
The Algebraic Structure of Pencilsand Block Toeplitz Matrices1Daniel L. Boley2AbstractWe prove several results majorizing the sequences of Kronecker and/or Jordan indices ob-tainable after small perturbations to a given matrix pencil. The proofs are simple consequencesof a theory of majorization for semi-in�nite integer sequences, developed in this paper. In par-ticular, new simple bounds are proved on the indices obtainable after appending a single row orcolumn to a matrix pencil. This corresponds to bounding the controllability and/or observabil-ity indices after adding a single input or a single output to a linear time-invariant dynamicalsystem.1 IntroductionThe close links between the concepts of Controllability, Reachability, and Observability of lineartime-invariant dynamical systems on the one hand, and Kronecker, Jordan indices of appropriatematrix pencils on the other hand have been well established in the literature (see e.g. [7, 12]).Though the complete structure of the Kronecker canonical form (KCF) is often not required, ithas been found that the detailed structure of the KCF is needed in order to compute transmissionzeroes or to know which zeroes may be placed by suitable inputs [5, 1]. Recently, several papershave appeared discussing the Kronecker/Jordan structure of matrix pencils under perturbations tothe pencils and/or orbits of a given pencil. We de�ne the orbit of the pencil bE � � bF as the set ofall pencils of the form fP( bE � � bF)Qg such that P;Q are any nonsingular matrices of appropriatedimensions. Then E � �F is in the closure of the orbit of bE � � bF if and only if an arbitrarily smallperturbation to E � �F yields a pencil eE � � eF with exactly the same Kronecker canonical formas bE � � bF , which is equivalent to the condition that eE � � eF = P( bE � � bF)Q for some nonsingularP;Q [10].Many of the results alluded to above are based on proving relations between the sequencesof Jordan or Kronecker indices to sequences of nullities of special matrices with block Toeplitzstructure de�ned as follows. Let E � �F be an Nrows � Ncols pencil. We form the sequence of1This research was supported in part by NSF grant CCR-9405380.2University of Minnesota, Minneapolis, MN 55455. boley@cs.umn.edu
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constant block Toeplitz matrices (\Gantmacher matrices" [6])A1 = � EF � ; A2 = 0@ EF EF 1A ; A3 = 0BB@ EF EF EF 1CCA ; A4 = 0BBBBB@ EF EF EF EF
1CCCCCA ; � � � (1)and their corresponding right nullities A = fA1; A2; A3; A4; : : :g. By constructing the same ma-trices for the Ncols � Nrows pencil ET � �FT , we obtain the corresponding left nullities AL =fAL1 ; AL2 ; AL3 ; AL4 ; : : :g.We form also the following block Toeplitz matricesG1 = ( E ) ; G2 = � EF E � ; G3 = 0@ EF EF E 1A ; G4 = 0BB@ EF EF EF E 1CCA ; � � � (2)and their corresponding right nullities G = fG1; G2; G3; G4; : : :g.Then we de�ne the following quantities used throughout this paper.K refers to a right Kronecker block,L refers to a Left kronecker block,J refers to a Jordan block for eigenvalue zero, andE refers to the remaining rEgular part.Speci�cally:Ki refers to an i� (i+1) K-block (K for Kronecker block),Lj refers to a (j+1)� j L-block (L for Left Kronecker block),Jj refers to a j � j Jordan block for eigenvalue 0 (J for Jordan), andandNK = number of rows occupied by all the K-blocks,NL = number of columns occupied by all the L-blocks,NJ = number of columns occupied by all the J-blocks for eigenvalue 0, andNE is the dimension of the entire remaining rEgular part (except for eigenvalue 0).nK ; nL; nJ = total number of K, L, J, blocks, respectively.For example, the algebraic and geometric multiplicities for eigenvalue zero are NJ ; nJ , respec-tively, and NJ+NE is the dimension of the entire regular part. We also have the following identitiesfor Nrows �Ncols pencils:(a) Nrows = NK +NL + nL +NJ +NE(b) Ncols = NK + nK +NL +NJ +NE(c) Ncols �Nrows = nK � nL (3)In this paper, we try to unify many of these results by developing a theory of majorization forin�nite integer sequences, completely independent of any application to matrices or linear operators.Our theory is an extension of the theory of majorization for �nite sequences in [9]. The semi-in�nitesequences we will use are de�ned as follows. Let a = fa1; a2; : : :g denote a semi-in�nite sequenceof integers. We implicitly de�ne ai = 0 for all i � 0. We de�ne the set S as the set of all suchsequences. We include sequences whose entries are in�nite as well as ordinary integers. We de�ne{ 2 {



S0 � S as the set of all sequences with non-negative entries. On S we de�ne the di�erence operator� as follows. Let a = fa1; a2; : : :g 2 S. Then _a � �a = f _a1; _a2; : : :g 2 S is the sequence de�nedby _ai = ai � ai�1. We use this di�erence operator to de�ne the sets Sk for k > 0 as follows:Sk = fa : �a 2 Sk�1g. For example, S1 is the set of ascending (i.e. non-decreasing) non-negativesequences. We use the special notation Sd to denote the set consisting of non-negative descending(i.e. non-increasing) sequences a: a 2 Sd � S0 if and only if a1 � a2 � � � � 0.A word on notation: we use bold letters (both upper and lower case) to denote sequences whoseentries are given by the correspnding roman letter: viz. a = fa1; a2; : : :g. We use roman letters(both upper and lower case) to denote scalar quantities: viz. n;N . We use calligraphic upper caseletters to denote matrices: viz. A; E ;M, except that the letter S is used to denote sets of sequences.The identity matrix is denoted I. The greek letters �; � denote scalar quantities; all the other greekletters are used to denote operators on sequences.In this paper we �nd that many of the results on the sequences of Kronecker and Jordan indicesare simple consequences of this theory. Regarding the theory of Kronecker/Jordan indices underperturbations, this discovery helps separate those results which depend on the particulars of thelinear operators from those results which are just properties inherent to the integer indices. We alsouse the theory of integer sequences to prove some new results bounding the Jordan or Kroneckerindices obtainable when a single row or column is added to a pencil. In Control Theory, thiscorresponds to determining the reachability or observability indices obtainable by adding a singleinput or a single output.The Jordan indices, when collected for each eigenvalue in descending order, are known as theSegr�e characteristics [11, p79-81] The relation of these to the so-called Weyr characterstics (thenullities of (M� sI)k, for k = 1; 2; 3; : : :, where M is a square matrix, [11]) was extended in [8]to the case of semi-regular pencils, based on the fact that the Weyr characterstics are also exactlythe nullities of the block Toeplitz matrices (2). A semi-regular pencil is a pencil whose normal rankequals minfNrows; Ncolsg, or equivalently a pencil for which E �sF achieves full row or column rankfor some value of s. A semi-regular pencil is one which has right Kronecker blocks or left Kroneckerblocks, but not both. The analogous construction (1) was used earlier by [6] to prove many basicproperties for the Kronecker canonical form, including its existence. In Sec. 4 below, we presentthese results, extending the results of [8] to general pencils, not necessarily semi-regular.Several papers discuss the e�ect of perturbations of pencils on the indices, or the structure ofthe Kronecker indices reachable in the closure of the orbit of a pencil. In [2], the e�ect on theJordan indices for the eigenvalues of a matrix lying within a region of the complex plane underperturbations to a pencil was discussed. It was found that the sequence of Jordan indices for theperturbed pencil were majorized by the indices for the original pencil, in the sense that the leadingsums of the former were bounded by the leading sums of the latter. In [10], the structure of theKronecker indices within the closure of the orbit of a given pencil was analysed. It was found thatone could apply a sequence of elementary perturbations to a pencil, each making a simple changeto the Kronecker indices, to achieve any structure reachable within the closure of the orbit of thegiven pencil. In the last section of this paper, we illustrate those perturbations, showing that eachone corresponds to a simple change to the sequence of nullities of the block Toeplitz matrices. In[3], the results of [10] and [4] were combined to de�ne a strati�cation of the possible Kroneckerstructures, where each layer consisted of the structures reachable via arbitrarily small perturbationsand/or within the closure of the orbit of a pencil in the neighboring layer.The rest of this paper is organized as follows. In Sec. 2 we give explicit statements of theprincipal previous results on which this paper is based. In Sec. 3 we brie
y sketch the basic results{ 3 {



