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Abstract

We prove several results majorizing the sequences of Kronecker and/or Jordan indices ob-
tainable after small perturbations to a given matrix pencil. The proofs are simple consequences
of a theory of majorization for semi-infinite integer sequences, developed in this paper. In par-
ticular, new simple bounds are proved on the indices obtainable after appending a single row or
column to a matrix pencil. This corresponds to bounding the controllability and/or observabil-
ity indices after adding a single input or a single output to a linear time-invariant dynamical
system.

1 Introduction

The close links between the concepts of Controllability, Reachability, and Observability of linear
time-invariant dynamical systems on the one hand, and Kronecker, Jordan indices of appropriate
matrix pencils on the other hand have been well established in the literature (see e.g. [7, 12]).
Though the complete structure of the Kronecker canonical form (KCF) is often not required, it
has been found that the detailed structure of the KCF is needed in order to compute transmission
zeroes or to know which zeroes may be placed by suitable inputs [5, 1]. Recently, several papers
have appeared discussing the Kronecker/Jordan structure of matrix pencils under perturbations to
the pencils and/or orbits of a given pencil. We define the orbit of the pencil & — AT as the set of
all pencils of the form {P(E A\F )Q} such that P, Q are any nonsingular matrices of appropriate
dimensions. Then & — AF is in the closure of the orbit of & — AF if and only if an arbitrarily small
perturbation to £ — AF yields a pencil E — \F with exactly the same Kronecker canonical form
as & — A\F, which is equivalent to the condition that & — AF = P(c‘? — >\.7?)Q for some nonsingular
P, Q [10].

Many of the results alluded to above are based on proving relations between the sequences
of Jordan or Kronecker indices to sequences of nullities of special matrices with block Toeplitz
structure defined as follows. Let & — AF be an N.gws X Neols pencil. We form the sequence of
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constant block Toeplitz matrices (“Gantmacher matrices” [6])
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and their corresponding right nullities A = {4, Ay, A3, A4,...}. By constructing the same ma-

trices for the Negis X Nyows pencil ET — AFT, we obtain the corresponding left nullities Al =
{AL AL AL AL

We form also the following block Toeplitz matrices
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and their corresponding right nullities G = {G1,G9, G3, Gy, .. .}.
Then we define the following quantities used throughout this paper.

K refers to a right Kronecker block,
L refers to a Left kronecker block,
J refers to a Jordan block for eigenvalue zero, and
E refers to the remaining rEgular part.

Specifically:
K; refers to an i x (i+1) K-block (K for Kronecker block),
L; refers to a (j+1) x j L-block (L for Left Kronecker block),
J; refers to a j x j Jordan block for eigenvalue 0 (J for Jordan), and

and
Ng = number of rows occupied by all the K-blocks,
Ny, = number of columns occupied by all the L-blocks,
Ny = number of columns occupied by all the J-blocks for eigenvalue 0, and
Ng is the dimension of the entire remaining rEgular part (except for eigenvalue 0).
ng,nr,ny = total number of K, L, J, blocks, respectively.

For example, the algebraic and geometric multiplicities for eigenvalue zero are Nj, nj, respec-
tively, and Nj+ Ng is the dimension of the entire regular part. We also have the following identities
for Nigws X Neols pencils:

(a)  Nrows = Nk + N +nr+ Ny + Ng
(b) Neols =Nk +ng+N,+N;+ Ng (3)
(C) Neols — Neows = N — 1y,

In this paper, we try to unify many of these results by developing a theory of majorization for
infinite integer sequences, completely independent of any application to matrices or linear operators.
Our theory is an extension of the theory of majorization for finite sequences in [9]. The semi-infinite
sequences we will use are defined as follows. Let a = {a1,as9,...} denote a semi-infinite sequence
of integers. We implicitly define a; = 0 for all + < 0. We define the set S as the set of all such
sequences. We include sequences whose entries are infinite as well as ordinary integers. We define



Sy C S as the set of all sequences with non-negative entries. On S we define the difference operator
A as follows. Let a = {ay1,a9,...} € S. Then a = Aa = {a1,as,...} € S is the sequence defined
by a; = a; — a;_1. We use this difference operator to define the sets S, for k > 0 as follows:
Sk = {a: Aa € S;_1}. For example, S; is the set of ascending (i.e. non-decreasing) non-negative
sequences. We use the special notation Sy to denote the set consisting of non-negative descending
(i.e. non-increasing) sequences a: a € Sq C Sy if and only if a3 > a9 > ---0.

A word on notation: we use bold letters (both upper and lower case) to denote sequences whose
entries are given by the correspnding roman letter: viz. a = {a1,a9,...}. We use roman letters
(both upper and lower case) to denote scalar quantities: viz. n, N. We use calligraphic upper case
letters to denote matrices: viz. A, £, M, except that the letter S is used to denote sets of sequences.
The identity matrix is denoted Z. The greek letters €, A denote scalar quantities; all the other greek
letters are used to denote operators on sequences.

In this paper we find that many of the results on the sequences of Kronecker and Jordan indices
are simple consequences of this theory. Regarding the theory of Kronecker/Jordan indices under
perturbations, this discovery helps separate those results which depend on the particulars of the
linear operators from those results which are just properties inherent to the integer indices. We also
use the theory of integer sequences to prove some new results bounding the Jordan or Kronecker
indices obtainable when a single row or column is added to a pencil. In Control Theory, this
corresponds to determining the reachability or observability indices obtainable by adding a single
input or a single output.

The Jordan indices, when collected for each eigenvalue in descending order, are known as the
Segré characteristics [11, p79-81] The relation of these to the so-called Weyr characterstics (the
nullities of (M — sZ)*, for k = 1,2,3,..., where M is a square matrix, [11]) was extended in [8]
to the case of semi-regular pencils, based on the fact that the Weyr characterstics are also exactly
the nullities of the block Toeplitz matrices (2). A semi-regular pencil is a pencil whose normal rank
equals min{ Nyows, Neois |, or equivalently a pencil for which £ — sF achieves full row or column rank
for some value of s. A semi-regular pencil is one which has right Kronecker blocks or left Kronecker
blocks, but not both. The analogous construction (1) was used earlier by [6] to prove many basic
properties for the Kronecker canonical form, including its existence. In Sec. 4 below, we present
these results, extending the results of [8] to general pencils, not necessarily semi-regular.

Several papers discuss the effect of perturbations of pencils on the indices, or the structure of
the Kronecker indices reachable in the closure of the orbit of a pencil. In [2], the effect on the
Jordan indices for the eigenvalues of a matrix lying within a region of the complex plane under
perturbations to a pencil was discussed. It was found that the sequence of Jordan indices for the
perturbed pencil were majorized by the indices for the original pencil, in the sense that the leading
sums of the former were bounded by the leading sums of the latter. In [10], the structure of the
Kronecker indices within the closure of the orbit of a given pencil was analysed. It was found that
one could apply a sequence of elementary perturbations to a pencil, each making a simple change
to the Kronecker indices, to achieve any structure reachable within the closure of the orbit of the
given pencil. In the last section of this paper, we illustrate those perturbations, showing that each
one corresponds to a simple change to the sequence of nullities of the block Toeplitz matrices. In
[3], the results of [10] and [4] were combined to define a stratification of the possible Kronecker
structures, where each layer consisted of the structures reachable via arbitrarily small perturbations
and/or within the closure of the orbit of a pencil in the neighboring layer.

