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Abstract

Trust mechanisms can be computed by modeling a set of agents in a
trust graph, a directed weighted graph in which agents are represented
as vertices and relative trust as edges. Liu, Parkes, and Seuken [LPS16]
present trust mechanisms that are robust against sybil attacks, includ-
ing the proposed personalized hitting time (PHT) mechanism. In this
paper, we propose a scalable algorithm for producing trust scores. In
particular, we improve on the theoretical bound quoted by [LPS16] for
computing PHT scores and other hitting time-based trust mechanisms.

1 Introduction

Trust mechanisms aggregate a set of reports from agents in an attempt to rank the trustworthiness of individuals
within a network. A trust graph represents agents by vertices and relative trust by edges, encapsulating the
relationships between interacting agents. Examples are readily seen in real applications, including the modeling
of friends on social networks like Facebook1, citation networks in which vertices represent papers and edges
represent citations, and commerce networks in which vertices represent agents transacting with each other in
online systems like Amazon2. Examples of the use of directed graphs to model these and other networks can be
found in the Stanford Large Network Dataset Collection3. One can extend the data presented here by assigning
relative trust to each edge; for example, transacting users on Amazon may evaluate each other in terms of the
success of previous transactions, producing a so-called trust graph.

1.1 Related Work

The use of networks to model relative trust between agents has produced the need for scalable methods to
calculate trust scores. A trust mechanism aggregates these trust scores, and by distributing it to the agents,
allows for agents to determine trustworthy users with which to transact in the future. Liu et al. [LPS16] consider
various trust mechanisms under sybil attacks, in which an agent controls the reports of a number of fake agents
called sybils. For example, one such sybil attack is the “two-loop attack” in which the agent assigns a high
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trust score to its sybils, and the sybils assign a high trust score to its agent. The corruption of such trust
mechanisms as PageRank under the two-loop attack has spurred the need for more robust mechanisms. Liu et
al. [LPS16] consider various trust mechanisms in turn by evaluating their robustness against sybil attacks. Some
trust mechanisms are global mechanisms in which a single trust score is assigned to each agent that reflects the
aggregate reports about that agent from every other reporting agent in the network. Personalized mechanisms
are also considered in which the same agent may have different scores from the perspective of multiple agents.
For instance, agent vi may assign a certain trust score to agent vk that differs from the trust score assigned to
vk by vj .

Liu et al. [LPS16] focus on the proposed personalized hitting time (PHT) mechanism after concluding that
it is most robust against sybil attacks compared to three other mechanisms: global hitting time (GHT) [HS06],
PageRank, and personalized versions of PageRank (PPR). An algorithm for computing exact PHT scores is
introduced with a time complexity of O(n4). To circumvent this costly computation, the authors present a
Monte Carlo algorithm for approximating PHT scores. Such work as [HS10] alludes to similar difficulties in
theoretical computation of trust propagation and trust-based recommendation because of complexities that
grow quickly with the number of agents.

1.2 Outline

In this work, we examine the four trust mechanisms considered in [LPS16]. We present an O(n3) algorithm
that computes hitting time-based trust scores, improving on the theoretical bound quoted in [LPS16]. Such
an algorithm allows for computation of hitting time-based trust mechanisms that are not only robust to sybil
attacks but also run with reasonable complexity as the number of agents increases. We proceed in this paper as
follows. In Section 2, we present notation and graph theoretic preliminaries used in later sections. In Section
3, we more explicitly define the problem and various hitting time-based trust scores. In Section 4, we present
the new algorithm and show its application to the trust scores under consideration. In Section 5, we run the
algorithm on a simple example network. We conclude in Section 6 and suggest a possible avenue for future work.

2 Preliminaries

We denote matrices by non-bold uppercase letters, vectors by bold lowercase letters, and scalars by non-bold
lowercase letters.

2.1 Graph Theoretic Preliminaries

Let G = (V, E , A) be a digraph with a collection of n vertices i ∈ V and set of directed edges (i → j) ∈ E .
We use an n × n adjacency matrix A = [aij ] to represent the weights on the edges of the digraph such that
aij > 0 is the weight on edge (i → j) ∈ E , and aij = 0 if (i → j) /∈ E . We restrict our consideration
to strongly connected digraphs. A strongly connected digraph is a digraph G such that there exists a path
i = l0 → l1 → · · · → lκ−1 → lκ = j for all pairs of nodes (i, j), where each link (lι−1 → lι) ∈ E for ι = 1, 2, ..., κ.
|V| = n is called the order of the digraph.

