other
eigenvalues on the unit circle (J3 is absent). In this case, the power method theory implies
the recurrence (9) will still linearly converge to a fixed point (an eigenvector for eigenvalue
1) at a rate determined by the next largest eigenvalue in absolute value (largest eigenvalue of
the block J4), as long as the flags do not change.

The matrix Maug has more than one independent eigenvector corresponding to eigenvalue
λ = 1, including at least one with a non-zero last element. A non-negative eigenvector with
a non-zero last element satisfies the KKT conditions. If there is such an eigenvector with all
positive entries, then adding a small multiple of one of the other eigenvectors for λ = 1 would
yield another all-positive eigenvector with a non-zero last element, that is, an alternative
solution to (1).

The above three eigenstructure yield the corresponding regimes when the operator remains invariant
over more than one pass, i.e., when D[k+1] = D[k]. If the flag matrix changes (D[k+1] 6= D[k],
representing a change in the set of active constraints), then the eigenstructure of M [k] could match
one of the conditions in [a], [b], or [c], but could also have the following eigenstructure.

12

[d] The matrix M [k] = D[k+1](N − 1/2(I−D
[k])) has an eigenvalue with absolute value 1, but not

equal to 1, so J3 is present. The effect of this eigenvalue will be limited by the fact that the
next pass in the iteration will involve a different flag matrix yielding different eigenvalues.

We consider any pass in which the flag matrix changes as part of regime [d] regardless of the
eigenstructure.

6 Unique Solution: Linear Convergence

In the case that (1) has a unique solution with strict complementarity, we can give a guarantee
that eventually the flag matrix will not change. By strict complementarity, we mean that for every
index i, either z∗i > 0 = y∗i or y∗i < 0 = z∗i , i.e. w

∗
i = z∗i − y∗i /ρ > 0. Once the iteration matrix

M [k] stays fixed, the ADMM iteration behaves just like the power method for the matrix eigenvalue
problem. In this case, the spectral theory developed here gives a guarantee of linear convergence.

In this section we will use the ℓ∞ norm of a vector: ‖v‖∞ = maxi |vi|, and the associated induced
matrix norm ‖A‖∞ = maxi

∑
j |aij |. We will also use the P -norm where P is a non-singular matrix,

defined to be ‖x‖P = ‖Px‖∞ for any vector x, and ‖A‖P = ‖PAP−1‖∞ for any matrix A. We
need one technical lemma relating the vector ∞-norm to the vector 2-norm.

Lemma 11. For any n-vectors a, b, (‖a‖∞ + ‖b‖∞)2 ≤ 2
(
‖a‖22 + ‖b‖

2
2

)
.

Proof: Using ‖v‖∞ ≤ ‖v‖2 for any n-vector v [27], we have (‖a‖∞ + ‖b‖∞)2 ≤ (‖a‖2 + ‖b‖2)
2 =

‖a‖22 + ‖b‖
2
2 + 2‖a‖2‖b‖2. We also have 0 ≤ (‖a‖2 − ‖b‖2)

2 = ‖a‖22 + ‖b‖
2
2 − 2‖a‖2‖b‖2 implying

2‖a‖2‖b‖2 ≤ ‖a‖
2
2 + ‖b‖

2
2. The result follows.

Under the assumption of strict complementarity, we can prove the specific result that the
ADMM iteration must eventually reach and remain in “linear convergence” regime [a]. First we
note that by Lemmas 8 & 9, this solution must correspond to a unique strictly positive eigenvector(
w∗

1

)
for eigenvalue λ1 = 1 for the matrix Maug (9) where the flag matrix D[k+1] = D[k] does not

change. Hence by Lemma 8, the matrix M has no eigenvalue equal to 1, and by Lemma 7 all the
eigenvalues of M must be strictly less than 1 in absolute value. Hence the following lemma applies
to this situation.

Lemma 12. Consider the matrix and eigenvector

Maug =

(
M p

0 1

)
and w∗aug =

(
w∗

1

)
> 0 such that Maugw

∗
aug = w∗aug,

where M is any n × n matrix such that the spectral radius σ of M satisfies σ(M) < 1. The
vector w∗aug is the unique eigenvector corresponding to eigenvalue 1, scaled so that its last element
is w∗n+1 = 1. Then the following holds.

(a) For any ǫ > 0 there is a matrix norm ‖ · ‖P such that σ(M) ≤ ‖M‖P < σ(M) + ǫ. In
particular, one can choose ǫ small enough so that ‖M‖P < 1. Also, there is a positive
constant C1 (depending on M) such that for any vector or matrix X, ‖X‖P ≤ C1‖X‖∞ and
‖X‖∞ ≤ C1‖X‖P .

(b) The iterates of the power iteration w
[k+1]
aug = Maugw

[k]
aug satisfy ‖w

[k]
aug−w∗aug‖P ≤ ‖M‖

[k]
P ‖w

[0]
aug−

w∗aug‖P and hence converge linearly to w∗aug at a rate bounded by σ(M)+ǫ where ǫ is the same

13

arbitrary constant used in (a). This a special case of the theory behind the power method
for computing matrix eigenvalues [27, 35, 47].

