Using Low-Memory Representations to Cluster Very Large Data Sets

Dayvid Littau
littau@cs.umn. edu

Abstract

Many of the algorithms designed to cluster large data
sets compute representations of the data which are
based on a single vector, without a unique representa-
tion of the original data items. We present an extension
of Principal Direction Divisive Partitioning which cre-
ates a least-squares approximation of the data based on
a small number of vectors. We show that the exten-
sion can save significant amounts of memory and clus-
ter the data as well as the original method. We also
show that in some cases using more than one vector to
approximate each data item results in superior quality
clusterings.

keywords: clustering, large data sets, PDDP, data
mining, principal directions, matrix approximation

1 Introduction

Most clustering algorithms require that the data fit into
memory at once in order to run efficiently. Clustering
algorithms that require a pairwise similarly measure
are restricted to clustering even fewer points, since
computing and storing the pairwise similarity costs
O(m?), where m is the number of points in the data
set. Either available memory or computational expense
restrict standard clustering algorithms to a fixed data
set size.

The most direct solution to these limitations is to
sub-sample the data and use the sub-sample to find the
desired number of cluster centers. After the centers have
been found, all the data are associated with the closest
center. Sampling has the advantage of being simple and
straightforward. However, it is often difficult to choose
a good representative sample of the data, and sampling
can miss anomalies which might be interesting.

Another solution is to compute a representation
of the original data which takes up less space. The
works in [6, 4, 15] are various techniques of computing
a representation of the entire original data based on a
much smaller set of approximation vectors, such that
each data item is associated with one vector. Using
one vector to represent many original data points saves
in both memory and the number of pairwise similarity
measures, if required. The drawback to using one vector

Daniel Boley
boley@cs.umn.edu

to represent a data point is that each data point does not
have a unique representation. If a cluster contains items
which are all associated with the same single vector, no
further differentiation among the data items is possible.
This may effect clustering quality in some cases. Also,
these methods do not address the issue of outliers, which
might be of interest in some cases.

We propose an alternate method of approximating
the original data so it can fit into memory and be
clustered. Each data item is approximated by a linear
combination of a small number of representative vectors
chosen from a pool of vectors. The total number of
vectors in the pool remains small to save memory, and
the representative vectors are inexpensive to obtain.
The resulting low-memory representation of the original
data is stored as two matrices. One matrix contains the
representative vectors, and the other is a sparse matrix
containing the coefficients. The product of these two
matrices is the approximation of the original data.

Since the assumption is that the data will not fit
into memory at once, the low-memory representation is
constructed in a piecemeal fashion. The original data
are divided into disjoint sets such that each set will
fit into memory, and a low-memory representation is
computed for each set of data. The vectors used to
represent the data are the centroids obtained from a
clustering of the data, as was done in [7]. The centroids
closest to the original data item are used to represent
that data item in a least-squares approximation. Once
the low-memory representations are computed for each
of the smaller sets of data, they are assembled into a
single two-matrix system which represents the entire
data set.

This low-memory representation was designed to be
clustered using Principal Direction Divisive Partitioning
(PDDP) [2]. PDDP does not require a pairwise sim-
ilarity measure to determine the clustering. The key
component of PDDP is determining the principal direc-
tion of the data, which is computed using a Lanczos-
based solver. The solver computes matrix-vector prod-
ucts such that the low-memory representation can re-
main in factored form.

Since PDDP is fast and scalable, we also use

PDDP to perform the intermediate clusterings used to
obtain the low-memory representation. We call the
method of computing the low-memory representation of
the data and clustering that representation Piecemeal
PDDP (PMPDDP). PMPDDP preserves the scalability
of PDDP while extending PDDP to large data sets.

2 Previous Work

In the context of data mining, the construction and ap-
plication of low cost and/or low memory representations
of data is usually restricted to either clustering or La-
tent Semantic Indexing (LSI) [1]. Since the low-memory
representation used in PMPDDP was designed for clus-
tering, but has its origin in an application for LSI, we
present a sample of the work that has been done in both
areas.

2.1 Approximations in LSI The goal of LSI is to
construct a representation of the data such that hidden
relationships among the data can be discovered. The
standard representation of the data for LSI is obtained
using the singular value decomposition(SVD). The SVD
of a data matrix A,

A ~UZVT

has the smallest reconstruction error with respect to the
original data, but it is very expensive to obtain and often
takes up a significant amount of memory. Alternatives
have been developed to address both of these issues.

Two techniques which save memory are the Semi-
Discrete Decomposition (SDD) [11] and the method in
[16]. The SDD represents the original data using two
matrices X and Y which have entries taken from the set
—1,0,1, and one diagonal matrix D constructed using
real numbers. If the original data matrix is A, then the
k*® rank approximation to A is:

A =X, D, Y{.

Starting with A, each successive column of X, Yy,
and Dy is computed to reduce the residual error between
the approximation and the original data, subject to the
constraints mentioned. For a given level of accuracy,
the SDD saves memory compared to the SVD, but is
more expensive to compute than the SVD.

The method in [16] is a direct application of the
SVD which saves memory with respect to the standard
SVD. The method starts by computing a rank 1 SVD
of the data, and then restricts the number of non-zero
entries in the first column of U and V. Each subsequent
step involves computing a rank 1 SVD of the current
residual and restricting the number of non-zero entries
in the corresponding columns of U and V. Again,

memory is saved with respect to the SVD, but it is more
expensive to compute than the SVD.