A random walk over a strongly connected digraph can be modeled by a first-order Markov chain [GS12]. Let
1 denote the vector of all 1s, and let D = Diag(d) = Diag(A ·1) denote the diagonal matrix of vertex outdegrees.
The Markov chain is represented by a matrix of transition probabilities P = [pij ] given by D−1A.

If the underlying digraph is strongly connected, it can be shown that the transition probability matrix is
irreducible and the Markov chain is ergodic, meaning that it is possible to move from every state to every other
state [BP94]. It can also be shown by Perron-Frobenius theory that there exists a unique stationary probability
vector π with all positive entries [BP94, Sen81]. This stationary probability vector satisfies πTP = πT and
πT1 = 1.

2.2 Trust Graph Model

We model the problem with a trust graph, a directed graph which represents a set of agents and relative trust
between agents. We borrow notation from [LPS16] in specifying the trust graph model. Let V denote the set
of agents and vi ∈ V denote an individual agent. Consider two agents vi and vj in which agent vi initiates a
transaction with provider agent vj . We denote the set of agents with which vi has transacted by Vi and the set

of agents about which vi makes a report following a transaction by V̂i. Let ŵij ∈ [0, 1] be the report that vi
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makes about vj following a transaction. Let Wi denote the set of trust reports that vi makes about the other
agents with which it has transacted.

A trust mechanism takes the set of reports in Wi for all agents vi ∈ V , and returns a trust score xij ∈ R≥0 for
all pairs of agents vi, vj ∈ V with vi 6= vj . This trust score quantifies the trustworthiness of agent vj as perceived
by agent vi. A global trust mechanism is one in which xij = xkj for all agents vi, vj , vk ∈ V ; an aggregate
common trust score about vj is reported by all agents. In a personalized trust mechanism, we may have that
xij 6= xkj when vi and vk report different trust scores for vj .

The trust graph G = (V, E , A) is constructed so that each agent in V corresponds to a vertex in V. We assign
weights aij = ŵij > 0 to each edge (i → j) in E , setting aij = 0 when vi has given no report on vj . Then
the trust scores are defined in terms of a random walk over G. Let (X0, X1, ...) denote the sequence of random
variables that form the random walk, with each Xi ∈ V. This random walk is defined by a transition probability
matrix P = D−1A. The probability of transition from vi to vj is given by the ij-th entry of P , namely

P (Xt+1 = vj | Xt = vi) =
aij∑
k

aik
.

In the manner of [LPS16], we impose additional conditions on the random walk. The vertex X0 is distributed
according to some chosen distribution Fq. The random walk under consideration is α-terminating, meaning that
the random walk terminates with probability α at each step. We denote the sequence of vertices visited by
the α-terminating random walk by (Xt)

τ
t=0. The random walk length is thus a random variable distributed by

τ ∼ Geom(1 − α). The quantity of interest is the hitting time of this random walk, or mean first passage time
[GS12], defined as the expected number of steps to first reach a specified agent when starting a random walk
from a vertex sampled from Fq. If vi is chosen as the starting vertex in the random walk, then we denote the
hitting time to reach vj as H(vi, vj) = min{t : Xt = vj | X0 = vi}.

3 Defining Trust Scores

3.1 Problem Statement

Given a weighted digraph G that represents a trust graph, we seek an efficient algorithm that calculates trust
scores under various hitting time-based trust mechanisms, for all pairs of agents vi, vj ∈ V with vi 6= vj . In
particular, we seek an algorithm that improves on a previously quoted O(n4) bound that still remains effective
against sybil attacks.

3.2 Trust Scores Defined

In this paper, we focus on four trust mechanisms: the personalized hitting time (PHT) mechanism, global
hitting time (GHT) mechanism, personalized PageRank (PPR) mechanism, and PageRank mechanism. We
reprise definitions of each trust mechanism from [LPS16]. Assume an α-terminating random walk (Xt)

τ
t=0 with

α ∈ [0, 1].