(c) Given any positive constant C2, if w
[0]
aug is any vector such that ‖w

[0]
aug−w∗aug‖∞ ≤ C2/C

2
1 then

‖M
[k]
augw

[0]
aug − w∗aug‖∞ ≤ C2 for all k. In particular, if w∗aug > 0 and C2 = (miniw

∗
i) − ǫ > 0,

then M
[k]
augw

[0]
aug > 0 for all k = 0, 1, 2,

Proof:

(a) This is a special case of Theorem 5, but we include here a short proof for completeness.
We must construct the (possibly complex) matrix P . Let M = P−11 R1P1 be the Schur
decomposition or the Jordan canonical form for M , where P is nonsingular and R1 is upper
triangular with the eigenvalues of M on the diagonal (either decomposition will do). Here
P1, R1 are possibly complex matrices, as is R2 below. Let P2 = Diag(1, δ−1, δ−2, . . . , δ1−n)
with δ small enough so that the upper triangle of R2 = P2R1P

−1
2 is small enough so that

‖R2‖∞ < σ(M) + ǫ. Applying P2 in this manner shrinks the entries in the upper triangle
by a factor of at least δ while leaving the diagonal entries unchanged. Set P = P2P1 so that
R2 = PMP−1 is upper triangular with M ’s eigenvalues on its diagonal and having very small
elements above the diagonal. From the definition of ‖ · ‖P , it follows that σ(M) ≤ ‖M‖P =
‖R2‖∞ < σ(M) + ǫ, and C1 = max{‖P‖∞, ‖P−1‖∞, ‖P‖∞ · ‖P

−1‖∞} will all satisfy the
properties asked for in part (a).

(b) Let the error vector at the k-th pass of the power method be

t[k]aug = w[k]
aug −w∗aug =

(
t[k]

0

)
=

(
w[k]

1

)
−

(
w∗

1

)

Then the power iteration on w
[k]
aug yields

w[k+1]
aug = Maug(w

∗
aug + t[k]aug) = w∗aug +Maugt

[k]
aug = w∗aug + t[k+1]

aug ,

with t[k+1] = M · t[k]. Hence ‖t
[k]
aug‖P ≤ O(‖M‖kP) < O((σ(M) + ǫ)k) =⇒ 0 as k →∞.

(c) Define Paug =

(
P 0
0 1

)
with the P from part (a), and define the corresponding Paug-norm on

the augmented quantities. Define the following balls around the eigenvector w∗aug:

B1 = {waug : ‖waug −w∗aug‖∞ ≤ C2, wn+1 = 1}

B2 = {waug : ‖waug −w∗aug‖Paug
≤ C2/C1, wn+1 = 1}

B3 = {waug : ‖waug −w∗aug‖∞ ≤ C2/C
2
1 , wn+1 = 1}

(11)

From part (a), B3 ⊆ B2 ⊆ B1. From part (b), if any power method iterate satisfies w[0] ∈ B2,
then all subsequent iterates stay in B2. Hence if the power method starts in B3, all subsequent
iterates will lie in B1.

We now invoke the global convergence property of ADMM.

14

Theorem 13. [4, 13, 18] Problem (1) has a solution iff there is a saddle point (x∗, z∗,y∗) (with
y = ρu) of the Lagrangian Lρ (3), i.e. a point such that

Lρ(x
∗, z∗,u) ≤ Lρ(x

∗, z∗,u∗) ≤ Lρ(x, z,u
∗) ∀x, z,u.

If Problem (1) has a solution, then there is a solution (x∗, z∗,u∗) such that

‖z[k+1] − z∗‖22 + ‖u
[k+1] − u∗‖22 ≤ ‖z

[k] − z∗‖22 + ‖u
[k] − u∗‖22 − ‖x

[k] − z[k]‖22 − ‖z
[k+1] − z[k]‖22

and f(x[k])+ g(z[k]) −→ f(x∗)+ g(z∗), where f(x)= 1/2x
TQx+ cTx, g(z)= 0 iff z ≥ 0, g(z)=∞

otherwise.
Proof: Omitted. This is a restatement of the convergence theorem in [4, 13, 18].

As noted in [4], this implies that the iterates converge to a solution to (1), but possibly irreg-
ularly. This theorem says little on the local behavior of the algorithm, but does guarantee that
eventually the iterates are close enough to the solution to enable the following result.

Theorem 14. Suppose the LP/QP (1) has a unique solution x∗ = z∗ and corresponding unique
optimal Lagrange multipliers y∗ for the inequality constraints, and this solution has strict comple-
mentarity: that is either z∗i > 0 = y∗i or y∗i < 0 = z∗i (i.e. w∗i = z∗i − y∗i /ρ > 0) for every index
i. Then eventually the ADMM iteration reaches a stage where it converges linearly to that unique
solution.
Proof: The dual vector u∗ = y/ρ ≤ 0 is a non-positive vector, and the combined vector w∗ ≡
z∗−u∗ > 0 is strictly positive. Let C2 = (miniw

∗
i) − ǫ > 0 for a positive constant ǫ sufficiently

small to make C2 > 0. This means all vectors in B1 defined in (11) have all positive entries.