−2 0 2 4 6 8 10 12 14
−5

0

5

10

15

20

25

30

35

A

A

G

G

G

original A and G sequences

J
N

K
N

Figure 1: Sequences of nullities (14) with corners marked. The arrows indicate the distancesaccording to equations (8) and (11).needed from the algebra of integer sequences. In Sec. 4 we revisit and extend the theory relatingthe Jordan and Kronecker indicies to the nullities of the block Toeplitz matrices, expressed in termsof the notation of Sec. 3. In Sec. 5 we combine the majorization results of the previous sectionwith the relations of Sec. 4 to prove our principal new majorization results for matrix pencils undervarious modi�cations. In Sec. 6 we discuss previous results regarding admissible perturbations interms of the integer sequences. We collect into an Appendix the proofs of some of the theorems oninteger sequences.2 BackgroundIn this section, we summarize the principal previous results on which this paper is based. Thenormal rank of a pencil E � �F is the maximum value attained by rank(E � sF) over all s onthe extended complex plane. It is well known that this maximum rank is attained for all but�nitely many values of s; these special values of s are the eigenvalues of the pencil. In terms of theKronecker canonical form, the normal rank is equal to NK +NL +NJ +NE.In proving the existence of the Kronecker canonical form for an arbitrary pencil, Gantmacher[6, p30] proved that the order k of the smallest right Kronecker block is the smallest k such thatthe rank of Ak+1 (1) is strictly less than (k + 1)Ncols. Note that if there are any zero eigenvalues,we must replace the pencil E � �F with (E � sF)� �F where the rank of (E � sF) is equal to thenormal rank of the pencil. Since (k+1)Ncols is exactly the number of columns in Ak+1, This result{ 4 {



is equivalent toTheorem 1 [6]. If the rank(E � sF) equals the normal rank of the pencil E � �F , then the orderof the smallest Kronecker block is the smallest k such that the right nullity of Ak+1 is bigger thanzero.This is illustrated in Fig. 1, where the sequence of nullities of the matrices fAkgk>0 are repre-sented by the A curve. The �rst nonzero nullity appears for k+1 = 4. This \corner" in the A curveat k = 3 corresponds to the order of the smallest right Kronecker block, namely 3. Following theproof in [6], we can de
ate out the smallest Kronecker block, removing the \corner" in Fig. 1 atk = 3; the e�ect on the curve is to subtract k � 3 from Ak for all k > 3. Then the next Kroneckerblock will correspond to the next \corner" in the A curve at k = 7. The remaining features shownin Fig. 1 will be developed in Sec. 4In [8], a similar construction was used to relate the Jordan indices for eigenvalue zero to the blockToeplitz matrices (2). Any other eigenvalue can be handled by a suitable shift s as in (E�sF)��F .Analogous to the above discussion for Kronecker blocks, the smallest Jordan block for eigenvaluezero is the smallest k such that the rank of Gk+1 is strictly greater than (k+1) � rank(E). In [8], thisresult was used to prove relations between the Segr�e characteristics and the Weyr characteristicsfor a semi-regular pencil. There are many ways to describe the relationships between the betweenthe Segr�e characteristics and the Weyr characteristics, but perhaps the simplest is the following.Theorem 2 [8]. The Weyr characteristics, fGkgk>0, for a semi-regular pencil satisfy the propertythat Gk+1 �Gk is exactly the number of elementary divisors for eigenvalue zero of degree at leastk (equivalently the number of Jordan blocks for zero of dimension at least k).A separate set of papers was devoted to analyses of the possible structures achievable througharbitrarily small perturbations. An important example comes from [10], where the following resultis proved.Theorem 3 [10]. Consider the pencil E � �F with _ak right Kronecker blocks of dimension k � 1,_aLk left Kronecker blocks of dimension k� 1, and hk(s) Jordan blocks for eigenvalue s of dimensionk, for all k = 0; 1; : : :. Consider a second pencil bE � � bF with corresponding indices fb_akg, fb_aLkg,fbhk(s)g. Then E��F lies in the closure of the orbit of bE�� bF if and only if the following conditionshold: Pjk=0 pos(j � k)b_ak+1 � Pjk=0 pos(j � k) _ak+1Pjk=0 pos(j � k)b_aLk+1 � Pjk=0 pos(j � k) _aLk+1jbnK +P1k=0minfj; kgbhk+1(s) � jnK +P1k=0minfj; kghk+1(s)for all s: (4)The proof of this theorem in [10] consists of the decomposition of any perturbation from the orbitof a given pencil into a sequence of \elementary perturbations" of one of small set of types. Theseelementary perturbations are discussed at greater length in Sec. 6. We remark that the �rst twoconditions in (4) (involving _ak, _aLk ) were also proved in [3]. In fact, Elmroth and K�agstrom [4]used this theory to produce a strati�cation of all the possible structures of 2 � 3 pencils. Thisstrati�cation is used to determine which structures are reachable by arbitrarily small perturbationsto given pencils and furthermore to produce the speci�c perturbation needed for each case.In [2], they consider the sequence of Jordan indices in descending order for a matrixM, or actu-ally a general class of (linear) operators. Let s1(�;M) � � � � � snJ (�;M) denote the the dimensionsof the Jordan blocks corresponding to the eigenvalue � in descending order, with sj(�;M) = 0 forj > nJ . Here nJ is the geometric multiplicity of the eigenvalue �. If � is a contour in the complex{ 5 {



plane such that there is no eigenvalue on �, then de�ne sj(�) = P� sj� where the sum is takenover all eigenvalues � inside the contour �. A typical result, expressed for matrix polynomials, isTheorem 4[2]. IfM(�) is a Nrows�Ncols matrix polynomial withNrows � Ncols with no eigenvalueson the contour �, then there exists an � > 0 and a matrix polynomial fM(�) such that kM� fMk < �on � and Xj�l sj(�; fM) �Xj�l sj(�;M) for all natural numbers l: (5)Furthermore, if Nrows = Ncols, then we have equality for l = 1. Conversely, if M is as given above,and we have a sequence of prospective indices sj(�; fM) satisfying (5), then for every � > 0 thereexists a corresponding matrix polynomial fM with the given indices sj(�; fM), with no eigenvalueson �, and such that kM� fMk < �.All the results summarized in this section involve relations between various sequences of inte-gers, di�erences between consecutive entries in such integer sequences, and leading partial sums ofintegers in such sequences. This motivated us to study the properties intrinsic to integer sequencesindependent of the relation between such sequences and any underlying matrix entity. In the nextsection we sketch the results arising from integer sequences and revisit the results of this section inlight of the next in Sec. 4.3 Integer SequencesWe sketch an algebra on semi-in�nite integer sequences, de�ning several operations and transfor-mations on such sequences. Though motivated by its application to linear algebra, this theory iscompletely independent of any particular application.3.1 Basic Properties and De�nitionsWe de�ne several operators on semi-in�nite sequences of integers in Table 1 and summarize afew elementary properties in Table 2. We will also use the following unit coordinate sequences.De�ne the special sequence e = f1; 1; 1; 1; 1; : : :g as a constant sequence, the sequence e1 = �e =f1; 0; 0; 0; : : :g, and E = �e = f1; 2; 3; 4; : : :g. We also de�ne the shifted coordinate sequence�k�1e1 = f0; : : : ; 0; 1; 0; : : :g where the single \1" entry appears in the k-th position. We remarkthat if 0 � i < j, then �ie1 + �i+1e1 + � � �+ �j�1e1 = �ie� �je.Lemma 5. Tables 2 and 3 summarize some basic relations between the various operators de�nedin Table 1.Proof: These properties are simple consequences of the de�nitions, as illustrated by the examples.Lemma 6. The operators �; �;�;� are all linear in the sense that 2(�a+ b) = �2a+ b for allscalars � and sequences a;b, where 2 = �, �, �, or �.Proof: By direct calculation from the de�nitions.We now show the correspondance of our notation with the results of [10].Lemma 7. Let a = fa1; a2; a3; : : : ; ai; : : :g be any sequence, and let pos(x) = maxf0; xg be de�ned{ 6 {