One inexpensive, though not necessarily memory
saving, alternative to the SVD for LSI is the concept
decomposition [7]. The concept decomposition demon-
strated that clustering can be used to compute an inex-
pensive matrix approximation. In the concept decom-
position, document data were clustered using spherical
k-means, and the cluster centers were used as a basis for
constructing a least-squares approximation to the origi-
nal data. Given sufficient rank relative to the SVD, the
concept decomposition had the same accuracy as the
SVD on the document data set, while being less expen-
sive to compute than the SVD.

2.2 Approximations Using One Representative
Per Sample There are other approximation tech-
niques which were specifically designed to be used for
clustering. For example, BIRCH [15], Scatter/Gather
[6], and the method in [4] approximate each original
data item by a vector which is like a cluster centroid.
More than one data item is associated with each vector.
What follows is a brief overview of these techniques.
Details have been omitted for the sake of brevity.

BIRCH obtains the vectors via a process which
scans the entire data set once and associates data with
vectors based on proximity. When a new vector is
introduced, one of three things can happen. If the
new vector is close enough to an existing representative
vector, it is folded in with the representative vector,
which is then altered to reflect the new data item.
If there are no vectors close enough, and there is
memory left, then the new data item becomes a new
representative vector. If there isn’t enough memory
left for a new representative vector, then the tolerance
is changed and the set of representative vectors is
re-computed to reflect the new tolerance. We omit
a detailed description of how this is done, but it is
possible to do this efficiently and without scanning the
data again. With the data structure used, it is not
necessary to compare each new data vector with every
representative upon insertion.

Scatter/Gather separates the original data into
buckets, and then agglomerates the data in each bucket
individually, such that a given number of clusters are
produced in a given bucket. Each data item in a given
cluster is associated with its cluster centroid. The
centroids are weighted with respect to how many data
items they represent, and this weighting is used when
combining them to create new cluster centroids. The
centroids are gathered together, put into a smaller set of
buckets, and agglomerated again. The process continues
until the desired number of clusters has been computed.

The method in [4] is a variant of k-means for
large data sets. A subset of the data are loaded into
memory and clustered with k-means until a certain
number of clusters are obtained. Then, the centroids of
each cluster, weighted by the cardinality of the cluster,
become the representatives of the data. The data are
removed and a new set of data is loaded and clustered
along with the centroids from the previous iteration.
This process continues until either all the data have been
scanned or until the user is satisfied that the cluster
centers aren’t changing significantly with the addition
of new data.

2.3 Summary Most approximation methods used in
clustering associate each data item with one approxima-
tion vector, with no attempt to provide a unique rep-
resentation for the data items. This is practical from a
pure memory-saving approach, but some clustering ac-
curacy may be lost if the data do not form tight groups
at the time the approximation is constructed.

The concept decomposition creates a computation-
ally inexpensive approximation using cluster centroids.
Each data item is approximated using the entire set
of centroids. This provides a unique representation for
each original data item, but will probably not save mem-
ory.

We base our low-memory representation of the data
on the concept decomposition. We use cluster centroids
to approximate the data, but we choose a small number
of centroids from the larger collection of centroids to
approximate each data item. This results in a unique
representation for each data item that can still save a
significant amount of memory.

3 Definitions

To insure that the explanation of the methods is clear,
we provide a definition of some of the terms we will use
throughout this work.

We are using the vector space model. Each data
item is represented as a column vector, and the entire
data sample is represented by a matrix. If we have a
data set containing the attribute vectors x;, we can
define
(3.1)

Md:ef[xlx2 ces X,

where M is an n X m matrix, n is the number of
attributes in each vector x;, and m is the number
of items in the data set. Since the clustering and
approximation methods in this work use linear algebraic
techniques, this representation is very convenient.

One way to delineate a cluster is to refer to its
centroid. The centroid w¢ of a cluster M¢ is defined

as:
(3.2) we = & E X;
jec

where k¢ is the number of items in cluster M¢ and x;
is the 7*® column of M. The centroid represents the
contents of a cluster in a compact way.

One commonly used intrinsic measure of the quality
of a cluster is the scatter value. The scatter value is a
measure of the cohesiveness of the data items in a cluster
with respect to the centroid of the cluster. The scatter
value SV; of a cluster M is defined as:

(33) SV = Z(Xj —we)? = [M — wee”||3,
jec
where e is the m-dimensional vector [11 ... 1] and

|| ||F is the Frobenius norm. The Frobenius norm is the
square-root of the sum of the squares of every entry in
the matrix. When comparing two clusterings, the one
with the smaller scatter value is assumed to have the
better clustering quality.

Entropy is another clustering quality measure. The
entropy measures the coherence of a cluster with respect
to how a cluster is labeled. The total entropy of a given
set of clusters is defined by:

(3.4) €Etotal déf E Z €j - k],
J

where

c(t,J) c(i,J)

(3.5) ¢; & —Z (m> -log (m> ’

?

where c(7,7) is the number of samples with label ¢ in
cluster j, and k; =), c(%,7) is the total number of
samples in cluster j. If all of the labels of the items in
a given cluster are the same, then the entropy of that
cluster is zero. Otherwise, the entropy of that cluster is
positive. The lower the total entropy e;oiqr, the better
the quality of the clustering.

An entropy calculation assumes that the labeling
is perfect, which is not a good assumption in every
case since any labeling performed by a human can be
subjective. Entropy cannot be used when the data have
not been classified prior to clustering.