By Theorem 13, there exists a pass k such that ‖z[k] − z∗‖22 + ‖u
[k] − u∗‖22 < 1/2

(
C2/C

2
1

)2
. By

Lemma 11, ‖z[k] − z∗‖∞ + ‖u[k] − u∗‖∞ < C2/C
2
1 . This, combined with the strict complemenarity,

means that for every index i, z∗i > 0 implies z
[k]
i > 0 & u

[k]
i = 0, and likewise u∗i < 0 implies u

[k]
i < 0

& z
[k]
i = 0.
Hence w[k] ≡ z[k]−u[k] > 0 lies in B3, and D[k] = Diag(sign(z[k]+u[k])) is the associated flag

matrix. By Lemma 12(c) w[j] > 0 lies in B1 for all j = k + 1, k + 2, Since the elements remain
positive, the flag matrices D[j] = D[k] remain unchanged for all j > k. Thus starting at the k-th

pass, the ADMM iteration reduces to the power method on the matrix M
[k]
aug = M∗aug, converging

linearly to the unique eigenvector at a rate given by Lemma 12(b).

7 Acceleration via Over-Relaxation

A proposed way to accelerate ADMM (Algorithm 1) is the following [4, 13]

Algorithm 4: One Pass of ADMM with Over-Relaxation

Start with z[k],u[k].

1. Solve

(
Q+ ρI AT

A 0

)(
x[k+1]

ν

)
=

(
ρ(z[k] − u[k])− c

b

)
for x[k+1],ν.

2. Set x̂[k+1] = αx[k+1] + (1−α)z[k]. ←− (relaxation step)

3. Set z[k+1] = max{0, x̂[k+1] + u[k]}.

4. Set u[k+1] = u[k] + x[k+1] − z[k+1].

Result is z[k+1],u[k+1] for next pass.

15

An analysis similar to section 3 yields the same complementarity conditions for z[k+1],u[k+1],
and the following expressions for x̂[k+1], based on (8):

x̂[k+1] = αx[k+1] + (1−α)z[k]. = αNw[k] + αh+ (1−α)z[k]. (12)

Using zi = 1/2(1+di)wi, we can follow the analysis similar to (5) to obtain (where we omit the [k]

from the d, w, y, z’s and the [k+1] from the x̂’s):

d
[k+1]
i =

{
−1 if x̂i − 1/2(1−di)wi ≤ 0
+1 if x̂i − 1/2(1−di)wi > 0

w
[k+1]
i = |x̂i − 1/2(1−di)wi| = d

[k+1]
i [x̂i − 1/2(1−di)wi]

= d
[k+1]
i [αxi +

1/2(1−α)(1+di)wi − 1/2(1−di)wi]

= d
[k+1]
i [α(xi − (1+di)wi) + diwi]

, (13)

which yields the accelerated formula

w[k+1] = M [k](α)w[k] + αD[k+1]h, with M [k](α) = D[k+1]
[
α(N − 1/2(I+D[k])) +D[k]

]
. (14)

This reduces to step 2 of Algorithm 3 when α = 1. We have the following lemma

Lemma 15. For any 0 < α < 2, the spectrum of M [k](α) lies in the unit disk on the complex
plane. When D[k+1] = D[k], the spectrum of D[α(N − 1/2(I+D))+D] lies in the disk D(1−α/2,

α/2).
For a linear program Q = 0 and D[k+1] = D[k], the eigenvalues lie on the boundary of D(1−α/2,

α/2).
Proof: (Use shorthand D = D[k])

a. The eigenvalues of the symmetric matrix N are in the interval [0, 1].

b. M(α) = D[k+1][α(N − 1/2(I+D)) +D] = D[k+1]D[αD(N − 1/2I) + I(1−α/2)].
Hence ‖M(α)‖ ≤ ‖D[k+1]D‖ · ‖αD(N − 1/2I) + I(1−α/2)‖ = 1 · ‖αD(N − 1/2I) + I(1−α/2)‖
(since D[k+1]D is unitary).

c. The eigenvalues of α(N − 1/2I)) are in [−α/2,
α/2]. So ‖α(N −

1/2I))‖ ≤
α/2.

d. ‖αD(N−1/2I) + I(1−α/2)‖ ≤ ‖αD(N−1/2I)‖+ ‖I(1−
α/2)‖ ≤

α/2 + (1−α/2) = 1.
If D[k+1] 6= D we are done.

e. We now let D[k+1] = D, so then D[k+1]D = I, and M(α) = αD(N−1/2I) + I(1−α/2).

f. ‖αD(N − 1/2I))‖ ≤
α/2. Hence the eigenvalues of αD(N − 1/2I) are in D(0, α/2).

g. The eigenvalues of αD(N−1/2I) + I(1−α/2) are in D(1−α/2,
α/2).

h. For a linear program, N−1/2I is half a unitary matrix, hence its eigenvalues lie on the boundary
of D(0, 1/2), hence the eigenvalues of αD(N−1/2I) + I(1−α/2) are on the boundary of the disk
D(1−α/2,

α/2).

This suggests that one should choose α to push the eigenvalues away from the boundary of the
unit disk, but this turns out to be difficult if the eigenvalues are located on the boundary of the
disk D(1−α/2,

α/2), as we now elaborate for a linear program.