operator description exampleoperators for all integer sequencesx any integer sequence 1; 1; 3; 5; 5; 5; : : :X = �x running sum 1; 2; 5; 10; 15; 20; : : :_x =�x �rst di�erence 1; 0; 2; 2; 0; 0; : : :�x left shift 1; 3; 5; 5; 5; 5; : : :�x right shift 0; 1; 1; 3; 5; 5; : : :operators for ascending integer sequencesa an ascending sequence 1; 1; 3; 3; 4; 4; : : :a# conjugate of an ascending sequence 0; 2; 2; 4;1;1; : : :[ a#k is the no. of ai's less than k]operators for descending integer sequencesg a descending sequence 4; 4; 3; 1; 1; 0; : : :g� conjugate of a descending sequence 5; 3; 3; 2; 0; 0; : : :[ g�k is the no. of gi's greater than or equal to k]scalar values derived from sequencesx1 �nal value (if it exists) 5(a#)1 number of �nite entries in a 1G1 sum of all entries in g 12g�1 number of positive entries in g 5Table 1: Operators on Sequences.
Expression = this expression ExampleIf a is any integer sequence a = f1; 1; 3; 3; 4; 4; : : :g(a) �a = a� �a = f1; 0; 2; 0; 1; 0; 0; : : :g(b) ��a =��a = a = f1; 1; 3; 3; 4; 4; : : :g(c) ��a = a = f1; 1; 3; 3; 4; 4; : : :g(d) ��a = a� a1e1 = f0; 1; 3; 3; 4; 4; : : :g(e) ��a = ��a = f0; 1; 2; 5; 8; 12; 16; : : :g(f) ��a =��a = f0; 1; 0; 2; 0; 1; 0; : : :g(g) ��a = ��a+ a1e = f2; 5; 8; 12; 16; 20; : : :g(h) ��a =��a� a1e1 = f0; 2; 0; 1; 0; 0; : : :gTable 2: Basic Properties of shift, sum, and di�erence operators.
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Expression = this expression ExampleIf a is ascending but bounded a = f1; 1; 3; 3; 4; 4; : : :g(i) Nega = amaxe� a = f3; 3; 1; 1; 0; 0; : : :g(j) negNega = a� a1e = f0; 0; 2; 2; 3; 3; : : :g(k) (a+ e)# = �(a#) = f0; 0; 2; 2; 4;1: : : :g(l) (Nega)� = f4; 2; 2; 0; 0; 0; : : :g[reverse of the �nite entries of a#, followed by 0's]If g is descending with g1 = 0 g = f4; 4; 3; 1; 1; 0; 0; : : :g(m) negg = g1e� g = f0; 0; 1; 3; 3; 4; 4; : : :g(n) Negnegg = g � g1e = f4; 4; 3; 1; 1; 0; 0; : : :g(o) (g + e)� = �g� +1e1 = f1; 5; 3; 3; 2; 0; 0; : : :g(p) g� + e1 = (g+ �g�1e1)� = f4; 4; 3; 1; 1; 1; 0; : : :g�= f6; 3; 3; 2; 0; 0; : : :g(q) (negg)# = f2; 3; 3; 5;1;1; : : :g[reverse of the nonzero entries of g�, followed by 1's]Table 3: Basic Properties of conjugate and negation operators.as the positive part of x. Then the i-th entry of the double sum of a is[�2a]i = 1Xk=0pos(i� k)ak+1:Also, let x and y1; y2; : : : ; ym be a collection of m + 1 non-negative integers (setting yk = 0 fork > m), let Y = y1+y2+ � � �+ym, and de�ne the sequence z = fx+Y;�y1;�y2; : : : ;�ym; 0; 0; : : :g.Then the i-th entry of �2z is [�2z]i = ix+P1k=1minfi; kgyk.Proof: By direct calculation by noting that�2a = fa1;2a1 + a2;3a1 + 2a2 + a3;: : : ;ia1 + (i� 1)a2 + � � � + ai;: : :g;and [�2z]i = ix+ y1 + 2y2 + � � � + iyi + iyi+1 + � � �+ iym:3.2 Ferrer's DiagramsThe sequences can be illustrated by so called Ferrers diagrams [11, 8]. Consider the sequence ade�ned in Table 1. It can be modeled by the histogram in (6a) in which the k-th column has ak
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X's. Likewise, the descending sequence g from Table 1 can be represented by (6b).ak" ... ... ... ... ... ... . . .6 o o o o o o � � �5 o o o o o o � � �4 o o o o X X � � �3 o o X X X X � � �2 o o X X X X � � �1 X X X X X X � � �1 2 3 4 5 6 ! k(a)
gk" ... ... ... ... ... ... . . .6 o o o o o o � � �5 o o o o o o � � �4 X X o o o o � � �3 X X X o o o � � �2 X X X o o o � � �1 X X X X X o � � �1 2 3 4 5 6 ! k(b)Ferrer's Diagrams

(6)
From (6) we can also read the conjugate sequence by reading across. From (6a) we can readb = a# by reading the number of o's across, and from (6b) we can read o� the sequence g� byreading the number of X's across in each row. From (6a) we can also see that the entries of a andb �ll up leading rectangles anchored at the origin. This particular property can be formalized inthe following Lemma.Lemma 8. Suppose we have sequences a 2 S1, b = a#, A = �a, B = �b. Then Bk +Abk = kbk,where A, B are any sequences in the space S2 related by b = �B = (�A)#. Analogously,Ak +Bak = kak.Proof: in the appendix.Remark. Let f(x) be a strictly increasing non-negative function of x, de�ned for all non-negative x, and g(y) be its conjugate, i.e. g(f(x)) = x and f(g(y)) = y for all non-negative x; y.Then Lemma 8 is analogous to the continuous theorem R x0 f(x)dx+ R y0 g(y)dy = xy. This remarkis easily proved via integration by parts, and indeed the proof of Lemma 8 can be thought of as adiscrete analog to integration by parts.3.3 Comparison and Majorization of SequencesWe de�ne what it means to for a sequence to be less than another or to be majorized by anothersequence.Comparison of sequences: Given two sequences A, B, we say that A � B if Ai � Bi for all i.We say that A = B if Ai = Bi for all i. We say that A < B if A � B and A 6= B.Majorization of sequences: Let a and b be two sequences in S0. We say that b weakly majorizesa, denoted by b �w a or a �w b, if �a � �b. If in addition, the sum of all the entries of the twosequences a and b agree and are �nite, then we say that b strictly majorizes a, written b � a. Inother words, b � a i� �b � �a and maxf�bg = maxf�ag <1.Since majorization of sequences plays a critical role in the results of this paper, we state herethe two fundamental results we will use.Theorem 9. Suppose we have the sequencesa 2 S1; A = �a; b = a#; B = �b;as well as g 2 S1; G = �g; h = g#; H = �h:{ 9 {