The rest of this paper is organized as follows. In Sec. 2 we give explicit statements of the
principal previous results on which this paper is based. In Sec. 3 we briefly sketch the basic results
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Figure 1: Sequences of nullities (14) with corners marked. The arrows indicate the distances
according to equations (8) and (11).

needed from the algebra of integer sequences. In Sec. 4 we revisit and extend the theory relating
the Jordan and Kronecker indicies to the nullities of the block Toeplitz matrices, expressed in terms
of the notation of Sec. 3. In Sec. 5 we combine the majorization results of the previous section
with the relations of Sec. 4 to prove our principal new majorization results for matrix pencils under
various modifications. In Sec. 6 we discuss previous results regarding admissible perturbations in
terms of the integer sequences. We collect into an Appendix the proofs of some of the theorems on
integer sequences.

2 Background

In this section, we summarize the principal previous results on which this paper is based. The
normal rank of a pencil £ — AF is the maximum value attained by rank(E — sF) over all s on
the extended complex plane. It is well known that this maximum rank is attained for all but
finitely many values of s; these special values of s are the eigenvalues of the pencil. In terms of the
Kronecker canonical form, the normal rank is equal to Ng + N;, + Ny + Ng.

In proving the existence of the Kronecker canonical form for an arbitrary pencil, Gantmacher
[6, p30] proved that the order k of the smallest right Kronecker block is the smallest k such that
the rank of Ag 1 (1) is strictly less than (k + 1)Ngs. Note that if there are any zero eigenvalues,
we must replace the pencil £ — AF with (€ — sF) — AF where the rank of (£ — sF) is equal to the
normal rank of the pencil. Since (k4 1) N5 is exactly the number of columns in A1, This result



is equivalent to

Theorem 1 [6]. If the rank(€ — sF) equals the normal rank of the pencil £ — AF, then the order
of the smallest Kronecker block is the smallest £ such that the right nullity of Ay, is bigger than

zero. [ ]

This is illustrated in Fig. 1, where the sequence of nullities of the matrices {A}x~o are repre-
sented by the A curve. The first nonzero nullity appears for k41 = 4. This “corner” in the A curve
at k = 3 corresponds to the order of the smallest right Kronecker block, namely 3. Following the
proof in [6], we can deflate out the smallest Kronecker block, removing the “corner” in Fig. 1 at
k = 3; the effect on the curve is to subtract & — 3 from Ay for all £ > 3. Then the next Kronecker
block will correspond to the next “corner” in the A curve at £ = 7. The remaining features shown
in Fig. 1 will be developed in Sec. 4

In [8], a similar construction was used to relate the Jordan indices for eigenvalue zero to the block
Toeplitz matrices (2). Any other eigenvalue can be handled by a suitable shift s as in (€ —sF) —AF.
Analogous to the above discussion for Kronecker blocks, the smallest Jordan block for eigenvalue
zero is the smallest & such that the rank of Gi11 is strictly greater than (k+1)-rank(£). In [8], this
result was used to prove relations between the Segré characteristics and the Weyr characteristics
for a semi-regular pencil. There are many ways to describe the relationships between the between
the Segré characteristics and the Weyr characteristics, but perhaps the simplest is the following.

Theorem 2 [8]. The Weyr characteristics, { G }x0, for a semi-regular pencil satisfy the property
that Gi1 — G is exactly the number of elementary divisors for eigenvalue zero of degree at least
k (equivalently the number of Jordan blocks for zero of dimension at least k).

A separate set of papers was devoted to analyses of the possible structures achievable through
arbitrarily small perturbations. An important example comes from [10], where the following result
is proved.

Theorem 3 [10]. Consider the pencil £ — AF with a right Kronecker blocks of dimension k£ — 1,
ay left Kronecker blocks of dimension k — 1, and hy(s) Jordan blocks for eigenvalue s of dimension

k, for all k = 0,1,.... Consider a second pencil £ — 2\.7? with corresponding indices {Ek}, {EL},
{hk(s)}. Then & —AF lies in the closure of the orbit of £ — AF if and only if the following conditions
hold:

i:ﬂ pos(j - k)ak—kl < i:[) POS(j — k)dk+1

j . ~L j . .

?9:0 pos(j — k)ag,; < Zi:o pos(j — lz:)a],;+1 (4)
gk + X5 min{j, khig(s) < jnk + 5% mindj, kg (s)

for all s.

The proof of this theorem in [10] consists of the decomposition of any perturbation from the orbit
of a given pencil into a sequence of “elementary perturbations” of one of small set of types. These
elementary perturbations are discussed at greater length in Sec. 6. We remark that the first two
conditions in (4) (involving &k, a}) were also proved in [3]. In fact, Elmroth and Kéagstrom [4]
used this theory to produce a stratification of all the possible structures of 2 x 3 pencils. This
stratification is used to determine which structures are reachable by arbitrarily small perturbations
to given pencils and furthermore to produce the specific perturbation needed for each case.

In [2], they consider the sequence of Jordan indices in descending order for a matrix M, or actu-
ally a general class of (linear) operators. Let s;(\, M) > .-+ > s, , (A, M) denote the the dimensions
of the Jordan blocks corresponding to the eigenvalue X in descending order, with s;(A, M) = 0 for
j > nj. Here ny is the geometric multiplicity of the eigenvalue A. If I is a contour in the complex



plane such that there is no eigenvalue on I', then define s;(I') = 37, s;A where the sum is taken
over all eigenvalues A inside the contour I'. A typical result, expressed for matrix polynomials, is

Theorem 4[2]. If M()) is a Nyows X Neols matrix polynomial with Nyows < Neols with no eigenvalues

on the contour I, then there exists an € > 0 and a matrix polynomial M()) such that |[M—M]|| < €
on I' and

Z s4(T, M) < Z s;(I", M) for all natural numbers [. (5)
>l >l
Furthermore, if N,ows = Neols, then we have equality f(lr [ = 1. Conversely, if M is as given above,

and we have a sequence of prospective indices s;(I', M) satisfying (5), then for every € > 0 there
exists a corresponding matrix polynomial M with the given indices s;(I", M), with no eigenvalues
on I', and such that ||M — M| < e.

All the results summarized in this section involve relations between various sequences of inte-
gers, differences between consecutive entries in such integer sequences, and leading partial sums of
integers in such sequences. This motivated us to study the properties intrinsic to integer sequences
independent of the relation between such sequences and any underlying matrix entity. In the next
section we sketch the results arising from integer sequences and revisit the results of this section in
light of the next in Sec. 4.

3 Integer Sequences

We sketch an algebra on semi-infinite integer sequences, defining several operations and transfor-
mations on such sequences. Though motivated by its application to linear algebra, this theory is
completely independent of any particular application.