16

Adjusting the relaxation parameter α 6= 1 will not accelerate the iteration during regime [a]
or [c] for an LP. In such a regime, D[k+1] = D[k] and M(α) = α[M−I] + I = α[M−γI] where
γ = 1−1/α is a shift such that the eigenvalue 1 of M is mapped to the eigenvalue 1 of M(α). We can
examine the ratio r of the second largest eigenvalue of M−γI to the largest eigenvalue (in absolute
value). Let λ = (1 + c+ is)/2 be prospective eigenvalue of M on the boundary of D(1/2,

1/2), with
c2+ s2 = 1. We can calculate the ratio r = |λ−γ|/|1−γ| for some real shift γ. A tedious algebraic
manipulation yields the result that r is minimized when γ = 0, i.e., no shift. So during the last
stage of the ADMM process, in regime [a] or [c], a shift will not yield a useful acceleration, and
could actually slow down the convergence. We also remark that during the last linear stage, the
spectrum of the matrix operator is also independent of ρ.

During regime [b] the process converges to a “constant step,” that is, the difference between
consecutive iterates w[k+1]−w[k] converges to a constant vector. In such a regime, a shift may still
yield a speedup depending on the term αD[k+1]h. The effect of this scheme on regime [d] could
vary, depending very much on the specific eigenstructure found.

8 Examples

Example 1. We illustrate the eigen-analysis of the behavior of ADMM on a simple linear program
modelling a production process. We give a motivation for this LP to point out that this could
represent a real physical or biological system, but the main purpose of this example is to show
different interesting convergence behaviors when solved using the ADMM process.

We consider a production process in which we would like to maximize the production of a
desired final product where for each unit of raw material we can produce 2 units of final product
by means of a cheap method with flux rate x1, or 30 units of final product by means of a more
expensive process with flux rate x2. The cheap method uses only 2 units of internal capacity while
the more expensive process uses 50. The constraints on the system are (i) a limit on the availability
of raw material x1 + x2 ≤ x0,max, (ii) a limit on the internal capacity 2x1 + 50x2 ≤ 200, and (iii)
irreversibility of the processes x1, x2 ≥ 0. This is modelled by the following linear program.

minimizex −2x1− 30x2 (desired end product production)
subject to x1 +x2 + x3 = x0,max (limit on raw material)

2x1 +50x2 + x4 = 200 (internal capacity limit)
x1 ≥ 0 x2 ≥ 0 (irreversibility of reactions)
x3 ≥ 0 x4 ≥ 0 (slack variables)

(15)

The slack variables x3, x4 have been added to put it into standard form (1) (with Q = 0), converting
the inequality constraints into equality constraints. This LP could represent a industrial process
in which the input is metal ore, the output is the pure metal, and the internal capacity limit is a
limit on the power available to run the process. It could also represent a very simplified model of a
biological process in which the raw material is a sugar and/or oxygen, the desired output is energy
represented by ATP, and the two processes are fermentation (cheap) and respiration (expensive),
both limited by the biochemical capacity within the cell (see e.g. [58] and references therein).

The ADMM process exhibits its most interesting behavior when the raw material limit x0,max

is near a point of phase transition where the optimal solution changes from “all cheap process”
to “a mix of both processes” to “all expensive process.” For x0,max > 100 the optimal solution
is x1 = 100, x2 = 0; for 0 < x0,max < 4 the optimal solution is x1 = 0, x2 = x0,max; for the

17

0 20 40 60 80 100 120 140 160
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration number

max 2x+30y s.t. x+y<99.9, 2x+50y<200. ADMM trace

 A

B

C

D

A=||error||2

B=||diffs||2

C=r:norm2

D=s:norm2/10

Figure 1: ADMM on Example 1: typical behavior. Curves: A: error ‖(z[k] − u[k])− (z∗ − u∗)‖2. B:
‖(z[k] − u[k]) − (z[k−1] − u[k−1])‖2. C: ‖(x[k] − z[k])‖2. D: ‖(z[k] − z[k−1])‖2/10 (D is scaled by 1/10
just to separate it from the rest).

intermediate phase 4 < x0,max < 100 the optimal solution has x1, x2 both non-zero. We illustrate
ADMM’s typical behavior with x0,max = 99.9 (see Fig. 1). Using the notation from theorems 13 &
14, the figures show the error ‖w[k] −w∗‖22 (A: top curve), the difference between two consecutive
iterates ‖w[k] −w[k−1]‖22 (B: second from top), the primal residual ‖x[k] − z[k]‖22 (C), and the dual
residual ‖zk+1−z[k]‖22 (D), where curve D is scaled by 1/10 just to separate it from the other curves
in the figure.

Since (15) is an LP, the operator N in (8) is simply the orthogonal projector onto the nullspace

of the constraint matrix A =

(
1 1 1 0
2 50 0 1

)
. The operator N and vector h in (8) in this case are

N =

0.5201 −0.0210 −0.4991 0.0096
−0.0210 0.0012 0.0197 −0.0204
−0.4991 0.0197 0.4793 0.0108
0.0096 −0.0204 0.0108 0.9994

 , h =

48.3546
2.0968
49.4487
−1.5470

 .