If g �w a, then (a) the counts (a#)1 � (g#)1, and (b) h �w b. If the �rst majorization is strict,then so is the second, among the �nite entries.Proof: in the appendix.An analog of this theorem for descending sequences appeared in [9] for the case of \strong"majorization. This case can be proved as a special case of Theorem 9, or proved directly usingthe analog of Lemma 8. We now state and prove a theorem on weak majorization for descendingsequences. We see that the conjugate sequences must be adjusted slightly in order to satisfy theinequalities.Theorem 10. ([9, p174] for strong majorization). If x;y are sequences in Sd, then their conjugatesx�;y� are also in Sd. For any such sequences, x � y i� y� � x�. If x �w y, then (x + �ke1 +� � � �k+j�1e1) � y and y� � x� + je1, where k = x�1 and j = Y1 �X1 � 0.Proof: in the appendix.Unlike ascending sequences in Theorem 9, the precedence relation for descending sequencesrequires adjustment to the sequences if the sequence sums di�er: X1 6= Y1. We give a exampleto illustrate what happens when we weaken � to �w. Consider the following sequences x;y, eachwith 7 positive entries, with their sums and conjugates:x bx y �x �bx �y x� bx� y� �bx� �y� �x�6 6 6 06 = 06 = 06 7 8 7 08 > 07 = 074 4 6 10 = 10< 12 4 4 3 12 > 10 < 114 4 5 14 = 14< 17 4 4 3 16 > 13 < 153 3 1 17 = 17< 18 3 3 3 19 > 16 < 181 1 1 18 = 18< 19 1 1 3 20 > 19 = 191 1 1 19 = 19< 20 1 1 2 21 = 21 > 201 1 1 20 = 20< 21 0 0 0 21 = 21 > 200 1 0 20< 21 = 21 0 0 0 21 = 21 > 200 0 0 20< 21 = 21 0 0 0 21 = 21 > 200 0 0 20< 21 = 21 0 0 0 21 = 21 > 20... ... ... ... ... ... ... ... ... ... ... ...
(7)

We see that x �w y, but x� and y� do not majorize each other in either direction. But we doobtain majorization with the modi�ed sequence: (bx)� = x� + e1 � y, which limits the amount bywhich x� misses majorizing y�. A further example is given later in (16), where eg; beg;g there playthe role of x; bx;y here, respectively.4 Jordan, Kronecker Indices and Sequences of NullitiesWe review some results relating the Jordan and Kronecker indices and the Weyr characteristics tothe nullities of the block Toeplitz matrices. We illustrate some of these results with some examplesinvolving the sequences of nullities.4.1 Notation and Basic ResultsWe state the following theorem regarding the Kronecker indices.{ 10 {



Theorem 11. De�ne the sequencesa =�A; _a =�2A and b = (�A)#;where Ai is the nullity of Ai in (1). Then _ak = [�2A]k is exactly the number of Kronecker indicesequal to k � 1 and ak is the number of indices less than k. Hence a1 = nK is the total number ofKronecker indices. The �rst nK entries of b: b1; : : : ; bnK , are the non-negative integers consistingof the right Kronecker indices in ascending order, and bk =1 for all k > nK .Corollary 12. For any integer k, the K-blocks up to size (k�1) � k occupy k � ak � Ak =(k�1)Ak � kAk�1 rows and (k+1) � ak �Ak columns. In particular, if q is the order of the largestK-block and nK is the total number of K-blocks, then the entire right Kronecker part of the penciloccupies, for any k > q, NK = k � nK �Ak = (k�1)Ak � kAk�1 (8)rows and (k+1) � nK �Ak = kAk � (k+1)Ak�1 columns (illustrated in Fig. 1).Proof: Ak = a1 + a2 + � � �+ ak= _a1 + (_a1+_a2) + � � �+ (_a1+ � � �+_ak)= k � _a1 + (k�1) � _a2 + � � � + 1 � _ak= k � ak � [0 � _a1 + 1 � _a2 + � � �+ (k�1) � _ak]= k � (Ak �Ak�1)� [0 � _a1 + 1 � _a2 + � � �+ (k�1) � _ak]: (9)But in the last expression, the part within square brackets is exactly the rows occupied by theK-blocks up to size (k�1)� k. The total number of such K-blocks is _a1+ � � �+ _ak = ak. Hence thenumber of columns occupied is exactly ak more than the number of rows. Also, if k > q, we haveak = nK yielding (8), and the corollary is proved.We remark that (8) is equivalent to sayingNK = [nKE�A]1 = sum of all the entries in [nKe� a] (10)We also remark that we could also de�ne the sequence of left nullities GL of the matrices (2),but this is equivalent to G since they di�er only by a sequence �xed by the dimensions of the overallpencil, by (5c): G�GL = (nK � nL)E = (Ncols �Nrows)E:We now turn our attention to the Jordan indices. We prove that the nullitiesG = fG1; G2; : : :gof the matrices (2) yield the dimensions of the Jordan chains associated with the zero eigenvalue ofthe pencil E ��F , independent of the presence of any Kronecker blocks. Without loss of generality,we can examine the pencil E + �F .Theorem 13. The Jordan indices for eigenvalue zero for the pencil E + �F are related to thenullities G of the matrices (2) as follows. De�ne g = �G. Let nK be the total number of rightKronecker blocks for the pencil, and let hi be the number of Jordan blocks (indices) equal to i, fori = 1; 2; : : :. Let nJ = h1 + h2 + � � � be the total number of Jordan blocks for eigenvalue 0. ThennK = g1 = a1 and we have the following sequences (di�erent ways of expressing the same result):
{ 11 {



(a) G� nKE Extended Weyr Characteristics(a) g � nKe(Number of Jordan indices greater than or equal to i, for i = 1; 2; 3; : : :)(b) s = (g � nKe)� Jordan indices in descending order, followed by 0's(Segr�e characteristics for eigenvalue 0 [11, 8])(c) negg Number of Jordan indices less than i, for i = 1; 2; 3; : : :(d) d = (negg)# Jordan indices in ascending order, followed by 1's(e) _g = fnK + nJ ;�h1;�h2; : : : ;�hr; 0; 0; : : :g = (nK + nJ)e1 � �h,where r is the largest Jordan index.We also state the following result regarding the tail of the sequence of nullities:Corollary 14. Let r be the index of the largest J-block and nK = g1 be the total number ofK-blocks. Then the entire part corresponding to eigenvalue zero has orderNJ = Gk � k � nK = kGk�1 � (k�1)Gk; (11)for any k > r (illustrated in Fig. 1).Proof: By (9), we have for any kGk = k � (Gk �Gk�1)� [0 � _g1 + 1 � _g2 + 2 � _g3 + � � �+ (k�1) _gk]= k � (Gk �Gk�1) + [1 � h1 + 2 � h2 + � � �+ (k�1)hk�1]= k � (gk) + [1 � h1 + 2 � h2 + � � �+ (k�1)hk�1]= k � ( _g1 + : : :+ _gk) + [1 � h1 + 2 � h2 + � � �+ (k�1)hk�1]= k � (nK + nJ � h1 � : : : � hk�1) + [1 � h1 + 2 � h2 + � � �+ (k�1)hk�1](by part (e) of Theorem 13),where the hi are de�ned as in Theorem 13. When k > r, the second line above becomes Gk =k � (Gk�Gk�1)+NJ , and the last line becomes Gk = k � (nK+nJ�nJ)+NJ , proving the corollary.We remark that (11) is equivalent toNJ = [G� nK � E]1 = sum of all the entries in [g � nK � e]: (12)
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4.2 ExampleWe illustrate the relation between the Jordan/Kronecker indices and the sequences of nullities withan example. Consider the pencil (where :'s denote zeroes), corresponding to Fig. 1:
E + sF =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