4 PDDP

The algorithm developed in this work, PMPDDP, is
an extension of PDDP for large data sets. The low-
memory representation of the data is constructed so
that it will have a minimal impact on the execution
expense of PDDP. Therefore, we now provide a detailed
description of PDDP so it will be clear how it has been
extended.

Cutting Plane u

Figure 1: A PDDP split in two-dimensional space. The
principal direction u of the data is computed, and the
data points d; in the cluster are projected onto u,
defining the points v;. All points associated with wv;
greater than the mean w are placed in one new cluster,
and the rest of the points are placed in the other new
cluster.

4.1 PDDP Algorithm PDDP is an unsupervised
divisive clustering algorithm. The values of the data
attributes are used to determine the clustering, and
there is no prior knowledge of class membership of the
data items. PDDP constructs a hierarchical binary tree
by recursively splitting clusters. The clusters are split
using the direction of maximal variance of the data
attributes, also known as the principal direction of the
data.

The PDDP algorithm begins with the root cluster,
which contains all the data samples. The root cluster is
split by finding the principal direction u of the cluster
and projecting all the data in the cluster onto u. All
data on one side of the mean w of the cluster are placed
in one child cluster, and the rest are placed in the other
child cluster. An example of a two-dimensional split is
shown in Figure 1.

After the root cluster is split, there are two leaf
clusters. One of the leaf clusters is selected and split.
Usually, the leaf cluster with the largest scatter value
(3.3) is chosen, but it is possible to use other selection
criteria, such as choosing the leaf cluster with the largest
cardinality. The process of selecting and splitting leaf
clusters continues until some stopping criterion is met.
The leaf clusters of the PDDP tree define the clustering
of the data set. The PDDP algorithm is shown in Figure
2.

The principal direction of the cluster is determined
by computing the left leading singular vector of the
data in the cluster. If M is the matrix of columns
of data samples in cluster C, we compute the left

Algorithm PDDP. Start with a n X m matrix M,
where each column of M is a data item,
and set the desired number of clusters ky.

1. Initialize Binary Tree with a single Root Node.

2. For c=2,3,...,kf do

3. Select leaf node C with largest scatter value,
and L & R := left & right children of C.

4. Compute v = ul (Mg — weeT)

5. For ¢ € C, if v; <0, then assign data sample ¢

to L,
else assign it to R.
6. Result: A binary tree with &k leaf nodes forming
a partitioning of the entire data set.

Figure 2: PDDP. M is the matrix of data vectors
for the data samples in cluster C, and w¢,uc are the
centroid and principal direction vectors, respectively for
C.

leading singular vector uc of M —wce”. This direction
corresponds to the largest eigenvalue of the sample
covariance matrix of the cluster. The computation
of uc can be accomplished quickly using an iterative
Lanczos-based solver for the singular values of M. This
algorithm is very efficient, especially since low accuracy
is all that is required, and it can take full advantage of
any sparsity present in the data.

4.2 PDDP Complexity Analysis We present a
complexity analysis of PDDP for completeness. The
cost of PDDP is dominated by the cost of computing
the splitting vector for each non-leaf node. The primary
expense of the Lanczos-based solver is the computation
of a matrix-vector product of the form Mc¢v, where v is
some vector. Therefore, the cost to split a root cluster
which has m data samples with n attributes per sample
is:

(4.6)

where c; represents the number of Lanczos iterations
to convergence and <y is the fill fraction of the matrix.
It is assumed that the product computation for sparse
matrices (y << 1) will take advantage of the sparseness
present. At this point, the PDDP tree contains two leaf
clusters, the left and right children of the root. If we
assume for the sake of this analysis that these two leaf
clusters will be split next, then the cost of computing
the next two splits will be

cymyn,

(47) C1Mieft YN + C1Mrignt YN,

where mieey and mysgne are the number of data items in
the left and right children of the root, respectively. This
is the same as the cost of splitting the root cluster. As

long as the tree is constructed as a completely balanced
binary tree, the cost of computing one new level of leaves
in the tree is the same as the cost of computing the root
split.

If we compute a balanced PDDP tree with kj
clusters, such that k; is a power of 2, then the cost
of producing the entire PDDP is
(48) cxmeynlogy k),
This analysis shows that PDDP is scalable in the sense
that the cost of clustering is linear in the number of
samples and the number of attributes, and logarithmic
in the number of clusters. The scalability of PDDP has
been demonstrated experimentally as well in [3]. Figure
3 is a graph for PDDP on document data sets of various
sizes, and shows that PDDP is linear in the number of
data samples and non-zero attributes.

time to obtain 16 clusters by PDDP algorithm
120 T T T T

21577 docs x 32513 words

=

o

o
T

o
o
T

10794 docs x 21190 words i
2340 docs x 21839 words

N
<)
T

2340 docs x 1458 words E

seconds in Matlab on SGI Challenge (196 MHz)
N D
o o

2340 docs x 8104 words
2340 doqs x 7358 word§ ‘ ‘

0 2 4 6 8 10
number of nonzero entries in term frequency matrix X 10°

Figure 3: The time for PDDP clustering of various
document data sets.

5 PMPDDP

PDDP requires the data set to be small enough to fit
into memory for efficient computation, since the data
are scanned many times during the iterative process
used to obtain the rank 1 SVD. There are many
large data sets which will not fit into the memory of
most workstations, and therefore cannot be clustered
quickly using PDDP as well as many other clustering
algorithms. PMPDDP resolves this problem by creating
a low-memory representation of the original data set
that will fit into memory, and then clusters the low-
memory representation using PDDP.