During the first 124 iterations of ADMM, the flag matrix D = Diag(+1,+1,+1,−1) is invariant,
and the iterates w[k] = z[k] − u[k] obey the recurrence (9) for k = 1, . . . , 124:

(
w[k+1]

1

)
= Maug

(
w[k]

1

)
=

0.5201 −0.0210 −0.4991 0.0096 48.3546
−0.0210 0.0012 0.0197 −0.0204 2.0968
−0.4991 0.0197 0.4793 0.0108 49.4487
−0.0096 0.0204 −0.0108 0.0006 1.5470

0 0 0 0 1.0000

(
w[k]

1

)
,

18

The eigenvalues of the operator Maug are given by its Jordan canonical form (10):

J = Diag(J1, J4) = Diag

((
1 1
0 1

)
, 6.2357e-4± 2.4964e-2i, 0

)

The 2×2 Jordan block corresponding to eigenvalue 1 indicates we are in the “constant-step” regime
[b]. The difference between two consecutive iterates quickly converges to Maug’s only eigenvector
for eigenvalue 1:

(
w[k+1]

1

)
−

(
w[k]

1

)
=⇒

0.4160
−0.0166
−0.3993

0
0

,

for k = 1, . . . , 124.
From iteration 125 to 132, the iteration passes through a few transitional phases until in iteration

133 it reaches the final regime [a], converging in 21 steps. During the final regime, the iterates obey
the following recurrence (9) for k = 133, . . . , 154:

(
w[k+1]

1

)
= Maug

(
w[k]

1

)
=

0.5201 −0.0210 −0.4991 0.0096 48.3546
−0.0210 0.0012 0.0197 −0.0204 2.0968
0.4991 −0.0197 0.5207 −0.0108 −49.4487
−0.0096 0.0204 −0.0108 0.0006 1.5470

0 0 0 0 1.0000

(
w[k]

1

)
, (16)

with final iterate
(
w∗

1

)
=

(
w[155]

1

)
= (99.8958, 0.0042, 0.8334, 0.5833, 1)T .

The final flag matrix is D∗ = Diag(+1,+1,−1,−1), indicating that the first two components of w∗

correspond to primal variables (x∗1, x
∗
2) and the last two to dual variables (u∗3, u

∗
4), all non-zero. Thus

the true optimal solution to (15) is x∗1 = 99.8958, x∗2 = 0.0042. u∗3 = −0.8334, u∗4 = −0.5833. The
vector [w∗; 1] is the eigenvector corresponding to eigenvalue 1 for the operator in (16). Following
Lemma 12(b), convergence is rapid because the spectral radius of the 4 × 4 upper left part of the
operator in (16) is σ(M) = 0.7217, well separated from Maug’s largest eigenvalue 1.

From Fig. 1, it is clear that while the primal and dual residuals (C,D) can behave in oscillatory
fashion, the combined iterate w[k] behaves in much smoother fashion. It is also clear that there is an
imbalance between the primal and dual residuals during the “constant-step” regime [b]. This could
be alleviated by dynamically adjusting ρ, and that the “constant-step” regime could be shortened
by adjusting α. But we have chosen to show the iteration without these adjustments to better
illustrate the transitions between regimes. Allowing ρ to vary dynamically cuts the iteration count
to 77, and separately setting α = 1.8 cuts the iteration count to 144. We show in Fig. 2 the
behavior when α = 1.8. The early “constant-step” regime [b] is shortened to 73 steps, but after
several transitions the trailing “linear convergence” regime [a] is lengthened to 60 steps, as one
would expect from the considerations of section 7.
Example 2. This example is the same as the previous example, but with the raw material limit
set to x0,max = 3.9, near the lower phase transition boundary. We find the ADMM process behaves

19

0 50 100 150
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration number

max 2x+30y s.t. x+y<99.9, 2x+50y<200. α=1.8

A

B

C
D

A=||error||2

B=||diffs||2

C=r:norm2

D=s:norm2/10

Figure 2: Accelerated ADMM on Example 1: α = 1.8. Curves as in Fig. 1.

very differently. The matrix N is exactly the same as before, but the “right hand side” vector h

changes to
h = (0.4444, 3.9924, −0.5368, −0.5094)T .

After 560 initial iterations (3 in regime [a] and 557 in regime [b]), it reaches the final regime [a]
at iteration 561 with flag matrix D = Diag(−1,+1,−1,+1). The method continues in regime [a]
with very slow convergence until it reaches the preset iteration limit of 5000 steps. The iterates
during the final regime obey (9) for k ≥ 561:

(
w[k+1]

1

)
= Maug

(
w[k]

1

)
=

0.4799 0.0210 0.4991 −0.0096 −0.4444
−0.0210 0.0012 0.0197 −0.0204 3.9924
0.4991 −0.0197 0.5207 −0.0108 0.5368
0.0096 −0.0204 0.0108 0.9994 −0.5094

0 0 0 0 1.0000

(
w[k]

1

)
, (17)

converging to eigenvector

(
w∗

1

)
=

28.0
3.9
30.0
5.0
1

 .

20

The true answer computed using CVX [28] is

w∗ = z∗ − u∗ =

0.0
3.9
0.0
5.0

−

−28.0
0.0

−30.0
0.0

 =

28.0
3.9
30.0
5.0

which matches exactly the eigenvector for the final operator in (17). The iterates are close enough
to the final optimum so that the entries never change sign (the essence of the proof of Theorem
14). So this is indeed the final regime [a], consistent with Theorem 14. We can see the convergence

behavior of the first two components w
[k]
1 , w

[k]
2 , in Fig. 4 where the initial straight line corresponding

to the initial regime [b] leads to the spiral corresponding to the final regime [a] converging slowly
to the point at the center of the spiral. This spiraling behavior is consistent with that observed in
[12].