s 1 0 0 : : : : : : : : : : : : : : :0 s 1 0 : : : : : : : : : : : : : : :0 0 s 1 : : : : : : : : : : : : : : :: : : : s 1 0 0 0 0 0 0 : : : : : : :: : : : 0 s 1 0 0 0 0 0 : : : : : : :: : : : 0 0 s 1 0 0 0 0 : : : : : : :: : : : 0 0 0 s 1 0 0 0 : : : : : : :: : : : 0 0 0 0 s 1 0 0 : : : : : : :: : : : 0 0 0 0 0 s 1 0 : : : : : : :: : : : 0 0 0 0 0 0 s 1 : : : : : : :: : : : : : : : : : : : s 1 0 0 0 : :: : : : : : : : : : : : 0 s 1 0 0 : :: : : : : : : : : : : : 0 0 s 1 0 : :: : : : : : : : : : : : 0 0 0 s 1 : :: : : : : : : : : : : : 0 0 0 0 s : :: : : : : : : : : : : : : : : : : s 1: : : : : : : : : : : : : : : : : 0 s: : : : : : : : : : : : : : : : : : : (M+sN )

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
; (13)

where M + sN is regular with no zero eigenvalues, or is empty (equivalently, M is a squarenonsingular matrix, or empty). This pencil has right Kronecker blocks of sizes 3 � 4 and 7 � 8, aleft Kronecker block of size 1� 0, and two Jordan blocks for eigenvalue 0 of orders 5 and 2. In thispencil, there arenK = 2 right Kronecker blocks occupying NK = 10 rows,nL = 1 left Kronecker blocks occupying NL = 0 columns, andnJ = 2 Jordan blocks for eigenvalue 0 occupying NJ = 7 rows.NE is the dimension of M.The nullities of the block Toeplitz matrices (1) and (2) are the following, together with thenullities (1) corresponding to (E + sF)T which yield the left nullities:A = f0 0 0 1 2 3 4 6 8 10 12 14 16 � � �g;G = f4 8 11 14 17 19 21 23 25 27 29 31 33 � � �g;AL = f1 2 3 4 5 6 7 8 9 10 11 12 13 � � �g: (14)The �rst two sequences above are pictured in Fig. 1. Notice that the A sequence is concave up,the G sequence is concave down (except for the virtual corner at the origin). The �nal slope ofboth sequences are the same (both equal to nK = 2, which is also exactly the number of cornersin the A sequence, counting multiplicities), and when the sequences reach this �nal slope, they areNK +NJ = 17 apart. The reader will notice the corners in the A's in entries 3 and 7, and in the g'sin entries 2 and 5 (plus an implicit one at the origin), marked by A and G in the Figure, respectively.The corners correspond exactly to the nonzero entries in the second di�erences: _a4; _a8, _g3; _g6, and{ 13 {



_aL1 : _a = f0 0 0 1 0 0 0 1 0 0 0 0 0 � � �g;_g = f4 0 �1 0 0 �1 0 0 0 0 0 0 0 � � �g;_aL = f1 0 0 0 0 0 0 0 0 0 0 0 0 � � �g:So one sees that the right Kronecker and Jordan indices in the pencil represented by these sequencesare, respectively f3; 7g and f2; 5g (one less than the corresponding subscripts). The Kronecker andJordan indices appear in the conjugate sequences:a# = f3 7 1 1 1 � � �g Kronecker indices (ascending),(g � g1e)� = f5 2 0 0 0 � � �g Jordan indices (descending),(negg)# = f2 5 1 1 1 � � �g Jordan indices (ascending),(aL)# = f0 1 1 1 1 � � �g left Kronecker indices (ascending).5 E�ect of Modifying PencilsIn this section, we use some of the theory above to extend some results regarding the e�ects ofperturbations on the Kronecker and on the Jordan indices.5.1 PerturbationsLet A be the sequence of nullities of (1), b be the sequence of the Kronecker indices in ascendingorder (followed by 1's), and let B = �b. Hence also B1; : : : ; BnK are also non-negative integersand BnK+1 = BnK+2 = � � � = 1. With this identi�cation, we immediately obtain a result on theinitial sums of the Kronecker indices as the matrices are perturbed, using Theorem 9. We useA1; A2; : : : to denote the nullities of the matrices (1), corresponding to the pencil E � �F . Denoteby eE � � eF a slightly perturbed pencil and let eA = f eA1; eA2; : : :g be the sequence of nullities ofthe resulting perturbed matrices of the form (1). Denote the sequence of Kronecker indices of theperturbed pencil by eb = feb1;eb2; : : :g. If the perturbation is su�ciently small, the nullities willsatisfy eA � A so that Theorem 3 yields the result eB � B. This yields one of the basic theoremslinking the perturbations of pencils to majorization of sequences of nullities.Theorem 15. Let b be the sequence of right Kronecker indices in ascending order for the pencilE ��F (followed by1's), and eb be likewise for the new pencil eE �� eF . If the new pencil eE �� eF isformed from E � �F by taking a su�ciently small perturbation, by appending an additional row,or by deleting a column, or if E � �F lies in the closure of the orbit of eE � � eF , thenea �w a:Proof: For the case of orbits or perturbations, this has been proved in [10, 3]. The proof dependson the fact that for a su�ciently small perturbation, the nullities of the matrices (1) can onlydecrease. Since the nullities are a�ected in the same way by the addition of a row or deletion of acolumn, we can arrive at the same conclusion for these cases too.By a similar argument, we have the similar theorem for the Jordan indices, where d is thesequence of Jordan indices in ascending order (followed by1's), and G is the sequence of nullititesof the matrices (2).Theorem 16. Under the same conditions as Theorem 15,eg �w g:{ 14 {



Theorem 17. Under the same conditions as Theorem 15,b �w eb;where b; eb are, respectively, the sequences of right Kronecker indices in ascending order for theoriginal and perturbed pencils. Furthermore, (G1 � eG1) � 0 and�(G1�eG1)ed �w d;where d and G1 = nK+nJ are the sequence of Jordan indices in ascending order and the combinedcount of right Kronecker and Jordan blocks, respectively, for the original pencil; and ed and eG1 =enK + enJ are the corresponding items for the perturbed pencil.Proof: For the case of b �w eb, this is a simple consequence of the theorems 15 and 9. For the rest,we go through the following derivation, using the identities negg = g1e�g and neg eg+(g1� eg1)e =g1e� eg: eg �w g by assumptionneg eg + (g1 � eg1)e �w negg(neg eg + (g1 � eg1)e)# �w (negg)# by Theorem 9(neg eg + (g1 � eg1)e)# = �(g1�eg1)((neg eg)#) by item (p) of Fig. 3.We remark that this theorem was proved in [2] for the case where enK = nK, but generalized toeigenvalues lying within a contour of the complex plane.The following example illustrates this theorem, in which g1 � eg1 = 1 and enK = nK = 0.eG G eg g (neg eg) (negg) ed �ed d ��ed �d �ed06< 07 6 7 0 0 1 0 1 00 < 01 = 0110< 13 4 6 2 1 1 1 2 01 < 03 > 0211< 13 1 0 5 7 2 1 2 02 < 05 > 0412< 13 1 0 5 7 2 2 2 04 < 07 > 0612< 13 0 0 6 7 2 2 2 06 < 09 > 0812< 13 0 0 6 7 4 2 2 08 < 11 < 1212< 13 0 0 6 7 1 4 2 12 < 13 < 112< 13 0 0 6 7 1 1 1 1 1 1... ... ... ... ... ... ... ... ... ... ... ...(where G = �g = nullities of (2); d = (negg)# = Jordan indices (ascending))
(15)