Definition 1. Personalized Hitting Time (PHT) Mechanism [LPS16]. The personalized hitting time score
xPHT,ij of agent vj as viewed from agent vi is the probability that an α-terminating random walk that starts from
vi visits vj before restarting. That is,

xPHT,ij = P (vj ∈ (Xt)
τ
t=0 | X0 = vi) = P (H(vi, vj) ≤ τ).

Definition 2. Global Hitting Time (GHT) Mechanism [HS06]. The global hitting time score xGHT,j of agent
vj is the probability that an α-terminating random walk starting at a vertex sampled from Fq visits vj before
restarting. That is,

xGHT,j = P (vj ∈ (Xt)
τ
t=0 | X0 ∼ Fq) = P (H(X0, vj) ≤ τ).

Definition 3. Personalized PageRank (PPR) Mechanism. The personalized PageRank score xPPR,ij of agent vj
as viewed from agent vi is the steady-state probability that an α-terminating random walk that starts and restarts
from vi spends at vj.

Definition 4. PageRank Mechanism. The global PageRank score xPR,j of agent vj is the steady-state probability
that an α-terminating random walk that starts at a vertex sampled from Fq spends at vj.
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Note that the GHT and PageRank mechanisms are global mechanisms, in which the first vertex X0 is sampled
from a restart distribution Fq, giving an aggregate trust score for a single agent. The PHT and PPR mechanisms
are personalized mechanisms, in which the first vertex X0 is assigned to a fixed vi, giving differing trust scores
for a single agent depending on the viewpoint taken. Note that we use the definition of the personalized
PageRank mechanism in [LPS16], although various similar alternatives exist in the literature (for example,
[FRCS05, JW03, Lof15]).

In [LPS16], Liu et al. evaluate the robustness of these trust mechanisms against sybils by quantifying the
effect of manipulation in terms of influence, defined in [HS06]. The trust mechanisms are evaluated in relation
to optimal manipulations that an agent may pursue. In all cases, a strategic agent will optimally drop all trust
reports about other agents, equivalent to cutting its outlinks in the trust graph. The authors conclude that the
optimal strategy for an agent vj with access to sybils is to add sybils for all trust mechanisms except for the PHT
mechanism, in which case adding one or more sybils does not increase the trust score of the agent. Furthermore,
both the PHT and GHT mechanisms are in effect more robust to sybil attacks because they are resistant to the
two-loop attack previously discussed, while the PPR and PageRank mechanisms remain susceptible. Given the
superiority of these hitting time-based metrics, we focus on computation of PHT and GHT scores.

4 The Algorithm: Computing Trust Scores

We propose an O(n3) algorithm to compute PHT and GHT scores, and in general, any hitting time-based trust
mechanism. We will also show how the algorithm efficiently computes PageRank and PPR scores. Consider
a strongly connected trust graph G = (V, E , A) of order n with transition probability matrix P . P governs
the transitions for the underlying Markov chain modeling the α-terminating random walk (Xt)

τ
t=0, in which

α ∈ [0, 1].
We first modify trust graph G by adding an “augmented” (n+ 1)-th vertex vn+1 to account for probability of

termination α. Let there be an edge from every vertex in G to vn+1 with transition probability α. Add a self-loop
to vn+1 with transition probability 1. Construct a modified (n + 1)× (n + 1) matrix of transition probabilities
P ′, representing transitions in the augmented graph G′. Note that the original probabilities in P are scaled by
(1− α) so that P ′ remains stochastic. P ′ can be partitioned as follows:

P ′ =

[
(1− α)P α

0T 1

]
, (1)

in which α denotes an n-vector with each entry α and 0 denotes the n-vector of all 0s.
Using the prescription in [GS12], consider the n × n submatrix P . We can compute fundamental matrix N

of the Markov chain for G′ with absorbing state vn+1 by taking inverse N = (I − (1− α)P )−1. The ij-th entry
of N gives the expected number of times that a random walk starting from vertex i will pass through vertex j
when absorbed by implicit state vn+1. We find inverse (I − (1− α)P )−1 using Gaussian elimination, an O(n3)
process. Note that a vector of hitting times is given by h = N · 1 in which 1 is the vector of all 1s. It is evident
that the i-th entry of h is equivalent to the previously defined H(vi, vn+1). We now have the quantities used to
compute the trust mechanisms in [LPS16] and consider each one in turn.