The spectral radius of the upper left part of the operator in (17) (computed using Matlab’s eig
function) is σ(M) = 0.999895979593711. This is strictly less than 1 so Lemma 12(b) applies, but it
is very close to 1 so that (i) the rate of convergence is very slow, requiring −1/ log10(σ(M)) = 22135
iterations to gain each decimal digit of accuracy, (ii) from Remark 4, adjusting ρ has no effect on
the eigenvalues and hence would not accelerate this iteration at all, (iii) from the observations of
section 7, adjusting the relaxation parameter α will not accelerate this slow regime [a], and could
even slow it down. Hence here we have indeed linear convergence, albeit very slow.

With x0,max = 3.9, we found slow convergence of the entire ADMM process due to the slow
convergence during the “linear convergence” regime. We remark (without going into all the details)
that that setting x0,max = 3.99, we found the ADMM method again exceeded the 5000 steps we
allotted, but this time entirely due to slow progress during an initial “constant step” regime.
Example 3. We construct a simple basis pursuit problem [5, 8]

min
x

‖x‖1 subject to Ax = b, (18)

or a soft variation allowing for noise (similar to LASSO [52])

min
x

‖Ax− b‖22 subject to ‖x‖1 ≤ tol, (19)

where the elements of A,b are generated independently by a uniform distribution over [−1,+1],
A being 20 × 40. Normally one would construct an ADMM iteration specially designed for this
problem using a shrinkage operator [4], but since the purpose of this example is to show the behavior
on problems of the form (1), we instead convert these to the form (1) at a cost of doubling the
number of variables. For the same purpose, we put the ‖x‖1 term in (19) as a constraint rather
than in the objective function. The result is an LP with 80 variables from (18) and a QP with 81
variables (including 1 slack) from (19).

We show in Fig. 5 the ADMM convergence behavior on (18), and in Fig. 6 the ADMM conver-
gence behavior on (19). Fig. 7 shows the eigenvalues of the operator Maug during the final regime for
each case. One notices that the eigenvalues for the quadratic program from (19) lie strictly inside
the circle D(1/2,

1/2) (except for 0 and 1). In this particular example, both the LP (18) and the QP
(19) start by passing through 14 and 32 transitions (respectively) in the early part of the iteration,
then both settle on their final “linear convergence” regime [a] in steps 35 and 556, respectively,
consistent with Theorem 14. Most of the LP’s intermediate operators have a non-trivial Jordan

21

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration number

max 2x+30y s.t. x+y<3.9, 2x+50y<200. ADMM trace

A

B
C

D

A=||error||2

B=||diffs||2

C=r:norm2

D=s:norm2/10

Figure 3: ADMM on Example 2: slow linear convergence. Curves as in Fig. 1.

0 5 10 15 20 25 30 35
3.8

3.85

3.9

3.95

4

4.05

4.1
max 2x+30y s.t. x+y<3.9, 2x+50y<200. 1st components

w
1

w
2

iterates
true answer

←
step

1

step5000→

↑
true
soln

Figure 4: Convergence behavior of first two components of w[k] for Example 2, showing the initial
straight line behavior (initial regime [b]) leading to the spiral (final regime [a]).

22

0 500 1000 1500
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration number

20 x 40 basis pursuit: min ||x||
1
 s.t. Ax=b. ρ= α=

A

B

C

D

A=||error||2

B=||diffs||2

C=r:norm2

D=s:norm2/10

Figure 5: ADMM applied to the LP of Example 3 (18) using α = ρ = 1. Curves as in Fig. 1.

0 20 40 60 80 100 120 140
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

iteration number

20 x 40 basis pursuit: min ||Ax−b||
2
 s.t. ||x||

1
<2; ρ= α=

A

B

C

D

A=||error||2

B=||diffs||2

C=r:norm2

D=s:norm2/10

Figure 6: Unaccelerated ADMM applied to the QP of Example 3 (19) using α = ρ = 1. Curve
A,B,C,D are as in Fig. 5.

block, while none of the QP’s operators do. This means that “constant-step” convergence did not
occur during the QP solution. Here ρ = 1, and no acceleration is used. We re-iterate that this
behavior might not match the behavior of an ADMM iteration designed specifically for the basis
pursuit problem, but serves only as an illustration of ADMM’s behavior on an LP or QP.

23

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

min ||Ax−b||
2
2 s.t. ||x||

1
<2: eigenvalues of M

aug
 (with unit circle)

real part

im
ag

in
ar

y
pa

rt

Figure 7: Spectrum (“*”) of the ADMM iteration operator M∗aug on the complex plane during the
last regime of the ADMM process on (19). The ◦’s show the eigenvalues for the linear program
(18). The unit circle and D(1/2,

1/2) are shown for reference.

9 Conclusions

In this paper, we have introduced a novel spectral analysis for the Alternating Direction Method
of Multipliers (ADMM) applied to a quadratic or linear program in standard form, by modelling
it as a matrix recurrence. The spectrum of the matrix recurrence has been used to analyze the
convergence of the method. It is shown that the method normally passes through several regimes
of four different types as it searches for the correct set of active constraints. We give a way to
analyze the individual regimes separately. When the method finally settles on the correct set of
active constraints, convergence can be linear at a rate depending on the absolute value of the second
largest eigenvalue of the matrix recurrence.