First, we describe the technique we use to obtain
a low-memory approximation of a data set. Then, we
show how we apply the technique to a data set which
will not fit into memory at once. Last, we provide a
complexity analysis of PMPDDP.

5.1 Matrix Approximation Using Cluster Cen-
troids Our approximation technique is based on the
concept decomposition [7] The concept decomposition
uses cluster centroids to form a basis for a least-squares
approximation to the original data. Our method is sim-
ilar, except that we limit the number of centroids which
participate in the least-squares approximation to a given
data item.

Suppose we have an nxm matrix A of data samples.
We partition A into k. clusters and compute the cg,
centroids of the clusters. The centroids are used to
define the n X k. matrix C4,

(5.9)

CA = [01 Co ... ckc],

which is the matrix of representative vectors used in
the approximation. The expectation is that PDDP will
be used to compute the clustering of A and therefore
obtain C 4, but this is not essential to the method.

We use C 4 to compute the approximation

(510) A~ CAZA,

where Z 4 is a k. X m matrix. Each column z; of Z4
approximates the corresponding column in A using a
linear combination of the vectors in C4.

We only use a small number of the ci, vectorsin C4
to form the approximation to each column of A. Say
we are approximating a;, where a; is the i*® column of
A. We choose the k, columns in C4 which are closest
in Euclidean distance to a; and use them to form the
n X k, matrix C;. Then we can compute the column z;
of Z 4 such that:

(5.11) z; = argmzin||xi — C;zl|2.

Using the k. closest centroids to approximate each a;
instead of computing the approximation using all the
centroids in C 4 creates the opportunity to save memory
with respect to a concept decomposition. If we set k, =
ke, then our technique of creating an approximation is
essentially identical to the concept decomposition.

To save memory with respect to the concept decom-
position, a necessary, though not sufficient, condition is
that k, < min{n, k.}. Given this condition, the result-
ing least-squares problem is under-determined. If the
k. vectors in C; are linearly independent, we use the
normal equations with the Cholesky decomposition to

solve the least-squares problem. Otherwise, we use the
SVD to get the least-squares approximation of the data
item. Even though there has been no attempt to create
orthogonal basis vectors, in the majority of cases the
normal equations give a satisfactory approximation.

PDDP has a unique advantage when clustering this
low-memory representation. Recall that the Lanczos-
based solver used to compute the principal direction
is an iterative procedure which computes matrix-vector
products of the form Av, where v is some vector. If
we replace A with C4Z 4, and group the product com-
putation as C4(Z4v), then the principal direction can
be computed without explicitly regenerating the sample
vectors represented by C4Z 4. Any clustering algorithm
which requires a pairwise distance or similarity measure
would not enjoy this advantage.

5.2 Constructing a Low-Memory Representa-
tion of a Matrix Now that we have a technique to
construct a low memory representation of a data set,
we need to apply it to larger data sets. The basic idea
of what follows is to break the original data set into
smaller pieces, construct a low-memory representation
of each piece, and then assemble the individual repre-
sentations into one system which represents the entire
original data set.

We start with an n X m matrix M of data, such
that M will not fit into memory at once. We want to
construct a system CZ such that

(5.12) M ~ CZ,

where C and Z will fit into memory and can be used to
cluster the data in M.

C and Z are constructed in a piecemeal fashion. M
is divided into ks disjoint sections

(5.13) M=[M; M, ... My,],

such that each section M; of M will fit into memory.
This partitioning of M is virtual since we assume only
one section M; will be in memory at any given instance.
We also assume that the ordering of the columns of M is
unimportant. We can now construct an approximation

(514) M]' ~ Cij

for each section M; of M using the technique from §5.1.

After computing an approximation for each section
of data, they can be assembled into the two-matrix
system

(5.15) C=[C.C, ...

Z,

Ck,]

Z,

(5.16) 7= . ,

Zy,

where C has dimension n X kgk. and Z has dimension
kskc xn. The process of creating the low-memory repre-
sentation of M is illustrated in Figure 4, and the param-
eters used to construct the low-memory representation
are summarized in Table 1. The PMPDDP algorithm
is shown in Figure 5

M m

1 2

ks

" kg nonzeros per column

Figure 4: Construction details of the low-memory rep-
resentation. M is divided into k; sections, and the
low-memory representation of each section is computed
without referring to any other section. Each section is
associated with a subdivision of C and Z. The columns
of a subdivision of C are the cluster centroids resulting
from a clustering of the associated section. A column of
a subdivision of Z is computed with a least-squares ap-
proximation to the corresponding column of M, using
the k, closest centroids from the associated subdivision
of C.

5.3 PMPDDP Complexity Analysis We break
down the cost of computing a PMPDDP clustering as
being the cost of computing the low-memory represen-
tation of the data and the cost of clustering the low-
memory representation. Constructing the low-memory
representation for each section of data requires:(1) clus-
tering the data in the section, (2) extracting the cluster
centroids to use as a basis, (3) finding the centroids clos-
est to each data item, and (4) computing a least-squares
approximation for each data item. We present the cost
for computing the low-memory representation of a given
section, after which we will show the cost of clustering
the low-memory representation of the entire data set.