4.1 Personalized Hitting Time (PHT) Mechanism

Consider the absorbing Markov chain for augmented graph G′ with matrix of transition probabilities P ′. We
seek to compute xPHT,ij = P (H(vi, vj) ≤ τ), in which τ is the length of the α-terminating random walk. We
use the following theorem in the computation.

Theorem 1. Let P be the transition matrix for a random walk with n+ 1 nodes. Let N with ij-th entry N(i, j)
be the fundamental matrix calculated for a single absorbing state, vn+1. Then the probability that the random
walk absorbed by vn+1 visits vj starting from vi is given by

Pr(visiting vj before vn+1 starting from vi) =
N(i, j)

N(j, j)
. (2)

Proof. Renumber the vertices so that vj is ordered as the n-th vertex in transition matrix P to simplify the
notation. Partition P as

P =

 Q r1 r2
s1
T t11 t12

s2
T t21 t22

 ,
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where Q is (n− 1)× (n− 1), r1, r2 are column (n− 1)-vectors, and s1
T , s2

T are row (n− 1)-vectors.
To retrieve the count N(i, j), let vertex n + 1 be the single absorbing state and follow the prescription in

[GS12] to calculate the matrix N , whose ij-th entry is the expected number of passages through vj when starting
a random walk from vi. Then

N =

[
(I −Q) −r1
−s1

T 1− t11

]−1
=

(
W x
yT z

)
, (3)

partitioned conformally (so that z is a scalar). In particular, xi = N(i, n) and z = N(n, n). From (3) we have
(I −Q)x− zr1 = 0, or

x = z(I −Q)−1r1. (4)

Now let vn, vn+1 both be absorbing states. Follow [GS12] to find the vector of probabilities of reaching n
before n+ 1 (starting from any vertex i ∈ {1, . . . , n− 1}), obtaining b1 = (I −Q)−1r1. From (4) this is just

b1 =
x

z
=

N(:, n)

N(n, n)
,

in which N(:, n) denotes the column vector of entries in N with second index n. Taking the i-th entry of b1

gives (2).

Remark 1. An alternative formulation of the above proof is as follows. By the Markov property, the behavior
of the random walk at each discrete step is independent of the process up to that point. Hence, the average
number of passages through vj starting from vi is equal to the probability that the random walk will reach vj
before absorption starting from vi times the average number of passages through vj once reached. That is,

N(i, j) = Pr(visiting vj before absorption in vn+1 starting from vi) × N(j, j).

Using Theorem 1, we see that the PHT score is given by

xPHT,ij =
N(i, j)

N(j, j)
. (5)

We vary the choice of vi, vj for all agents in V to compute all O(n2) PHT scores.

4.2 Global Hitting Time (GHT) Mechanism

The GHT score is defined as xGHT,j = P (H(X0, vj) ≤ τ), in which initial vertex X0 is sampled from some restart
distribution Fq. Again consider augmented graph G′ with fundamental matrix N , in which vn+1 has been made
the sole absorbing state. For the purposes of an example construction, we consider vertex X0 to be sampled
uniformly from the original vertex set V, excluding vn+1. Then Fq is a uniform distribution, and the GHT score
is given by

xGHT,j =
1

n− 1

∑
i 6=j

N(i, j)

N(j, j)
, (6)

an average of n−1 PHT scores for which i 6= j. Varying the choice of vj for all agents in V allows one to compute
all O(n) GHT scores.

4.3 Personalized PageRank (PPR) Mechanism

Recall that the PPR score xPPR,ij of vj from the perspective of vi is the steady-state probability that an α-
terminating random walk that starts and restarts from vi spends at vj . We compute this directly from the
fundamental matrix N calculated above.

To compute the proportion of time spent at vj when starting from vi, consider that N(i, j) gives the expected
number of passages through vj when starting the random walk from vi. Then we can form the PPR score as

xPPR,ij =
N(i, j)
n∑
j=1

N(i, j)
=
N(i, j)

hi
, (7)

in which h is defined as above. Varying the choice of vi, vj for all agents in V allows one to compute all O(n2)
PPR scores.
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4.4 PageRank Mechanism

Recall that the global PageRank score xPR,j of agent vj is the steady-state probability that an α-terminating
random walk starting at a vertex sampled from Fq spends at vj . Again we consider the case in which the initial
vertex is sampled uniformly from the original vertex set V. Then, analogous to our formulation of GHT, we can
simply take an average of n− 1 PPR scores over all i 6= j. That is,

xPR,j =
1

n− 1

∑
i6=j

N(i, j)
n∑
j=1

N(i, j)
=

1

n− 1

∑
i 6=j

N(i, j)

hi
. (8)

Varying the choice of vj for all agents in V allows one to compute all O(n) PageRank scores.