3.1 Basic Properties and Definitions

We define several operators on semi-infinite sequences of integers in Table 1 and summarize a
few elementary properties in Table 2. We will also use the following unit coordinate sequences.
Define the special sequence e = {1,1,1,1,1,...} as a constant sequence, the sequence e; = Ae =
{1,0,0,0,...}, and E = e = {1,2,3,4,...}. We also define the shifted coordinate sequence
p~le; = {0,...,0,1,0,...} where the single “1” entry appears in the k-th position. We remark
that if 0 < i < j, then pley + p'tle; +--- + p/ ley = pe — ple.

Lemma 5. Tables 2 and 3 summarize some basic relations between the various operators defined
in Table 1.

Proof: These properties are simple consequences of the definitions, as illustrated by the examples.

O

Lemma 6. The operators p, o, X, A are all linear in the sense that O(ca + b) = aeDa + b for all
scalars a and sequences a, b, where O = p, 0, 3, or A.

Proof: By direct calculation from the definitions. ]
We now show the correspondance of our notation with the results of [10].

Lemma 7. Let a = {a;,a9,as,...,a;,...} be any sequence, and let pos(z) = max{0, 2} be defined



operator ‘ description ‘ example

operators for all integer sequences

X any integer sequence 1,1,3,5,5,5,..

X = ¥x | running sum 1,2,5,10, 15, 20,

x = Ax | first difference 1,0,2,2,0,0,...

oX left shift 1,3,5,5,5,5,

pX right shift 0,1,1,3,5,5,
operators for ascending integer sequences

a an ascending sequence 1,1,3,3,4,4,...

a# conjugate of an ascending sequence | 0,2,2,4, 00,00, ...

[a}f is the no. of a;’s less than k|

operators for descending integer sequences

g a descending sequence 4,4,3,1,1,0,...
g conjugate of a descending sequence | 5,3,3,2,0,0,...
[ g; is the no. of g;’s greater than or equal to k]

scalar values derived from sequences

Too final value (if it exists) 5
(a#) number of finite entries in a o0
G sum of all entries in g 12
g7 number of positive entries in g 5

Table 1: Operators on Sequences.

Ezxpression = this expression Ezample

If a is any integer sequence a=1{1,1,3,3,4,4,...}
(a) Aa =a—pa ={1,0,2,0,1,0,0,...}
(b) XAa =AXa=a ={1,1,3,3,4,4,. }
(c) opa =a ={1,1,3,3,4.,4,...}
(d) poa =a—ae; ={0,1,3,3,4,4,...}
(e) pZa = Ypa ~{0,1,2,5,8,12, 16, !
(f) pAa = Apa {0102010 }
(g) oXa =Xoa+ae ={2,5,8,12,16,20,...}
(h) ocAa = Aca —a1ep = {0,2,0,1,0,0,...}

Table 2: Basic Properties of shift, sum, and difference operators.



Expression = this expression Ezxample

If a is ascending but bounded a=1{1,1,3,3,4,4,...}
(i) Nega = Gmax€ — A =1{3,3,1,1,0,0,...}

(j)  negNega =a—ae ={0,0,2,2,3,3,...}

k) (a+e)# = p(a¥) ={0,0,2,2,4,00....}

() (Nega)* =1{4,2,2,0,0,0,...}
[reverse of the finite entries of a*, followed by 0’s]

If g is descending with g, = 0 g=1{4,4,3,1,1,0,0,...}
(m) negg =gie—g =1{0,0,1,3,3,4,4,...}
(n) Negnegg =g — gt ={4,4,3,1,1,0,0,...}
(o) (g+e)* = pg* + ocey ={00,5,3,3,2,0,0,...}
(p) g +er = (g+plier)* ={4,4,3,1,1,1,0,...}*

= {6,3.3,2,0,0,...}
(@) (negg)? =1{2,3,3,5,00,00,...}

[reverse of the nonzero entries of g*, followed by co’s|

Table 3: Basic Properties of conjugate and negation operators.

as the positive part of . Then the i-th entry of the double sum of a is

[ZQa]z' = Z pos(i — k)ag1-

k=0
Also, let z and y1,y9,...,yn be a collection of m + 1 non-negative integers (setting yr = 0 for
E>m),letY =y +ya+---+ym, and define the sequence z = {z+Y, —y1, ~y2,. .., —Ym,0,0,...}.

Then the i-th entry of 3%z is [22z]; = iz + Y7, min{4, k}ys.
Proof: By direct calculation by noting that
223. = {al,

2a1 + as,
3a1 + 2ay + a3,

iar + (1 —ag + - + a;,
)

and
[ZQZ]i =izc+y1 +2y0+ - iy F Y+ F Y.

L]
3.2 Ferrer’s Diagrams

The sequences can be illustrated by so called Ferrers diagrams [11, 8]. Consider the sequence a
defined in Table 1. It can be modeled by the histogram in (6a) in which the k-th column has aj



X’s. Likewise, the descending sequence g from Table 1 can be represented by (6b).
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Ferrer’s Diagrams

From (6) we can also read the conjugate sequence by reading across. From (6a) we can read
b = a? by reading the number of o’s across, and from (6b) we can read off the sequence g* by
reading the number of X’s across in each row. From (6a) we can also see that the entries of a and
b fill up leading rectangles anchored at the origin. This particular property can be formalized in
the following Lemma.

Lemma 8. Suppose we have sequences a € S;, b = a#, A = ¥a, B = Xb. Then B, + Ay, = kby,
where A, B are any sequences in the space Sy related by b = AB = (AA)#. Analogously,
A+ Bak = kay.
Proof: in the appendix. []

Remark. Let f(z) be a strictly increasing non-negative function of z, defined for all non-
negative z, and g(y) be its conjugate, i.e. g(f(xz)) = xz and f(g(y)) = y for all non-negative x,y.
Then Lemma 8 is analogous to the continuous theorem [j f(z)dz + [; g(y)dy = zy. This remark

is easily proved via integration by parts, and indeed the proof of Lemma 8 can be thought of as a
discrete analog to integration by parts.

3.3 Comparison and Majorization of Sequences

We define what it means to for a sequence to be less than another or to be majorized by another
sequence.

Comparison of sequences: Given two sequences A, B, we say that A < B if A; < B; for all .
We say that A = B if A; = B; for all ;. We say that A < B if A <B and A # B.

Magjorization of sequences: Let a and b be two sequences in Sg. We say that b weakly majorizes
a, denoted by b >, a or a <, b, if ¥a < ¥Xb. If in addition, the sum of all the entries of the two
sequences a and b agree and are finite, then we say that b strictly majorizes a, written b > a. In
other words, b > a iff ¥b > ¥a and max{¥b} = max{Xa} < co.

Since majorization of sequences plays a critical role in the results of this paper, we state here
the two fundamental results we will use.

Theorem 9. Suppose we have the sequences
acS, A=3a, b=a” B=3b,

as well as

ges, G=Xg h=g¥ H=3h



If g <, a, then (a) the counts (a#),, > (g%)u, and (b) h =, b. If the first majorization is strict,
then so is the second, among the finite entries.