Consider a nx kq matrix M; which defines a section.
The cost of computing a PDDP clustering of this section
with k. clusters is:

(517) Clkd’Y" 10g2 (kc),

parameter | description |
m total number of data items
n number of attributes per data item
5 fill fraction for the attributes
ks number of sections
kq number of data items per section
ke number of centroids per section
k. number of centroids approximating

each data item

k. min {k,, log,(k.)}
kg number of final clusters

Table 1: Definition of the parameters used in PMPDDP
(see Figure 4).

which is the cost of a PDDP clustering of the section
(4.8) with the appropriate parameters inserted. The
ck, centroids of the clusters are extracted at negligible
expense, and are used to form the matrix C;.

The k. X kq matrix Z; is formed one column at a
time. For a given data item x; in M}, it is necessary to
compute the distance from x; to the k. centroids in Cj,
choose the k, centroids closest to x;, and compute the
least-squares approximation to x; using those centroids.
The cost of computing the Euclidean distance from x;
to all the centroids in Cj is
(5.18) ynke,

and the cost of finding the &, centroids closest to x; is

(5.19) k:ke,
where _
(5.20) k, = min {k,, log,(k.)}.

If k., < logy(k:), the closest centroids are found by
scanning all the distances. Otherwise, it is more efficient
to sort the distances before selecting the centroids.
Now that the k, closest centroids have been se-
lected, the column z; of Z; which approximates x; can
be computed. The cost of finding the least squares ap-
proximation to X; using the normal equations is

1

(5.21) 3

kin + k3,
assuming that the centroid vectors are dense. The
overall cost of computing Z; for the kq vectors in M; is

1
(5.22) kq (kc(vn + k) +k2n+ 3k2> .

The cost of computing C; (5.17) and Z; (5.22) is the
same for each section M; of data, since the assumption

Algorithm PMPDDP.

0. Start with a n x m matrix M, where each
column of M is a data item, and set the
values for ks, ke, k., and ky (see Table 1).

1. Partition M into ks disjoint sections,

IM; Mz, ..., Mg,|.

2. For j=1,2,...,ks do

3. Compute the PDDP tree for the section
M; with k. clusters.

4. Assemble the k. centroids from the leaf
clusters into an n x k. matrix C;.

5. Compute the k. x m matrix Z;

minimizing the quantity |[M; — C,;Z;||r
subject to the constraint on the
number of nonzero elements k, in each
column of Z;.
6. Assemble the matrices C and Z as in
(5.15, 5.16) in the text, using all the
matrices C; and Z; from all passes
through steps 2-5.
7. Compute the PDDP tree for the system CZ
with k¢ clusters.
8. Result: A binary tree with ky leaf nodes
forming a partitioning of the entire data set.

Figure 5: PMPDDP algorithm.

is that kg4, k¢, and k, are the same for each section. The
approximations to each section are assembled into CZ
at negligible cost.

At this point, we have a low-memory representation
of the original data set. We use PDDP to cluster
CZ to get a clustering of M. Replacing the original
data matrix M with the factored form CZ means that
the matrix-vector product Mv will be replaced by the
product C(Zv) when computing the principal direction
of the root cluster of the PDDP tree.

We start the cost analysis of clustering CZ with
the cost of splitting of the root cluster. The cost of
computing the matrix-vector product associated with
Cis
(5.23)
and the cost of computing the matrix-vector product
associated with Z is

coksken,

(5.24) cok,m,

where ¢y is the number of Lanczos iterations to conver-
gence. Since Z is sparse, only the non-zero entries in Z
will participate in the product computation.

There are now two leaf clusters in the tree, which
are the left and right children of the root. We will
assume that these two clusters are split next, which

creates the next level in the PDDP tree. The total cost
of computing these next two splits is

(5.25) 2cksken + cok,Mmiess + cokMrigns,

where miesr and Myigne are the number of data items in
the left and right children of the root, respectively. The
cost of computing the matrix-vector product associated
with C (5.23) is the same for every cluster, no matter
the number of items in the cluster. The reduction in
cost for splitting smaller clusters seen in the analysis
of PDDP is only reflected in the terms associated with
computing the matrix-vector product associated with Z
(5.24). So unlike the results for PDDP on the original
data matrix, the cost of clustering CZ increases with
each new level in the tree.

Again, we will assume for the purpose of cost

analysis that we split the clusters such that we create a
full level in the PDDP tree before we create any leaves
on the next level. We will again choose a number of final
clusters k; such that ks is a power of 2. Therefore, the
total cost of computing a PDDP tree using the product
representation CZ in place of M is
(5.26) ca(ky — 1)ksken + czlogy (k) k,m.
The (ks — 1) term reflects the fact that to produce ky
clusters, (k; — 1) splits must be computed. This means
that the matrix-vector product associate with C must
be computed (ky — 1) times.

The result in (5.26) is an upper bound on the cost
of PMPDDP. Once the clusters become small enough,
it is less expensive to regenerate the original data and
compute the splits using ordinary PDDP. The condition
required for this approach to be less expensive is
(5.27) mk.mc+ conm, < coksken + e k.me,
where m. is the number of data items in the cluster,
nk,m, is the cost of regenerating the data items, and
canm, is the cost of computing the split using the
regenerated data. The equation on the right hand
side of the inequality represents the cost of computing
the split using the factored form, as in (5.23,5.24).
Algebraic manipulation can be used to expose the
condition

(5.28) cokske

bt (-5

In practice, it is possible to keep track of the number
of iterations being performed for each split, and use
that number and (5.28) to estimate when it would be
advisable to reconstruct the data before determining the
split. Otherwise, the data might be reconstructed once
the memory required is below a certain threshold. It is

me

possible that for a given data set, the relation in (5.28)
may never be satisfied.