The analysis in terms of regimes allows one to more effectively adjust acceleration methods to
match the current regime. For example, we have shown for LPs during the “linear convergence”
regime, relaxation can be detrimental to the performance of the algorithm, while during “constant-
step” regime it can be beneficial. Likewise with respect to the proximity parameter ρ, while
adjusting ρ can have a dramatic effect on the rate of convergence in general, in LPs it has almost
no effect on the asymptotic rate of convergence during the regime of linear convergence.

This paper is limited to LPs and QPs in standard form. In principle other problems such as
basis pursuit or a soft margin support vector machine can be converted in standard form LP or QP,
but this would result in splittings differing from a “natural” splitting, so that ADMM will behave
differently compared to a splitting designed for the original formulation. For example, a constraint
of the form x ≤ C is a box constraint that could easily be incorporated into the indicator function
g(z) resulting in a modification to step 2 of Alg. 1. We would lose the strict complementarity
between the primal and dual variables. To convert this to a QP in standard form (1), we must
replace the inequality constraint with an equality constraint, x+ xslack = C, with a slack variable.

24

This results in a modification to step 1 of Alg. 1 instead. For these reasons, the behavior of the
method on the converted formulation might differ from that applied to the original formulation.
The spectral analysis for the unmodified formulation is beyond the scope of this paper.

In this paper we have used a spectral analysis of a sequence of matrix operators to explain
the observed behavior of ADMM. We have not addressed the relationship between the eigenvalues
of the derived matrix operators and intrinsic properties of the original model problem. We have
also not addressed the issue of carrying out the spectral analysis on problems too large to form
the matrix operators explicitly, or the issue of using spectral analysis to accelerate convergence of
the method. The former issue would require the use of iterative eigensolvers such as those given
in [27, 37, 48], while the latter issue would require eigensolvers that are robust in the presence
of very close leading eigenvalues or missing eigenvectors, exactly the situations which often cause
difficulties for off-the-shelf eigensolvers.

Acknowledgments

The author would like to thank Arindam Banerjee and Huahua Wang for introducing this problem,
Shuzhong Zhang and Shiqian Ma for helpful discussions, and NSF for their financial support via
grant IIS-0916750. We also thank the reviewers for their helpful and essential comments.

References

[1] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

[2] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation. Prentice Hall, 1989.

[3] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, 1997.

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statis-
tical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1):1–122, 2011. http:// www.stanford.edu/ ~boyd/ papers/ admm/.

[5] A. M. Bruckstein, D. L. Donoho, and M. Elad. From sparse solutions of systems of equations
to sparse modeling of signals and images. SIAM Review, 51(1):34–81, 2009.

[6] T. F. Chan and R. Glowinski. Finite element approximation and iterative solution of a class of
mildly nonlinear elliptic equations. technical report, Computer Science Department, Stanford
University, 1978.

[7] C. H. Chen, B. S. He, and X. M. Yuan. Matrix completion via an alternating direction method.
IMA J. Numer. Anal.,, 32:227–245, 2012.

[8] S. Chen and D. Donoho. Basis pursuit. In Signals, Systems and Computers, 1994. 1994
Conference Record of the Twenty-Eighth Asilomar Conference on, volume 1, pages 41–44,
1994.

25

[9] E. Dall’Anese, J. A. Bazerque, and G. B. Giannakis. Group sparse LASSO for cognitive network
sensing robust to model uncertainties and outliers. Physical Communication, 5(5):161–172,
2012.

[10] W. Deng and W. Yin. On the global and linear convergence of the generalized alternating
direction method of multipliers. Rice Univ. CAAM Tech. Rep. TR12-14, 2012.

[11] J. Douglas and H. H. Rachford. On the numerical solution of the heat conduction problem in
2 and 3 space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

[12] J. Eckstein and D. P. Bertsekas. An alternating direction method for linear programming.
MIT Lab. for Info. and Dec. Sys. report LIDS-P-1967, April 1990.

[13] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and the proximal
point algorithm for maximal monotone operators. Mathematical Programming, 55:293–318,
1992.

[14] J. Eckstein and B. F. Svaiter. General projective splitting methods for sums of maximal
monotone operators. SIAM J. Control Optim., 48:787–811, 2009.

[15] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista. Fast consensus by the alternating
direction multipliers method. IEEE Trans. Signal Proc., 59(11):5523–5537, 2011.

[16] E. Esser. Applications of Lagrangian-based alternating direction methods and connections to
split Bregman. UCLA CAM Report 09-31, University of California, Los Angeles, 2009.

[17] M. Fukushima. Application of the alternating direction method of multipliers to separable
convex programming problems. Comput. Optim. Appl.,, 2:93–111, 1992.

[18] D. Gabay. Applications of the method of multipliers to variational inequalities,. In M. Fortin
and R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Solution of
Boundary-Value Problems,. North-Holland: Amsterdam,, 1983.

[19] D. Gabay and B. Mercier. A dual algorithm for the solution of non- linear variational problems
via finite-element approximations. Comp. Math. Appl., 2:17–40, 1976.

[20] F. R. Gantmacher. The Theory of Matrices. Chelsea Publishing Company, New York, 1959.

[21] R. Glowinski, T. Kärkkäinen, and K. Majava. On the convergence of operator-splitting meth-
ods. In Numerical Methods for Scientific Computing, Variational Problems and Applications,
2003. Barcelona.