Proof: in the appendix. []

An analog of this theorem for descending sequences appeared in [9] for the case of “strong”
majorization. This case can be proved as a special case of Theorem 9, or proved directly using
the analog of Lemma 8. We now state and prove a theorem on weak majorization for descending
sequences. We see that the conjugate sequences must be adjusted slightly in order to satisfy the
inequalities.

Theorem 10. ([9, p174] for strong majorization). If x,y are sequences in Sg, then their conjugates
x*,y* are also in Sq. For any such sequences, x < y iff y* < x*. If x <, y, then (x + pFe; +
< pFti7le;) <y and y* < x* + jey, where k = 27 and j = Yoo — X5 > 0.
Proof: in the appendix. []

Unlike ascending sequences in Theorem 9, the precedence relation for descending sequences
requires adjustment to the sequences if the sequence sums differ: X, # Y. We give a example

to illustrate what happens when we weaken < to <,,. Consider the following sequences x,y, each
with 7 positive entries, with their sums and conjugates:

X X y ¥x ¥Xx Xy x* x* y* Xx* Xyt Xx*
6 6 6 06=06=06 7 8 7 08>07 =07
4 4 6 10=10<12 4 4 3 12>10 < 11
4 4 5 14=14<17 4 4 3 16 > 13 < 15
3 3 1 17=17<18 3 3 3 19> 16 < 18
1 1 1 18=18<19 1 1 3 20 >19 =19
1 1 1 19=19<20 1 1 2 21 =21 > 20 (7)
1 1 1 20=20<21 0 0 0 21 =21 > 20
001 0 20<21=21 0 0 0 21 =21 > 20
000 0 20<21=21 0 0 0 21 =21> 20
000 0 20<21=21 0 0 0 21 =21 > 20

We see that x <, y, but x* and y* do not majorize each other in either direction. But we do
obtain majorization with the modified sequence: (X)* = x* 4+ e1 > y, which limits the amount by
which x* misses majorizing y*. A further example is given later in (16), where g, E, g there play
the role of x, X,y here, respectively.

4 Jordan, Kronecker Indices and Sequences of Nullities

We review some results relating the Jordan and Kronecker indices and the Weyr characteristics to
the nullities of the block Toeplitz matrices. We illustrate some of these results with some examples
involving the sequences of nullities.

4.1 Notation and Basic Results

We state the following theorem regarding the Kronecker indices.

10



Theorem 11. Define the sequences
a=AA a=A’A and b= (AA)7,

where 4; is the nullity of A; in (1). Then a; = [A%A];, is exactly the number of Kronecker indices
equal to k — 1 and ay is the number of indices less than k. Hence ao = ng is the total number of
Kronecker indices. The first nx entries of b: by,..., by, , are the non-negative integers consisting
of the right Kronecker indices in ascending order, and by = oo for all & > ng. []

Corollary 12. For any integer k, the K-blocks up to size (k—1) x k occupy k - ar — Ay =
(k—1)Ar — kAg_1 rows and (k+1) - a — Ag columns. In particular, if ¢ is the order of the largest
K-block and ng is the total number of K-blocks, then the entire right Kronecker part of the pencil
occupies, for any k£ > ¢,

NK:k-nK*Ak:(kfl)Ak*kAk,l (8)

rows and (k+1) -ng — A = kAx — (k+1)Ag_1 columns (illustrated in Fig. 1).
Proof:

Ak = a1tagx+--+ag
= a1+ (a1+a) + -+ (@ +--- +ag)
= k-(ll,1+(k*1)-('12+"'+1'('1‘k (9)

= k-ap—[0-a1+1-ag+---+ (k—1) - ax]
= k- (A — A1) —[0-a1+1-ag+- -+ (k—1) - ag).

But in the last expression, the part within square brackets is exactly the rows occupied by the
K-blocks up to size (k—1) x k. The total number of such K-blocks is @1 + - - - + a5, = aj. Hence the
number of columns occupied is exactly a; more than the number of rows. Also, if k& > ¢, we have
ar = nk yielding (8), and the corollary is proved. []

We remark that (8) is equivalent to saying

Nk = [nkE — A]w = sum of all the entries in [nxe — a (10)

We also remark that we could also define the sequence of left nullities G of the matrices (2),
but this is equivalent to G since they differ only by a sequence fixed by the dimensions of the overall
pencil, by (5c¢):

G-G'= (nK - nL)E = (Ncols - Nrows)E-

We now turn our attention to the Jordan indices. We prove that the nullities G = {G1, Go, ...}
of the matrices (2) yield the dimensions of the Jordan chains associated with the zero eigenvalue of
the pencil £ — AF, independent of the presence of any Kronecker blocks. Without loss of generality,
we can examine the pencil £ + AF.

Theorem 13. The Jordan indices for eigenvalue zero for the pencil £ + AF are related to the
nullities G of the matrices (2) as follows. Define g = AG. Let ng be the total number of right
Kronecker blocks for the pencil, and let h; be the number of Jordan blocks (indices) equal to i, for
1=1,2,.... Let ny = hy + hg + - -- be the total number of Jordan blocks for eigenvalue 0. Then
NK = Joo = Ux and we have the following sequences (different ways of expressing the same result):
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(a) G —ngE Extended Weyr Characteristics
(a) g-—nke
(Number of Jordan indices greater than or equal to i, for i =1,2,3,...)
(b) s=(g—nge)* Jordan indices in descending order, followed by 0’s
(Segré characteristics for eigenvalue 0 [11, 8])

(c) negg Number of Jordan indices less than i, for i = 1,2,3,...
(d) d= (negg)® Jordan indices in ascending order, followed by oo’s
e) g = {nK +ny, _hla _h27 BRI _hT70707 .- } = (TLK + n])el - ph7

where 7 is the largest Jordan index.

We also state the following result regarding the tail of the sequence of nullities:

Corollary 14. Let r be the index of the largest J-block and nx = g be the total number of
K-blocks. Then the entire part corresponding to eigenvalue zero has order

NJ:Gk*k'nK:kaflf(k*].)Gk, (11)

for any k > r (illustrated in Fig. 1).
Proof: By (9), we have for any k

G, =

-

Gy —Gr1)+[1-h1+2-hy+---+ (k=1)hj_1]
(ge)+[1-hi4+2 ho+- -+ (k—1)hy_y]
- (
o

G+ Age) [k +2-ho 4+ (k—1)hg 1]
nkg +ny;— hy *...*hkfl)+[1'h1+2-h2+---+(k*1)hk,1]
(by part (e) of Theorem 13),

k
k
k
k
k

where the h; are defined as in Theorem 13. When k > r, the second line above becomes G} =
k- (Gr— Gr_1)+ Ny, and the last line becomes Gy, = k- (nx +mn; —ny)+ N, proving the corollary.
O]

We remark that (11) is equivalent to

N; =]G — ng - E]oo = sum of all the entries in [g — nk - €]. (12)
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4.2 Example