Table 2 collects the cost for all the operations
performed by PMPDDP. Depending on the number of
attributes n in the data set and the choice of parameters,
clustering the approximation can be less expensive than
clustering using the original data set. The bulk of the
expense of PMPDDP is in obtaining the low-memory
representation of the original data.

| Cost |
camynlog, (k)

m (kcimn + kek.) + k2n + %kﬁ)
co(ky — 1)ksken + cology (kg)k.m

| Operation
Obtaining C
Computing Z
Clustering CZ

Table 2: Collected costs of producing a PMPDDP clus-
tering. See Table 1 for a definition of the parameters.

6 Experiments

We selected four real data sets to measure the per-
formance of PMPDDP. They were chosen to demon-
strate that PMPDDP will cluster the data using the
low-memory approximation as accurately as PDDP can
using the original data set. All of the data can be clus-
tered with PDDP on a machine with 1 GB of memory.

The experiments focused on comparing the perfor-
mance of PMPDDP when using multiple centroids to
approximate each data item, as compared to construct-
ing a low-memory representation using the centroid clos-
est to the data item to approximate the data item. We
also include some experiments comparing PMPDDP to
k-means, with k-means being performed on both the
original data set as well as the low-memory approxima-
tion.

6.1 Data Sets The ISOLET (Isolated Letter Speech
Recognition) data set was taken from the UCI Machine
Learning Repository [13]. The data was generated
by having 150 subjects speak the name of each letter
of the alphabet twice. The attributes were extracted
from recordings of the speakers, and include contour
features, sonorant features, pre-sonorant features, and
post-sonorant features. A total of 617 attributes were
extracted from the pronunciation of each letter, and
were scaled so they all lie on the interval [—1.0,1.0].
There are a total of 7797 items available when the
training and test sets are combined. The data first
appeared in [8].

The k1 data set [3] consists of text documents
selected from 20 news categories from the YAHOO web
site. This data set has been included to demonstrate the
effectiveness of the algorithms on document collections

that might typically be retrieved from the World-wide
Web. The data set consists of 2340 documents spanning
21839 words. The stop words removed, and then the
words were stemmed using Porter’s suffix stripping
algorithm [9]. The document vectors were scaled to until
length, but no other scaling was performed.

The Reuters-21578 data set [12] is a collection of
news articles. The original data set has 21578 items
with 19968 total words in the dictionary. We chose to
use only the 9494 documents which were associated with
a single topic per document. There were a total of 66
categories. The documents were processed in the same
manner as the k1 document set.

The forest cover data set [10] consists of both con-
tinuous and binary attributes associated with the types
of forest cover in a 30x30 meter square area. There are
10 continuous attributes associated with measurements
such as position and elevation, 40 binary attributes asso-
ciated with soil type, and 4 binary attributes associated
with wilderness area. There were 7 forest cover types
in the classification. Each data item had 54 attributes,
and a total of 581012 data items in the set. All of the
data were labeled with respect to the kind of tree grow-
ing on the square. Each attribute was scaled to have a
mean of zero and a variance of one.

6.2 Effect of Number of Approximating Cen-
troids For this set of experiments, we fixed all the pa-
rameters except k, to the values shown in Table 3. The
parameter values used are representative of a typical ap-
plication of PMPDDP. They are not the optimal values.
As a basis of comparison, we constructed a representa-
tion CZ.. that used the same construction techniques
as CZ, but instead of computing a least-squares ap-
proximation to each data item, CZ.. approximates each
original data item with the closest centroid.

The results for the entropies of the four data sets
with varying k, are shown in Figure 6. They are
normalized with respect to a PDDP clustering of the
approximation CZ.. using the same k;. Therefore,
any time a value drops below 1, using a least-squares
approximation with &, centroids is an improvement over
using the closest centroid. For the data examined,
in the context of PDDP clustering, not computing a
least-squares approximation when using one centroid
gives better results. For the isolet and reuters data,
using more than one centroid to approximate each data
item gives better clustering results than using just one
centroid, but using 3 to 4 centroids appears to be as
good as using more. The kl results are erratic, with
an advantage to using 9 to 11 centroids to approximate
the data, and no advantage otherwise. The forest cover
data is best served by using the closest centroid to

| dataset | isolet | k1 [reuters | forest |
m 7997 2340 9494 | 581012
n 617 | 21839 19968 54
categories 26 20 66 7
v dense | 0.68% | 0.20% | dense
ks 5 5 5 5
ke 150 50 100 500
k. 5 5 5 1
ks 150 50 100 500

Table 3: Datasets and parameter values used for PM-
PDDP experiments. The isolet data is from Murphy
and Aha [13], the k1 document data is from [3], the
reuters data is the standard reuters data set [12] select-
ing the items which had only one topic assigned to them,
and the forest data is from [10].

approximate the data. Recall that the forest cover data
set has only 7 categories, and many of the attributes
were converted from discrete values. Many of the
original data items are very likely to be quite close
together. This means that using the closest centroid
probably results in a very accurate representation of the
original data items.