It is easy to construct a 7� 7 matrixM in Jordan Canonical Form whose Jordan indices are givenby the sequence d in (15), and for which an arbitrarily small perturbation yields a matrix fM whoseJordan indices are ed. In the small perturbation, one 2� 2 Jordan block of that matrix is changedto: � 0 10 0� =) � 0 10 � � ;and two 2 � 2 Jordan blocks coalesce into one 4 � 4 block. We see that for this case, the numberof Jordan blocks for eigenvalue zero has been reduced by 1, so the new sequence of Jordan indiceshas been shifted 1 position. The last column in (15) shows that the shift is necessary to achievemajorization. { 15 {



We remark in the above theorem that g1 � g1, eg1 � eg1 are, respectively, the number of �niteentries in d, ed. Hence �(g1�eg1)ed has g1 � eg1 �nite entries, exactly g1 � eg1 more than d has. Italways the case that g1 � eg1 (otherwise it would be that Gk < eGk for some su�ciently largeindex k).But the case where the number of right Kronecker blocks remains unchanged is of particularinterest. This was the case proved in [2], but generalized to eigenalues within a contour on thecomplex plane. A particular example of this is the ordinary eigenvalue problem in which there areno Kronecker indices, as illustrated above withM. Then d and �(g1�eg1)ed have the same number of�nite entries. In other words, the sequence of Jordan indices in ascending order for the perturbedpencil must be shifted to line up its last Jordan index with that of the original pencil. Then thistheorem states that when so lined up, the original Jordan indices in ascending order majorizes theshifted perturbed Jordan indices.In the general case where the number of right Kronecker blocks does change, the last Jordanindex for the perturbed pencil is lined up g1 � eg1 > 0 positions past the last Jordan index ofthe original pencil. Then this theorem states that when so lined up, the original Jordan indices inascending order majorizes the shifted perturbed Jordan indices.Now we consider the Jordan indices in descending order. If nK = enK then eG�enKE � G�nKE.We obtain the following more limited theorem regarding the Jordan indices in descending order, asa simple consequence of Theorem 10.Theorem 18.. Under the assumptions of Theorem 17, if nK = enK then NJ � eNJ , and(beg)� � (eg � nKe)� + (NJ � eNJ)e1 � (g � nKe)�;where (g�nKe)�, (eg�nKe)� are the sequences of Jordan indices in descending order for the originaland new pencil, respectively, and beg is de�ned to be the result of appending (NJ � eNJ) \1"'s to theend of eg � nKe.We remark that this adjustment (appending (NJ � eNJ) \1"'s) is needed following the resultof Theorem 10. Essentially, we implicitly increase the order of the largest Jordan block to makethe sums coincide. An example of this e�ect is given by (7), in which x; bx;y there play the role of(eg� nKe); beg; (g� nKe) here. We give another example in (16) for which a matrix example havingthe appropriate Jordan indices, (eg� enKe)�; (g�nKe)�, can be easily constructed, where we assumefor simplicity that nk = enk = 0 (or equivalently we compute these sequences for just the regularpart of the pencil). We see in (16) that though eg� does not majorize g�, the discrepancy is limitedby NJ � eNJ . eg beg g �eg �beg �g eg� beg� g� �(beg�) �(g�) �(eg�)6 6 7 06 = 06< 07 3 5 2 05 > 02 < 034 4 6 10 = 10< 13 2 2 2 07 > 04 < 051 1 0 11 = 11< 13 2 2 2 09 > 06 < 070 1 0 11< 12< 13 2 2 2 11 > 08 < 090 1 0 11< 13 = 13 1 1 2 12 > 10 = 100 0 0 11< 13 = 13 1 1 2 13 > 12 > 110 0 0 11< 13 = 13 0 0 1 13 = 13 > 110 0 0 11< 13 = 13 0 0 0 13 = 13 > 11... ... ... ... ... ... ... ... ... ... ... ...(where G = �g = nullities of (2) with nK = 0; g� = Jordan indices (descending))
(16)
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5.2 Appending a Single Row or ColumnFinally we state and prove two new corollaries that provide bounds on the Kronecker indices when asingle row or column are appended to a pencil, or a rank-one change is made to one of the matrices.Corollary 19. Consider a pencil E � �F with corresponding block Toeplitz matrices (1) whosenullities form the sequence A, and let b be the ascending sequence of Kronecker indices for thispencil. If a single row is appended to the pencil E � �F to obtain the pencil bE � � bF , then thecorresponding new sequence of Kronecker indices bb satis�esb+ e1 �w �bb �w �b or equivalently B+ e � � bB � �B;where B = �b. If the row appended is constant (i.e. the row appended to F is zero) then bb satis�esb �w �bb �w �b: or equivalently B � � bB � �B:In either case, the number of right Kronecker blocks (bnK) in the new pencil is either the same orone less than that in the original pencil:nK � 1 � bnK � nK :Proof: In going from the original pencil to the modi�ed pencil, the nullities of the block Toeplitzmatrices (1) cannot go up, and cannot go down by more than the number of rows appended toeach individual matrix Ai. Hence we have the inequalityA� f2; 3; 4; 5; : : :g � bA � A:We can then apply a sequence of identities just using the algebra of integer sequences, beginningwith the above inequality, using the de�nition b = a#:A� �E � bA � A�A�E � � bA � �A�A � � bA+E � �A+E�a �w �ba+ e �w �a+ e(b+ e) �w �bb+ �e �w �b+ �e(B+E) � � bB+ �E � �B+ �E(B+ e) � � bB � �B;where we have used the identity from item (k) of Fig. 3:(�a+ e)# = �[(�a)#]= �[(a# + e)]= �b+ �e:If the row appended to the F matrix is zero, then the nullities of the matrices (1) can go down byat most one less than the general case, so we have the identitiesA�E � bA � AA�E � bA � AA � bA+E � A+Ea �w ba+ e �w a+ eb �w �bb �w �bB � � bB � �B:{ 17 {