We illustrate the relation between the Jordan/Kronecker indices and the sequences of nullities with
an example. Consider the pencil (where .’s denote zeroes), corresponding to Fig. 1:

s 1 00
0 s 1 0
0 0 s 1 .
s 1.0 0 0 0 00
0O s 1 00 00O
00 s 10000
000 s 1 00O
0000 s 1 00O
00000 s 10
E+sF = 000 0O0O0O s 1. . . . (13)
s 1.0 00
0 s 1 00
00 s 10
0 00 s 1
0000 s . .
s 1
0 s

(M+5sN)

where M + sN is regular with no zero eigenvalues, or is empty (equivalently, M is a square
nonsingular matrix, or empty). This pencil has right Kronecker blocks of sizes 3 x 4 and 7 x 8, a
left Kronecker block of size 1 x 0, and two Jordan blocks for eigenvalue 0 of orders 5 and 2. In this
pencil, there are

nx = 2 right Kronecker blocks occupying Nig =10 rows,
nr =1 left Kronecker blocks occupying N =0 columns, and
ny =2 Jordan blocks for eigenvalue 0 occupying Nj; =7 TOWS.

Ng is the dimension of M.

The nullities of the block Toeplitz matrices (1) and (2) are the following, together with the
nullities (1) corresponding to (€ + sF)? which yield the left nullities:

A ={00 0 1 2 3 4 6 8 10 12 14 16 ---},
G ={4 8 11 14 17 19 21 23 25 27 29 31 33 ...}, (14)
AL ={1 2 3 4 5 6 7 8 9 10 11 12 13 ---}.

The first two sequences above are pictured in Fig. 1. Notice that the A sequence is concave up,
the G sequence is concave down (except for the virtual corner at the origin). The final slope of
both sequences are the same (both equal to nx = 2, which is also exactly the number of corners
in the A sequence, counting multiplicities), and when the sequences reach this final slope, they are
Ng + Nj = 17 apart. The reader will notice the corners in the A’s in entries 3 and 7, and in the g’s
in entries 2 and 5 (plus an implicit one at the origin), marked by A and G in the Figure, respectively.
The corners correspond exactly to the nonzero entries in the second differences: a4, ag, g3, gs, and

13



a ={00 010 00100000 -}
g ={40 100 10000000 -}
ab ={1 0 000 00O0O0O0O0O0O -}

So one sees that the right Kronecker and Jordan indices in the pencil represented by these sequences
are, respectively {3, 7} and {2,5} (one less than the corresponding subscripts). The Kronecker and
Jordan indices appear in the conjugate sequences:

a’ ={3 7 oo oo oo ---} Kronecker indices (ascending),
(8—9€)* ={6 2 0 0 0 ---} Jordan indices (descending),

(neg g)# ={2 5 o0 o oo ---} Jordan indices (ascending),

(a)# ={0 o© o0 oo oo ---} left Kronecker indices (ascending).

5 Effect of Modifying Pencils

In this section, we use some of the theory above to extend some results regarding the effects of
perturbations on the Kronecker and on the Jordan indices.

5.1 Perturbations

Let A be the sequence of nullities of (1), b be the sequence of the Kronecker indices in ascending
order (followed by oo’s), and let B = ¥b. Hence also By,..., By, are also non-negative integers
and By, +1 = By, 42 = --- = oo. With this identification, we immediately obtain a result on the
initial sums of the Kronecker indices as the matrices are perturbed, using Theorem 9. We use
Ay, Ay, ... to denote the nullities of the matrices (1), corresponding to the pencil £ — AF. Denote
by € — A\F a slightly perturbed pencil and let A = {gl,gg, ...} be the sequence of nullities of
the resulting perturbed matrices of the form (1). Denote the sequence of Kronecker indices of the
perturbed pencil by b = {bl,bg, ...}. If the perturbation is sufficiently small, the nullities will
satisfy A < A so that Theorem 3 yields the result B > B. This yields one of the basic theorems
linking the perturbations of pencils to majorization of sequences of nullities.

Theorem 15. Let b be the sequence of right Kronecker indices in ascending order for the pencil
E — AF (followed by o’s), and b be likewise for the new pencil E — AF. If the new pencil E—A\Fis
formed from £ — AF by taking a sufficiently small perturbation, by appending an additional row,
or by deleting a column, or if £ — AF lies in the closure of the orbit of £~ )\.7?, then

a<,a

Proof: For the case of orbits or perturbations, this has been proved in [10, 3]. The proof depends
on the fact that for a sufficiently small perturbation, the nullities of the matrices (1) can only
decrease. Since the nullities are affected in the same way by the addition of a row or deletion of a
column, we can arrive at the same conclusion for these cases too. []

By a similar argument, we have the similar theorem for the Jordan indices, where d is the
sequence of Jordan indices in ascending order (followed by oc’s), and G is the sequence of nullitites
of the matrices (2).

Theorem 16. Under the same conditions as Theorem 15,

g <w 8

14



]

Theorem 17. Under the same conditions as Theorem 15,

b <y b,

where b,l~) are, respectively, the sequences of right Kronecker indices in ascending order for the
original and perturbed pencils. Furthermore, (G; — G1) > 0 and

p(Glial)a '<w d7

where d and G1 = ng +n are the sequence of Jordan indices in ascending order and tlr’{e comb~ined
count of right Kronecker and Jordan blocks, respectively, for the original pencil; and d and G; =
ng + ny are the corresponding items for the perturbed pencil.

Proof: For the case of b <, l~), this is a simple consequence of the theorems 15 and 9. For the rest,
we go through the following derivation, using the identities negg = g1e — g and negg+ (g1 — g1)e =

gi€ — g:

g <w 8 by assumption

negg + (g1 — g1)e —w Negg

(negg + (91 — §1)e)# <w (neg g)# by Theorem 9

(negg + (g1 — g1)e)* = pl~9)((negg)#) by item (p) of Fig. 3.

]

We remark that this theorem was proved in [2] for the case where nng = ng, but generalized to
eigenvalues lying within a contour of the complex plane.

The following example illustrates this theorem, in which g1 — g1 =1 and ng = nxg = 0.

G G g g (negg) (negg) d pd d pd »d 3d

06 <07 6 7 0 0 1 0 1 00<01=01

10<13 4 6 2 1 1 1 2 01 <03>02

11<13 1 0 5 7 2 1 2 02<05>04

12<13 1 0 5 7 2 2 2 04 <07 >06

12<13 0 0 6 7 2 2 2 06 <09 > 08 (15)
12<13 0 0 6 7 4 2 2 08 <1l <12

12<13 0 0 6 7 oo 4 2 12 < 13 <

12<13 0 0 6 7 o0 00 00 oo 0

(where G = g = nullities of (2); d = (negg)* = Jordan indices (ascending))

It is easy to construct a 7 X 7 matrix M in Jordan Canonical Form whose Jordan indices are given
by the sequence d in (15), and for which an arbitrarily small perturbation yields a matrix M whose
Jordan indices are d. In the small perturbation, one 2 x 2 Jordan block of that matrix is changed

to:

0 1 N 0 1

0 0 0 €)’
and two 2 x 2 Jordan blocks coalesce into one 4 x 4 block. We see that for this case, the number
of Jordan blocks for eigenvalue zero has been reduced by 1, so the new sequence of Jordan indices

has been shifted 1 position. The last column in (15) shows that the shift is necessary to achieve
majorization.
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We remark in the above theorem that g1 — goo, g1 — goo are, respectively, the number of finite
entries in d, d. Hence p(-‘“’-‘“)d has g1 — goo finite entries, exactly goo — goo more than d has. It
always the case that goo > goo (otherwise it would be that Gy < Gy for some sufficiently large
index k).