We also compared a PMPDDP clustering to a
standard PDDP clustering with the same value for ky.
The results are shown in Table 4. In every case, the
clustering quality with respect to entropy is improved
somewhat when using PMPDDP. The memory savings
are less striking with the document data sets. Dense
data sets seem better able to take advantage of the
memory savings. However, a larger document data
set will probably see a higher percentage of memory
savings, since the number of possible attributes in
document data sets is limited by the number of words in
the dictionary, which usually levels off with increasing
numbers of documents. As expected, PMPDDP is more
expensive than PDDP. However, PMPDDP has the
ability to cluster data sets which PDDP cannot cluster
without the added expense of paging. Note how the
approximation error

ICZ — M||r

(6:29) e

can be very high, yet the approximation is sufficiently
accurate to provide a good clustering of the data set.

6.3 Comparison of PMPDDP with K-means
The second set of experiments compares PMPDDP with
a well-known clustering method, k-means. K-means has
the advantage of being simple to implement, and the
drawback that it is usually necessary to perform many

Entropy Values for 4 Data Sets, Varying Number of Centers Approximating Each Data ltem
11 T T T T T T

T
—o— isolet
—— k1
—H- reuters
—— forest [

1.06

normalized results
I [
o o
N B

[

0.98

0.96

0.94

number of centers

Figure 6: Entropy values for four data sets with an
increasing number of centroids k, approximating each
data item. The results are normalized with respect to
a PDDP clustering of CZ.., where Z.. was constructed
using the closest centroid to approximate each data item
with no least-squares computation.

| dataset | isolet | k1 [reuters | forest |

PDDP entropy 814 | .982 .799 .689
PMPDDP .810 .960 787 672
entropy

PDDP time 34.41 | 14.19 17.63 | 196.01
PMPDDP time | 66.20 | 70.62 | 137.99 | 476.83
CZ memory 10.9 57.2 68.4 4.13
% of M

CZ error % 37.9 74.3 72.0 15.9

Table 4: Comparison of PDDP and PMPDDP cluster-
ings for the four data sets, using the parameters shown

in Table 3. The approximation error was computed as
ICZ — M| /[[M]|r-

random starts of k-means in order to insure that a good
clustering has been found.

Previous results [14] have demonstrated that using
a PDDP clustering to initialize k-means can give a
good k-means clustering without requiring restarts. We
used the PMPDDP clusterings with the parameters in
Table 3 as a starting point, and ran 1 k-means trial per
data set to 40 iterations, using the clustering found by
PMPDDP as a starting point. The k-means clustering
was performed using the low-memory representation of
the data.

As a basis for comparison, we ran 30 random-
start k-means trials using the CZ approximation to the
data computed with the parameters shown in Table 3,
and averaged the results. Each trial was taken to 40
iterations, whether or not it converged. We believe this
is a realistic application of k-means to large data sets,
since most of the data point movement occurs early, and
true convergence can take an extremely long time. The
smaller data sets often converged before 40 iterations,
but other tests on the forest cover data didn’t show
convergence in even 100 iterations.

The entropies for the k-means trials are shown
in Figure 7, and are normalized with respect to the
averaged random-start trials mentioned in the previous
paragraph. K-means gives a better clustering than
PMPDDP. However, using PMPDDP clusters as an
initializer to k-means can give better results than either
method will individually. The only data set which
didn’t show even slightly better results when using the
PMPDDP clusters as a starting point was the forest
cover data set. The isolet data apparently clusters well
with k-means, so little improvement was noted. The two
document data sets, k1 and reuters, had a better than
average clustering after only 1 iteration of k-means using
the PMPDDP clusters to start. The results indicate
that using PMPDDP clusters as a starting point for k-
means clustering will at least find an average k-means
clustering in very few iterations as compared to random-
start k-means, and does not require repetition to insure
good results.

We also ran experiments for k-means run on the
original data sets. We carried the k-means to 40
iterations, and averaged the results over 30 trials. A
comparison with random-start k-means using the CZ
representation of the data is shown in Table 5. For three
of the data sets examined, k-means has better entropy
values when using the original data, as compared to
using the approximation. Only the k1 data had better
results when clustering the approximation.

If the results in Table 5 are compared with those
in Table 4, it can be seen that k-means on the original
data produced a better clustering with respect to en-

EmropyVaIu‘esfor4DataSets, PMPDDPfsee‘ded K-means dataset | isolet | k1 | reuters | forest ‘
vae k-means on M | .523 1.01 .668 .656
1ol 2 foret | entropy
k-means on CZ .653 .949 .758 .659
entropy
k-means on M 91.31 34.65 92.17 | 5156.22
E time
% k-means on CZ | 89.61 | 356.73 | 1171.26 | 4436.21
g time
Table 5: Comparison of k-means clusterings on the
! original data M and on the approximation CZ, where
CZ was constructed using the parameters shown in
Table 3. K-means was run for 40 iterations, and the
results were averaged over 30 trials.
0 ‘5 1‘0 15

number of iterations

Figure 7: Entropy values for the four data sets using
PMPDDP clusters as the initial centroids for k-means,
with the parameters from Table 3. K-means was
performed using the approximation CZ in place of the
original data. The results are normalized with respect to
the entropy after 40 iterations of random-start k-means
using the same approximation CZ, averaged over 30
trials.

tropy than PMPDDP for every data set except the kl
data. The isolet, reuters, and forest data cluster well
on average using k-means. However, k-means typically
requires many iterations to compute a good clustering
of the data, and many random starts to find a good
clustering, although [5] provides a method to get ini-
tial centroids which does not require random restarts.
PMPDDP is faster and does not require any restarts to
insure that a good clustering has been found.