[22] R. Glowinski and A. Marrocco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution par pénalisation-dualité, d’une classe de problémes de Dirichlet non linéaires. Revue
Française d’Automatique, Informatique, et Recherche Opérationelle, 9(2):41–76, 1975.

[23] R. Glowinski and P. L. Tallec. Augmented Lagrangian and Operator-Splitting Methods in
Nonlinear Mechanics, volume 9. SIAM Studies in Applied and Numerical Mathematics, 1989.

[24] D. Goldfarb and S. Ma. Fast multiple-splitting algorithms for convex optimization. SIAM J.
Optim., 22(2):533–556, 2012.

26

[25] D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for minimizing
the sum of two convex functions. Math. Program. Ser. A, 2010.

[26] T. Goldstein, B. O’Donoghue, and S. Setzer. Fast alternating direction optimization methods.
CAM report 12-35, UCLA, 2012.

[27] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univ. Press, 4th
edition, 2013.

[28] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
1.21. http://cvxr.com/cvx, Apr. 2011.

[29] B. He and X. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating direction
method of multipliers. http://www.optimization-online.org/DB HTML/2012/01/3318.html,
2012.

[30] B. He and X. Yuan. On the O(1/n) convergence rate of the Douglas-Rachford alternating
direction method. SIAM J. Numer. Anal., 50(2):700–709, 2012.

[31] B. S. He, L. Z. Liao, D. R. Han, and H. Yang. A new inexact alternating directions method
for monontone variational inequalities. Math. Program. Ser. A,, 92:103–118, 2002.

[32] B. S. He, M. H. Xu, and X. M. Yuan. Solving large-scale least squares semidefinite programming
by alternating direction methods. SIAM J. Matrix Anal. Appl.,, 32:136–152, 2011.

[33] M. Hong and Z. Q. Luo. On the linear convergence of the alternating direction method of
multipliers. Arxiv preprint arXiv:1208.3922, 2012.

[34] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
1985.

[35] A. S. Householder. The Theory of Matrices in Numerical Analysis. Dover Publishing, New
York, 1964. Originally published by Ginn Blaisdell.

[36] S. Kontogiorgis and R. R. Meyer. A variable-penalty alternating directions method for convex
optimization. Math. Program.,, 83:29–53, 1998.

[37] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998.

[38] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
J. Numer. Anal., 16:964–979, 1979.

[39] S. Ma and S. Zhang. An extragradient-based alternating direction method for convex mini-
mization. arXiv:1301.6308v1 [math.OC], 2013.

[40] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel. D-ADMM: A communication-
efficient distributed algorithm for separable optimization. arXiv:1202.2805v1 [math.OC], 2012.

[41] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Püschel. Distributed basis pursuit.
Signal Processing, IEEE Transactions on, 60(4):1942 –1956, april 2012.

27

[42] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k 2). Dokl. Akad. Nauk SSSR, 269:543–547, 1983.

[43] Y. E. Nesterov. Introductory Lectures on Convex Optimization, A Basic Course, volume 87 of
Appl. Optim. Kluwer Academic Publishers, Boston, 2004.

[44] Y. E. Nesterov. Smooth minimization for non-smooth functions. Math. Program. Ser. A,
103:127–152, 2005.

[45] Y. E. Nesterov. Gradient methods for minimizing composite objective function. CORE Discus-
sion Paper 2007/76, 2007. http://www.optimizationonline.org/DBFILE/2007/09/1784.pdf.

[46] M. K. Ng, P. Weiss, and X. M. Yuan. Solving constrained total-variation image restoration
problems via alternating direction methods. SIAM J. Sci. Comput., 32:2710–2736, 2010.

[47] J. M. Ortega. Numerical Analysis: A Second Course. Academic Press, New York, 1972.
(republished by SIAM, 1990).

[48] Y. Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, 2nd edition, 2011.

[49] J. E. Spingarn. Partial inverse of a monotone operator. Appl. Math. Optim., 10:247–265, 1983.

[50] J. Sun and S. Zhang. A modified alternating direction method for convex quadratically con-
strained quadratic semidefinite programs. European J. Oper. Res., 207:1210–1220, 2010.

[51] M. Tao and X. M. Yuan. Recovering low-rank and sparse components of matrices from incom-
plete and noisy observations. SIAM J. Optim.,, 21:57–81, 2011.

[52] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996.

[53] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via
the fused LASSO. J. Royal Statist. Soc.,, 67:91–108, 2005.

[54] P. Tseng. A modified forward-backward splitting method for maximal monotone mappings.
SIAM J. Control Optim., 38:431–446, 2000.

[55] H. Wang and A. Banerjee. Online alternating direction method. In Proc. 29th Intl. Conf.
Machine Learning, 2012.

[56] J. Yang and Y. Zhang. Alternating direction algorithms for L1–problems in compressive
sensing. SIAM J. Sci. Comput.,, 33:250–278, 2011.

[57] C.-H. Ye and X.-M. Yuan. A descent method for structured monotone variational inequalities.
Optim. Methods Softw.,, 22:329–338, 2007.

[58] K. Zhuang, G. N. Vemuri, and R. Mahadevana. Economics of membrane occupancy and
respiro-fermentation. Mol Syst Biol, 7, 2011.

28