But the case where the number of right Kronecker blocks remains unchanged is of particular
interest. This was the case proved in [2], but generalized to eigenalues within a contour on the
complex plane. A particular example of this is the ordinary eigenvalue problem in which there are
no Kronecker indices, as illustrated above with M. Then d and p(9' ~ 91)d have the same number of
finite entries. In other words, the sequence of Jordan indices in ascending order for the perturbed
pencil must be shifted to line up its last Jordan index with that of the original pencil. Then this
theorem states that when so lined up, the original Jordan indices in ascending order majorizes the
shifted perturbed Jordan indices.

In the general case where the number of right Kronecker blocks does change, the last Jordan
index for the perturbed pencil is lined up goo — goo > 0 positions past the last Jordan index of
the original pencil. Then this theorem states that when so lined up, the original Jordan indices in
ascending order majorizes the shifted perturbed Jordan indices.

Now we consider the Jordan indices in descending order. If ng = ng then éfﬁKE < G—ngE.
We obtain the following more limited theorem regarding the Jordan indices in descending order, as
a simple consequence of Theorem 10.

Theorem 18.. Under the assumptions of Theorem 17, if ng = nx then N; > ]\7], and

~

(&) = (& —nKe)* + (N;— Ny)er = (g — nie)”,

where (g—nke)*, (§—nke)” are the sequences of Jordan indices in descending order for the original
and new pencil, respectively, and g is defined to be the result of appending (N; — NJ) “1”’s to the
end of g — nge. []

We remark that this adjustment (appending (N; — N;) “17’s) is needed following the result
of Theorem 10. Essentially, we implicitly increase the order of the largest Jordan block to make
the sums coincide. An example of this effect is given by (7), in which x, X,y there play the role of
(& — nxe),g, (g — nxe) here. We give another example in (16) for which a matrix example having
the appropriate Jordan indices, (g —nxe)*, (g —nxe)*, can be easily constructed, where we assume
for simplicity that ny = 1 = 0 (or equivalently we compute these sequences for just the regular
part of the pencil). We see in (16) that though g* does not majorize g*, the discrepancy is limited
by NJ - N].

*

() =g =(&)

*

Yg Yg Xg g’

g 8 8 g 8

6 6 7 06=06<07 3 5 2 05 > 02 < 03

4 4 6 10=10<13 2 2 2 07 > 04 < 05

1 1 0 11=11<13 2 2 2 09 > 06 < 07

0 1 0 11<12<13 2 2 2 11 > 08 < 09

01 0 1I1<13=13 1 1 2 12 > 10 = 10 (16)
0O 0 0 11<13=13 1 1 2 13 > 12 > 11

0 0 0 11<13=13 0 0 1 13 = 13 > 11

0 0 0 11<13=13 0 0 O 13 = 13 > 11

(where G = Xg = nullities of (2) with nx = 0; g* = Jordan indices (descending))
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5.2 Appending a Single Row or Column

Finally we state and prove two new corollaries that provide bounds on the Kronecker indices when a
single row or column are appended to a pencil, or a rank-one change is made to one of the matrices.

Corollary 19. Consider a pencil £ — AF with corresponding block Toeplitz matrices (1) whose
nullities form the sequence A, and let b be the ascending sequence of Kronecker indices for this
pencil. If a single row is appended to the pencil £ — AF to obtain the pencil E— )\.7?, then the
corresponding new sequence of Kronecker indices b satisfies

b+e; =y pB =w pb or equivalently B +e > p]§ > pB,
where B = ¥b. If the row appended is constant (i.e. the row appended to F is zero) then b satisfies
b >, pB = pb. or equivalently B > p]§ > pB.

In either case, the number of right Kronecker blocks (7ix) in the new pencil is either the same or
one less than that in the original pencil:

Proof: In going from the original pencil to the modified pencil, the nullities of the block Toeplitz
matrices (1) cannot go up, and cannot go down by more than the number of rows appended to
each individual matrix A;. Hence we have the inequality

A-—{2,345.. <A<A

We can then apply a sequence of identities just using the algebra of integer sequences, beginning
with the above inequality, using the definition b = a#:

A oE<A<A

pA —E < pA < pA

pA < pA+E<pA+E

pa <y, pa+e <y, pat+e
(b+e) >wp13+pe>wpb+pe
(B+E) > pB + pE > pB + pE
(B+e)2p]§2pB,

where we have used the identity from item (k) of Fig. 3:

(pa+e)* = p[(pa)¥]
= p[(a® + e)]
= pb + pe.

If the row appended to the F matrix is zero, then the nullities of the matrices (1) can go down by
at most one less than the general case, so we have the identities

A-E<A<A
A-E<A<A
A<A+E<A+E
a<,ate<,ate
b>wpf)>wpb
B > B > B.
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As for the number of Kronecker blocks, from the above and (8) we have
A—oE<A<Ak-ng—Ng—(k+1)=Ay—(k+1) <A, =k-ng— Ng < Ay = k-ng — Ng
for all k sufficiently large. Extracting the terms in k yields

kE-(ng—1)<k-ng <k-ng,

for all k sufficiently large, yielding the result. []

Corollary 20. Under the same conditions and notation as the previous theorem, if the new pencil
E—AF is formed by appending an extra column, then the new sequence of Kronecker indices
satisfies b >, b > pb. The number of the Kronecker blocks satisfies nx < ng < ng + 1.

Proof: The nullities of the matrices (1) cannot go down, and can go up only by the the number of
columns appended, so we obtain the identities

A<A<A+E
a<,a<y,ate

by, b=, (a+e)# =pb
B > B > yB.

The bound on ng is proved by the same technique as in the previous Corollary, using (8). []

6 Admissible Perturbations

6.1 General Result

We now examine the converse of theorems 15, 16, 17, proved in [10]. That is, we restate a result
which guarantees when given Kronecker structure is reachable from a given pencil via arbitrarily
small perturbations in terms of conditions on the sequences of nullities. Equivalently, the result
guarantees when a pencil lies in the closure of the orbit of a second pencil in terms of conditions
on the sequences of nullities. This is presented for completeness and to illustrate the simple effect
on the sequences of nullities of the block Toeplitz matrices (1) and (2).

To do this, we extend our notation as follows. Let s be a scalar complex-valued parameter,
which can take the value co. Then we can define the sequence of nullities G(s) corresponding to
the nullities of the matrices of the form (2), but formed from the modified pencil (€ — sF) — \F.
That is, G(s) is the sequence of nullities corresponding to the (possibly empty) sequence of Jordan
indices for eigenvalue s, where s can be any complex number or infinity.