The iteration times were quite high when cluster-
ing the approximations of the document data sets, k1l
and reuters. The k-means code is virtually identical
for both cases, so we expect that there is a speed is-
sue associated with a sparse-matrix multiplication of the
approximation. The distances between the cluster cen-
troids and the data points for both cases were computed
using blocking, with 50 columns per block. Therefore,
when clustering the low-memory representation, only 50
columns of data were reconstructed in memory at any
given time.

6.4 Scalability of PMPDDP We ran an experi-
ment to determine the scalability of PMPDDP. The for-
est data set was used since it is the largest data set we
considered in this work. We used the same parameters
as in Table 3, but computed the PMPDDP tree starting

with 50,000 random samples, and increased the sample
size by 50,000 at every step until we clustered the entire
data set. The results for the amount of time taken to
cluster the data are shown in Figure 8. The results show
that PMPDDP is linear in the number of data items for
this data set.

Clustering time for forest cover data, varying number of samples
450 T T T T T

400 q

300 q

250 T

200 b

total clustering time on an Athlon XP 1900+ workstation

100 T

50 I I I I I
0 1 2 3 4 5 6

number of data items

Figure 8: PMPDDP clustering time using various sub-
sample sizes of the forest cover data set. The remaining
parameters are the same as in Table (3).

7 Conclusion

Approximations to the data are often constructed as an
aid when clustering large data sets. The usual solution
is to create vectors which resemble cluster centroids,
and then assign each original data item to the closest
vector. These approximations are either creating during
a clustering process, or used to cluster the data once

they are constructed.

We presented PMPDDP, which is clustering algo-
rithm which uses more than one vector to approximate
each data item. The data were divided into small pieces,
and an approximation to each piece was constructed us-
ing the centroids from a clustering of the piece of data.
Each data item is examined during the process which
computes the low-memory representation, and no data
items are removed from consideration. The approxi-
mations were then gathered and clustered at once to
produce a clustering of the entire original data set.

PMPDDP was able to cluster the data to greater
accuracy than PDDP for the data sets examined. The
low-memory representation of the original data saved
a significant amount of memory while still providing a
unique representation for each data item.

We also demonstrated that the low-memory repre-
sentation can be used to find a k-means clustering of
the data. Given sufficient time and random restarts, k-
means found a better clustering than PMPDDP. How-
ever, the combination using PMPDDP clusters as the
starting point for k-means can produce clusterings ei-
ther equal to or superior than k-means on its own in
less time and without requiring random restarts.

8 Acknowledgements

This research was partially supported by NSF grant IIS-
0208621.

References

[1] M. W. Berry, S. T. Dumais, and Gavin W. O’Brien.
Using linear algebra for intelligent information re-
trieval. STAM Review, 37:573-595, 1995.

[2] D.L. Boley. Principal Direction Divisive Partitioning.
Data Mining and Knowledge Discovery, 2:325-344,
1998.

[3] D.L. Boley, M. Gini, R. Gross, E-H Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Document categorization and query generation on the
World Wide Web using WebACE. AI Review, 13(5-
6):365-391, 1999.

[4] P. S. Bradley, Usama M. Fayyad, and Cory Reina.
Scaling clustering algorithms to large databases. In
Knowledge Discovery and Data Mining, pages 9-15,
1998.

[6] Paul S. Bradley and Usama M. Fayyad. Refining
initial points for K-Means clustering. In Proc. 15th
International Conf. on Machine Learning, pages 91—
99. Morgan Kaufmann, San Francisco, CA, 1998.

[6] Douglass R. Cutting, Jan O. Pedersen, David Karger,
and John W. Tukey. Scatter/gather: A cluster-based
approach to browsing large document collections. In
Proceedings of the Fifteenth Annual International ACM

[15]

[16]

SIGIR Conference on Research and Development in
Information Retrieval, pages 318-329, 1992.

I. S. Dhillon and D. S. Modha. Concept decomposi-
tions for large sparse text data using clustering. Ma-
chine Learning, 42(1):143-175, 2001.

M. Fanty and R. Cole. Spoken letter recognition. In
Advances in Neural Information Processing Systems 3,
pages 220-226, 1991.

W. B. Frakes. Stemming algorithms. In W. B. Frakes
and R. Baeza-Yates, editors, Information Retrieval
Data Structures and Algorithms, pages 131-160. Pren-
tice Hall, 1992.

S. Hettich and S. D. Bay. The UCI KDD archive, 1999.
kdd.ics.uci.edu/.

Tamara G. Kolda and Dianne P. O.'Leary. A semidis-
crete matrix decomposition for latent semantic index-
ing in information retrieval. ACM Trans. Information
Systems, 16:322-346, 1998.

D. Lewis. Reuters-21578.
http://www.research.att.com/~lewis, 1997.

P. M. Murphy and D. W. Aha. UCI repos-
itory of machine learning databases, 1994.
www.ics.uci.edu/"mlearn/MLRepository.html.

S. M. Savaresi and D. L. Boley. Bisecting k-means
and PDDP: a comparative analysis. In First STAM
International Conference on Data Mining, April 2001.
to appear.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny.
BIRCH: A new data clustering algorithm and its
applications. Data Mining and Knowledge Discovery,
1(2):141-182, 1997.

Z. Zhang, H. Zha, and H. Simon. Low-rank approxima-
tions with sparse factors I: Basic algorithms and error
analysis. SIAM J. Matriz Anal., 23:706-727, 2002.