As for the number of Kronecker blocks, from the above and (8) we haveA� �E � bA � Ak � nK �NK � (k + 1) = Ak � (k + 1) � bAk = k � bnK � bNK � Ak = k � nK �NKfor all k su�ciently large. Extracting the terms in k yieldsk � (nK � 1) � k � bnK � k � nk;for all k su�ciently large, yielding the result.Corollary 20. Under the same conditions and notation as the previous theorem, if the new pencilbE � � bF is formed by appending an extra column, then the new sequence of Kronecker indicessatis�es b �w bb �w �b. The number of the Kronecker blocks satis�es nK � bnK � nk + 1.Proof: The nullities of the matrices (1) cannot go down, and can go up only by the the number ofcolumns appended, so we obtain the identitiesA � bA � A+Ea �w ba �w a+ eb �w bb �w (a+ e)# = �bB � bB � �B:The bound on nK is proved by the same technique as in the previous Corollary, using (8).6 Admissible Perturbations6.1 General ResultWe now examine the converse of theorems 15, 16, 17, proved in [10]. That is, we restate a resultwhich guarantees when given Kronecker structure is reachable from a given pencil via arbitrarilysmall perturbations in terms of conditions on the sequences of nullities. Equivalently, the resultguarantees when a pencil lies in the closure of the orbit of a second pencil in terms of conditionson the sequences of nullities. This is presented for completeness and to illustrate the simple e�ecton the sequences of nullities of the block Toeplitz matrices (1) and (2).To do this, we extend our notation as follows. Let s be a scalar complex-valued parameter,which can take the value 1. Then we can de�ne the sequence of nullities G(s) corresponding tothe nullities of the matrices of the form (2), but formed from the modi�ed pencil (E � sF)� �F .That is, G(s) is the sequence of nullities corresponding to the (possibly empty) sequence of Jordanindices for eigenvalue s, where s can be any complex number or in�nity.Theorem 21. Consider two pencils E � �F , and bE � � bF , with corresponding con�gurations ofKronecker blocks leading to the corresponding sequences of nullities A;B;G(s), and bA; bB; bG(s).If the sequences of nullities satisfy bA � A, bB � B, and bG(s) � G(s) for all complex s, thenE � �F lies in the closure of the orbit of bE � � bF , or equivalently, an arbitrarily (in�nitesimally)small perturbation to E � �F su�ces to obtain a pencil with the same Kronecker con�guration asthat of bE � � bF .Proof: Theorem 3 states that E � �F lies in the closure of the orbit of bE � � bF if and only ifthe conditions (4) hold. But by Lemma 7, the right hand sides in (4) are exactly the sequences ofnullities A;, AL;, G(s), and the left hand sides are the sequences bA;, bAL;, bG(s), respectively. Sowe can rewrite the above conditions as bA � A, bAL � AL, bG(s) � G(s) for all s, respectively{ 18 {



We remark that the �rst two conditions (involving A, AL) were proved in [3].We also remark that in computing the nullities in the example (14), we used a zero tolerance(set by MATLAB) equal to the � � N � kMk, where � = 2�52 is the unit round-o� of the machine,N is the dimension of the block Toeplitz matrix, and kMk < 2 is the norm of the matrix involved.Any singular value less than this tolerance was considered zero. We further remark that in thisexample, the smallest singular value considered nonzero for any block Toeplitz matrix encounteredwas .2091, well separated from the zero singular values. This smallest nonzero singular value is alower bound on the perturbation necessary to increase the nullity of any block Toeplitz matrix. Inview the Theorem 26, this value is also a lower bound on the perturbation to (13) needed to obtaina pencil whose orbit-closure does not contain the original given pencil (13). This deserves furtherinvestigation.6.2 Types of Fundamental TransitionsThe proof in [10] of the result cited above was based on proving that one can always apply at leastone of the transitions described below to the original pencil such that the sequences of nullities ofthe resulting intermediate pencil still majorize the corresponding sequences of the target perturbedpencil. Hence, after a sequence of such transitions, one must eventually reach a pencil whose se-quences of nullities exactly match those of the target pencil. In other words, the perturbationsneed to reach an attainable Kronecker structure can be decomposed into a sequence of fundamentaltransitions listed in this section. We will see that each transition corresponds to a simple modi�-cation to the sequence of nullities, illustrated by a simple movement of one or two corners in thecurves shown in Fig. 1.In what follows, we denote the starting \source" pencil E � �F , the target pencil bE � � bF , andthe intermediate pencil after a transition eE �� eF . We denote by A; etc. the sequence of nullities of(1) before the transition, together with _a =�2A, and bA; b_a; etc. the corresponding desired targetsequences after the transition. and eA; e_a; etc. the sequences after one transition.We now list the di�erent types of transitions one can apply to a pencil. Each transition can beapplied to a pencil using an arbitrarily small perturbation, yielding a new pencil with the indicatednew structure of nullities. We claim that given a source pencil E � �F with sequence of nullitiesA;G, and target pencil bE � � bF with corresponding sequence of nullities bA; bG, both majorized bythe source sequences, one can always �nd one of these transitions to apply to A and/or G suchthat the resulting sequences eA; eG still majorize the target sequences, unless the source and targetsequences are identical. Each transition corresponds to a simple change to the sequence of nullitiesas illustrated in Figures 2, 3.1. (KL->J) Ki+Lj are replaced by Ji+j+1 (i.e. a left & a right Kronecker block coalesce to forma new Jordan block for eigenvalue zero.) The sequences are then a�ected as follows:e_a = _a� �ie1 = _a+ f0; : : : ; 0;�1; 0; 0; 0; : : :geA = _a� �iE = A+ f0; : : : ; 0;�1;�2;�3;�4; : : :ge_g = _g� �i+j+1e1 = _g + f0; : : : ; 0;�1; 0; 0; 0; : : :geG = G� �i+j+1E = G+ f0; : : : ; 0;�1;�2;�3;�4; : : :gwhere the leading string of zeroes might be empty. A similar e�ect occurs on the sequence Bcorresponding to the L-blocks. { 19 {
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Figure 2: The A sequence together with the e�ect of certain transitions.2. (KE->K) Ki + (NE) are replaced by Ki+1 + (NE�1) (i.e. the regular part is reduced by 1dimension, which is appended to one Kronecker block) The L part is left unchanged. Thesequences are then a�ected as follows:e_a = _a+ �i+1e1 � �ie1 = _a+ f0; : : : ; 0;�1;+1; 0; 0; : : :geA = A� �ie = A+ f0; : : : ; 0;�1;�1;�1;�1; : : :ge_g = _geG = Gwhere the leading string of zeroes might be empty.3. (KK->KK) Ki + Kj are replaced by Ki+1 + Kj�1 where i+1 � j�1. (i.e. two K-blocks arereplaced with two other more generic K-blocks) The L and E parts remain unchanged. Thesequences are then a�ected as follows:if j > i+ 2e_a = _a� �ie1 + �i+1e1 + �j�1e1 � �je1 = _a+ f0; : : : ; 0;�1;+1; 0; : : : ; 0;+1;�1; 0; : : :geA = A� �ie+ �je = A+ f0; : : : ; 0;�1;�1;�1; : : : ;�1; 0; 0; 0; : : :gor if j = i+ 2e_a = _a� �ie1 + 2�i+1e1 � �i+2e1 = _a+ f0; : : : ; 0;�1;+2;�1; 0; : : :geA = A� �ie1 = A+ f0; : : : ; 0;�1; 0; 0; 0; : : :gand in either casee_g = _geG = G{ 20 {