Theorem 21. Consider two pencils £ — AF, and g - )\.7-" with corresponding configurations of
Kronecker blocks leading to the corresponding sequences of nullities A, B, G(s), and A, B, G(s).
If the sequences of nullities satisfy A < A, B < B, and G(s) < G(s) for all complex s, then
& — AF lies in the closure of the orbit of & — )\]-— or equivalently, an arbitrarily (1nﬁn1te81mally)
small perturbation to & — AF suffices to obtain a pencil with the same Kronecker configuration as
that of & — AF.

Proof: Theorem 3 states that & — AT lies in the closure of the orbit of & — AF if and only if
the conditions (4) hold. But by Lemma 7, the right hand sides in (4) are exactly the sequences of
nullities A,, A", G(s), and the left hand sides are the sequences A, A", G( ), respectively. So
we can rewrite the above conditions as A < A, Al < AL, G(s) < G(s) for all s, respectively []
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We remark that the first two conditions (involving A, A) were proved in [3].

We also remark that in computing the nullities in the example (14), we used a zero tolerance
(set by MATLAB) equal to the e N - | M||, where e = 27°? is the unit round-off of the machine,
N is the dimension of the block Toeplitz matrix, and || M]| < 2 is the norm of the matrix involved.
Any singular value less than this tolerance was considered zero. We further remark that in this
example, the smallest singular value considered nonzero for any block Toeplitz matrix encountered
was .2091, well separated from the zero singular values. This smallest nonzero singular value is a
lower bound on the perturbation necessary to increase the nullity of any block Toeplitz matrix. In
view the Theorem 26, this value is also a lower bound on the perturbation to (13) needed to obtain
a pencil whose orbit-closure does not contain the original given pencil (13). This deserves further
investigation.

6.2 Types of Fundamental Transitions

The proof in [10] of the result cited above was based on proving that one can always apply at least
one of the transitions described below to the original pencil such that the sequences of nullities of
the resulting intermediate pencil still majorize the corresponding sequences of the target perturbed
pencil. Hence, after a sequence of such transitions, one must eventually reach a pencil whose se-
quences of nullities exactly match those of the target pencil. In other words, the perturbations
need to reach an attainable Kronecker structure can be decomposed into a sequence of fundamental
transitions listed in this section. We will see that each transition corresponds to a simple modifi-
cation to the sequence of nullities, illustrated by a simple movement of one or two corners in the
curves shown in Fig. 1.

In what follows, we denote the starting “source” pencil & — AF, the target pencil E— )\.7-" and
the intermediate pencil after a transition E - A\F. We denote by A, etc. the sequence of nullities of
(1) before the transition, together with a = A?A, and A, a, etc. the corresponding desired target
sequences after the transition. and A, 5, etc. the sequences after one transition.

We now list the different types of transitions one can apply to a pencil. Each transition can be
applied to a pencil using an arbitrarily small perturbation, yielding a new pencil with the indicated
new structure of nullities. We claim that given a source pencil £ — AF with sequence of nullities
A G, and target pencil & — \F with corresponding sequence of nullities A é both majorized by
the source sequences, one can always find one of these transitions to apply to A and/or G such
that the resulting sequences A G still majorize the target sequences, unless the source and target
sequences are identical. Each transition corresponds to a simple change to the sequence of nullities
as illustrated in Figures 2, 3.

1. (KL->J) K;+ L; are replaced by J; ;1 (i.e. a left & a right Kronecker block coalesce to form
a new Jordan block for eigenvalue zero.) The sequences are then affected as follows:

a =a peg =a-+1{0,...,0,-1,0,0,0,...}
A =a—/pE =A+1{0,...,0,-1,-2,-3,—4,...}
g =g-ptitle; =g+1{0,...,0,-1,0,0,0,...}
G =G—-pE =G+{0,...,0,—1,-2,-3,—4,...}

where the leading string of zeroes might be empty. A similar effect occurs on the sequence B
corresponding to the L-blocks.
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"A" sequence after different transition types
20 T T T T T

15

10k

A = original corners; a = new corners after KK->KK

-5 I I I I I I
-2 0 2 4 6 8 10 12 14

solid line = original, x = KL->J, + = KG—>K, 0 = KK->KK
Figure 2: The A sequence together with the effect of certain transitions.
. (KE->K) K; + (Ng) are replaced by K;y1 + (Ng—1) (i.e. the regular part is reduced by 1

dimension, which is appended to one Kronecker block) The L part is left unchanged. The
sequences are then affected as follows:

a =a+ptle; —pley =a+1{0,...,0,—1,+1,0,0,...}

A =A )pe =A~+1{0,...,0,-1,-1,-1,-1,...}
8 =8

G =G

where the leading string of zeroes might be empty.

. (KK->KK) K; + K are replaced by K; i + K;_1 where i+1 < j—1. (i.e. two K-blocks are
replaced with two other more generic K-blocks) The L and E parts remain unchanged. The
sequences are then affected as follows:

if j>i+2
a —=a-—pe +ptler+p le;—pler =a+{0,...,0,—1,41,0,...,0,+1,—-1,0,...}
A =A pe+ple =A+1{0,...,0,—-1,-1,-1,...,-1,0,0,0,...}
orifj=i+2
a =a-—ple +2ptle; — pitleg —a+{0,...,0,—1,+2,-1,0,...}
A =A-)pe = A+1{0,...,0,-1,0,0,0,...}
and in either case
g =g
G =G
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where the leading string of zeroes might be empty.

. (LE->L) L; + Ng are replaced by L;y1 + (Ng—1) (i.e. the rEgular part is reduced by 1
dimension, which is appended to one Kronecker block) The K part is left unchanged. Only
the sequences corresponding to the L-blocks are affected in a way analogous to the type 2
(KE->K).

. (LL->LL) L; + L; are replaced by L;y1 + Lj—1 where i+1 < j—1 (i.e. two L-blocks are
replaced with two other more generic L-blocks) The K and E parts remain unchanged. Only

the sequences corresponding to the L-blocks are affected in a way analogous to the type 3
(KK->KK).

The effect of these transitions on the example of Sec. 4.2 is illustrated by Fig. 2. Notice that

transition KL->J removes a corner in the A sequence, the transition KE->K moves a corner one
position to the left, and the transition KK->KK moves two corners each one step toward the other.

The remaining transition types apply specifically to the Jordan chains.

6. (JJ->JJ3) J; + J; are replaced by J; 1 + Jj;11 (i.e. two J-blocks are replaced with two other

more generic J-blocks), leaving the K- and L-blocks unchanged. The sequences are then
affected as follows:

ifj >

g =g—p ley+pler+ples —pitle; =g+1{0,...,0,—1,+1,0,...,0,+1,—-1,0,...}
G =G ple+ple =G+1{0,...,0,-1,-1,-1,...,-1,0,0,0,...}
else if j =1

g =g—pler +2pe; — pitle; —g+1{0,...,0,—1,42,-1,0,...}

G =G pleg =G+1{0,...,0,-1,0,0,0,...}

where the leading strings of zeroes has at least one entry (i.e. 7 > i > 2).

. (JJ1->3) J; + J; are replaced by J;;q (i.e. a 1 x 1 Jordan block is absorbed into another
Jordan block, increasing the latter’s dimension by one). The sequences are then affected as
follows:

ifi>1

g =g—ei+pe;+pe —ptler =g+{-1,+1,0,...,0,+1,-1,0,...}
G =G e+ /pe =G+{-1,-1,-1,...,-1,0,0,0,...}
elseif 1 =1

g =g—e1+2pe; —pleg —g+{-1,+2,-1,0,...}

G =G-—e; = G+{-1,0,0,0,...}

where latter case occurs when two J; blocks coalesce to form a J block.

. (J->JE) J; + (Ng) are replaced by J;_1 + (Ng+1) (i.e. one zero eigenvalue becomes nonzero,
reducing the order of one Jordan block for zero). The sequences are then affected as follows:

g —g—p ler+pe =g+1{0,...,0,—1,+1,0,0,...}

G =G-ple =G+1{0,...,0,—1,-1,—-1,-1,...}

where the leading strings of zeroes has at least one entry.
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"G" sequence after JJ->JJ transition
35 T T T

201

15

_5 | | | | | | |
-2 0 2 4 6 8 10 12 14

solid line = original, o = after JJ->JJ

Figure 3: The G sequence together with the effect of the JJ->JJ transition.

9. (J1->E) J; + (Ng) is replaced by (Ng+1) (i.e. the zero eigenvalue in a 1 x 1 Jordan block
becomes nonzero). The sequences are then affected as follows:

g —g—ei+per =g+{-1,+1,0,00,. ..}
G =G-e =G+ {-1,-1,-1,-1,-1,...}

The effect of transition JJ->JJ on the example of Sec. 4.2 is illustrated by Fig. 3. Notice that
this transition moves two corners each one step away from each other. This transition is marked
by the solid line. The transition KL->J (not shown) would have the effect of adding a new corner
to the G sequence. The other transitions would have effect analogous to those for the A sequence,
moving corners around in appropriate ways.

To prove Theorem 3, Pokrzywa [10] proved that if one is given “source” and “target” sequences
of nullities corresponding to two valid pencil configurations, where the source sequence majorizes
the target sequence, then a sequence of transitions of exactly the types outlined above can be
applied to the source pencil to reach the target pencil. Another way to state this is: as long as
the target sequences are majorized by the source sequences, one can always apply one of the given
transition types in reverse to find a new set of sequences, also majorized by the source sequence and
also corresponding to a valid pencil configuration. The existence of a transition is a consequence of
the fact that every valid transition must modify the sequence at the corners, and that the sequences
delimit convex regions in the plane.
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Appendix — Proofs of Majorization Theorems

We prove some of the theorems from Sec. 3.

Proof of Theorem 8. We prove the second form Ay + B,, = kay. Define a = Aa = A%A.

Ak =a1+---ta = a1
+ a1 + a9

+ay+ay+ -+ ag.
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Rearrange terms to get

Ay =kay + (k—Dag+ -+ 201 +ap = k(@ +---+ar) — > (i —aj.
1<j<k

Each term in the last summation is just the sum of all the b;’s that are exactly equal to 7 — 1.
Hence the last summation is just the sum of all the b;’s that are less than k. But a;, is exactly the
number of such b;’s, so the summation equals

Z (J = 1Daj = by + -+ ba, = By,
1<j<k

Hence we have the result Ay = kay, — B, []

Proof of Theorem 9. Let m be the number of finite entries in the sequence b, i.e. by, < 00 = b1,
and let n be the corresponding number for the sequence h. We must show that Hp — By is not
negative, for any k, and strictly positive if G < A. In order to do this, we must divide the proof
into several cases. We prove the theorem for k < n, proving in the process that n < m. This case
also applies if n = co. For k > n, Hy = oc so the theorem is vacuously true.

Let £ < mn. We have that hy =1 < co. Then it must be that by < co. For if by were infinite, we
would have from Lemma 7 that

k<gjforallj>I, but a; <---<kforallj.

Hence for large enough j, Gj > A;, contradicting the assumption. Hence k& < m and so n < m.

Next we use Theorem 8 to show that Hy — Bj cannot be negative. We have that

Hy — By = k(hy —b) + Ap, — G,
= [k(hg = b)] + [Ab, — Gp,] + [Gb, — Gh,]
= r+y+z

where © = [k(hy — b)), vy = [Ap, — Gy, ], and z = [Gy, — G}, ]. By assumption y > 0. If we have
the strict inequality G > A, then y > 0. We then show that z 4+ z > 0 and hence B, — By > 0,
with strict inequality if G > A.

Case I: by, = hy. Then x = z = 0.

Case II: by < hg. Then we use the fact that G is the summation of g to obtain the expression
—Z = ghy+1 + -+ + gn,- Since g = {g;} is a nondecreasing (ascending) nonnegative sequence, this
expression must be less than the last term times the number of terms: —z < gy, - (h, — bg). From
Lemma 7 we have that g, <k, so we may conclude that —z < z.

Case I1I: by, > hy. Then z = gp, 41 + --- + gp,- As in case 2, we obtain the inequality z >
Ghy, * (bg —hy) > k- (b — hy) > —x.

O

Proof of Theorem 10. Define | = y}, the number of positive entries in y. Assume that [ is finite,
otherwise this theorem is vacuous. This implies that k£ (the number of positive entries in x) is also
finite.

If Yoo = Xoo, then <, ==<. In this case this theorem is identical to Fact B.5 in [9, p174], or can
be proved using techniques similar to above. So let us suppose that x <, y, but Y # Xoo.
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The precedence relation implies that Yoo > X, and j > 0. Form the sequence X = x + p*e; +
-+ p**ti=le;. This consists of appending j ones after the last positive entry (the k-th entry) in
x. It is clear that X, = Y, by construction.

We claim that x < y. To see this, note that the first k entries of X = ¥x% and X = ¥x coincide.
Denote Y = Xy. For all the terms beyond the [-th, we have X; < Yo = Y;, for i <1[. Soif | <k,
the claim is true. So suppose [ > k. Then we must examine the terms from the k-th to the [-th.
For the k-th term, we have )Z'k = Xoo <Y} < Y. For all the terms between the k-th and the [-th,
we have yg; > 1, and hence X +1i < (V) +1 < Y4 < Yo, for 1 <i <[ — k. This implies that
J=Yeo — Xoo > l — k, by setting 1 =1 — k This in turn implies that for every 1 = 1,2, - 1 —k,
ZTrsi =1, and Xk+z Xoo + 7 and hence Xk+z < Yj+i. We conclude that X <Y; for all i.

For the effect on the conjugate sequences, we note that p*e — pFtie = pFey + .- 4+ pFti—leq,
and apply Fig. 3 (p) to see that X* = x* + jey. []
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