where the leading string of zeroes might be empty.4. (LE->L) Li + NE are replaced by Li+1 + (NE�1) (i.e. the rEgular part is reduced by 1dimension, which is appended to one Kronecker block) The K part is left unchanged. Onlythe sequences corresponding to the L-blocks are a�ected in a way analogous to the type 2(KE->K).5. (LL->LL) Li + Lj are replaced by Li+1 + Lj�1 where i+1 � j�1 (i.e. two L-blocks arereplaced with two other more generic L-blocks) The K and E parts remain unchanged. Onlythe sequences corresponding to the L-blocks are a�ected in a way analogous to the type 3(KK->KK).The e�ect of these transitions on the example of Sec. 4.2 is illustrated by Fig. 2. Notice thattransition KL->J removes a corner in the A sequence, the transition KE->K moves a corner oneposition to the left, and the transition KK->KK moves two corners each one step toward the other.The remaining transition types apply speci�cally to the Jordan chains.6. (JJ->JJ) Ji + Jj are replaced by Ji�1 + Jj+1 (i.e. two J-blocks are replaced with two othermore generic J-blocks), leaving the K- and L-blocks unchanged. The sequences are thena�ected as follows:if j > ie_g = _g � �i�1e1 + �ie1 + �je1 � �j+1e1 = _g + f0; : : : ; 0;�1;+1; 0; : : : ; 0;+1;�1; 0; : : :geG = G� �i�1e+ �je = G+ f0; : : : ; 0;�1;�1;�1; : : : ;�1; 0; 0; 0; : : :gelse if j = ie_g = _g � �i�1e1 + 2�ie1 � �i+1e1 = _g + f0; : : : ; 0;�1;+2;�1; 0; : : :geG = G� �i�1e1 = G+ f0; : : : ; 0;�1; 0; 0; 0; : : :gwhere the leading strings of zeroes has at least one entry (i.e. j � i � 2).7. (JJ1->J) Ji + J1 are replaced by Ji+1 (i.e. a 1 � 1 Jordan block is absorbed into anotherJordan block, increasing the latter's dimension by one). The sequences are then a�ected asfollows:if i > 1e_g = _g � e1 + �e1 + �ie1 � �i+1e1 = _g + f�1;+1; 0; : : : ; 0;+1;�1; 0; : : :geG = G� e+ �ie = G+ f�1;�1;�1; : : : ;�1; 0; 0; 0; : : :gelse if i = 1e_g = _g � e1 + 2�e1 � �2e1 = _g + f�1;+2;�1; 0; : : :geG = G� e1 = G+ f�1; 0; 0; 0; : : :gwhere latter case occurs when two J1 blocks coalesce to form a J2 block.8. (J->JE) Ji+(NE) are replaced by Ji�1+(NE+1) (i.e. one zero eigenvalue becomes nonzero,reducing the order of one Jordan block for zero). The sequences are then a�ected as follows:e_g = _g � �i�1e1 + �ie1 = _g + f0; : : : ; 0;�1;+1; 0; 0; : : :geG = G� �i�1e = G+ f0; : : : ; 0;�1;�1;�1;�1; : : :gwhere the leading strings of zeroes has at least one entry.{ 21 {
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solid line = original, o = after JJ−>JJFigure 3: The G sequence together with the e�ect of the JJ->JJ transition.9. (J1->E) J1 + (NE) is replaced by (NE+1) (i.e. the zero eigenvalue in a 1 � 1 Jordan blockbecomes nonzero). The sequences are then a�ected as follows:e_g = _g � e1 + �e1 = _g + f�1;+1; 0; 0; 0; : : :geG = G� e = G+ f�1;�1;�1;�1;�1; : : :gThe e�ect of transition JJ->JJ on the example of Sec. 4.2 is illustrated by Fig. 3. Notice thatthis transition moves two corners each one step away from each other. This transition is markedby the solid line. The transition KL->J (not shown) would have the e�ect of adding a new cornerto the G sequence. The other transitions would have e�ect analogous to those for the A sequence,moving corners around in appropriate ways.To prove Theorem 3, Pokrzywa [10] proved that if one is given \source" and \target" sequencesof nullities corresponding to two valid pencil con�gurations, where the source sequence majorizesthe target sequence, then a sequence of transitions of exactly the types outlined above can beapplied to the source pencil to reach the target pencil. Another way to state this is: as long asthe target sequences are majorized by the source sequences, one can always apply one of the giventransition types in reverse to �nd a new set of sequences, also majorized by the source sequence andalso corresponding to a valid pencil con�guration. The existence of a transition is a consequence ofthe fact that every valid transition must modify the sequence at the corners, and that the sequencesdelimit convex regions in the plane. { 22 {
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Rearrange terms to getAk = k _a1 + (k � 1) _a2 + � � �+ 2_ak�1 + _ak = k( _a1 + � � �+ _ak)� X1�j�k(j � 1) _aj :Each term in the last summation is just the sum of all the bi's that are exactly equal to j � 1.Hence the last summation is just the sum of all the bj 's that are less than k. But ak is exactly thenumber of such bj's, so the summation equalsX1�j�k(j � 1) _aj = b1 + � � �+ bak = Bak :Hence we have the result Ak = kak �Bak .Proof of Theorem 9. Letm be the number of �nite entries in the sequence b, i.e. bm <1 = bm+1,and let n be the corresponding number for the sequence h. We must show that Hk � Bk is notnegative, for any k, and strictly positive if G < A. In order to do this, we must divide the proofinto several cases. We prove the theorem for k � n, proving in the process that n � m. This casealso applies if n =1. For k > n, Hk =1 so the theorem is vacuously true.Let k � n. We have that hk = l <1. Then it must be that bk <1. For if bk were in�nite, wewould have from Lemma 7 thatk � gj for all j > l; but aj � � � � < k for all j:Hence for large enough j, Gj > Aj , contradicting the assumption. Hence k � m and so n � m.Next we use Theorem 8 to show that Hk �Bk cannot be negative. We have thatHk �Bk = k(hk � bk) +Abk �Ghk= [k(hk � bk)] + [Abk �Gbk ] + [Gbk �Ghk ]= x+ y + z;where x = [k(hk � bk)], y = [Abk � Gbk ], and z = [Gbk � Ghk ]. By assumption y � 0. If we havethe strict inequality G > A, then y > 0. We then show that x + z � 0 and hence Bk � Bk � 0,with strict inequality if G > A.Case I: bk = hk. Then x = z = 0.Case II: bk < hk. Then we use the fact that G is the summation of g to obtain the expression�z = gbk+1 + � � � + ghk . Since g = fgig is a nondecreasing (ascending) nonnegative sequence, thisexpression must be less than the last term times the number of terms: �z � ghk � (hk � bk). FromLemma 7 we have that ghk � k, so we may conclude that �z � x.Case III: bk > hk. Then z = ghk+1 + � � � + gbk . As in case 2, we obtain the inequality z �ghk � (bk � hk) � k � (bk � hk) � �x.Proof of Theorem 10. De�ne l = y�1, the number of positive entries in y. Assume that l is �nite,otherwise this theorem is vacuous. This implies that k (the number of positive entries in x) is also�nite.If Y1 = X1, then �w��. In this case this theorem is identical to Fact B.5 in [9, p174], or canbe proved using techniques similar to above. So let us suppose that x �w y, but Y1 6= X1.{ 24 {



The precedence relation implies that Y1 > X1 and j > 0. Form the sequence bx = x+ �ke1 +� � � + �k+j�1e1. This consists of appending j ones after the last positive entry (the k-th entry) inx. It is clear that bX1 = Y1 by construction.We claim that bx � y. To see this, note that the �rst k entries of bX = �bx and X = �x coincide.Denote Y = �y. For all the terms beyond the l-th, we have bXi � Y1 = Yi, for i � l. So if l � k,the claim is true. So suppose l > k. Then we must examine the terms from the k-th to the l-th.For the k-th term, we have bXk = X1 � Yk < Y1. For all the terms between the k-th and the l-th,we have yk+i � 1, and hence X1 + i � (Yk) + i � Yk+i � Y1, for 1 � i � l � k. This implies thatj � Y1 �X1 � l � k, by setting i = l � k. This in turn implies that for every i = 1; 2; � � � ; l � k,bxk+i = 1, and bXk+i = X1 + i and hence bXk+i � Yk+i. We conclude that bXi � Yi for all i.For the e�ect on the conjugate sequences, we note that �ke � �k+je = �ke1 + � � � + �k+j�1e1,and apply Fig. 3 (p) to see that bx� = x� + je1.
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