4.5 Formalization

We present formalized algorithms for computing PHT, GHT, PPR, and PageRank scores. We first summarize
the process for computing fundamental matrix N used in the calculation.

Algorithm 1: Fundamental Matrix

Input: trust graph G = (V, E , A)
Output: fundamental matrix N for the augmented Markov chain

1 Compute P = D−1A, with D = Diag(A · 1).
2 Augment G with (n+ 1)-th vertex and a new edge from every vertex to vn+1 to form G′.
3 Scale entries in P according to (1) to form P ′.
4 Compute inverse N of n× n submatrix I − (1− α)P via Gaussian elimination.

We present additional algorithms for computing the four trust scores for all pairs of agents vi, vj in the trust
graph. In the cases of the GHT and PageRank mechanisms, let Fq be a uniform distribution over the original
vertex set V.

Algorithm 2: Personalized Hitting Time (PHT) Mechanism

Input: previously computed fundamental matrix N
Output: matrix of PHT scores XPHT

1 XPHT ← 0
2 for i = 1...n do
3 for j = 1...n do
4 if i 6= j then

5 XPHT (i, j)← N(i,j)
N(j,j)

6 end

7 end

8 end

Algorithm 3: Global Hitting Time (GHT) Mechanism

Input: previously computed fundamental matrix N
Output: vector of GHT scores xGHT

1 xGHT ← 0
2 for j = 1...n do
3 for i = 1...n do
4 if i 6= j then

5 xGHT,j ← xGHT,j + N(i,j)
N(j,j)

6 end

7 end

8 xGHT,j ← 1
n−1xGHT,j

9 end
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Algorithm 4: Personalized PageRank (PPR) Mechanism

Input: previously computed fundamental matrix N
Output: matrix of PPR scores XPPR

1 h← 0
2 XPPR ← 0
3 for i = 1...n do
4 for j = 1...n do
5 hi ← hi +N(i, j)
6 end
7 for j = 1...n do
8 if i 6= j then

9 XPPR(i, j)← N(i,j)
hi

10 end

11 end

12 end

Algorithm 5: PageRank Mechanism

Input: previously computed fundamental matrix N
Output: vector of PageRank scores xPR

1 h← 0
2 xPR ← 0
3 for i = 1...n do
4 for j = 1...n do
5 hi ← hi +N(i, j)
6 end

7 end
8 for j = 1...n do
9 for i = 1...n do

10 if i 6= j then

11 xPR,j ← xPR,j + N(i,j)
hi

12 end

13 end

14 xPR,j ← 1
n−1xPR,j

15 end

5 An Example Computation

We illustrate the results of this work with a simple example. Consider the trust graph G = (V, E , A) of order
n = 5 in Figure 1 with agents in V = {v1, ..., v5} and transition probability matrix P .

Construct the augmented graph G′ in Figure 2 by adding vertex v6. Then the transition probability from
each vertex in V to augmented vertex v6 is α. In this example, let α = 0.5. Construct augmented transition
probability matrix P ′.

P =


0 0.4 0 0.6 0

0.2 0 0.5 0.3 0
0 0 0 0 1

0.5 0 0 0 0.5
0.2 0 0.8 0 0

 P ′ =


0 0.2 0 0.3 0 0.5

0.1 0 0.25 0.15 0 0.5
0 0 0 0 0.5 0.5

0.25 0 0 0 0.25 0.5
0.1 0 0.4 0 0 0.5
0 0 0 0 0 1.0


Compute fundamental matrix N by taking (I − (1− α)P )−1, in which (1− α)P is the top left n× n block of
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Figure 1: G
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Figure 2: G′

P ′. We also calculate the vector of hitting times h = N · 1 for convenience.

N =


1.131 0.226 0.117 0.373 0.152
0.179 1.036 0.350 0.209 0.227
0.071 0.014 1.257 0.023 0.635
0.318 0.064 0.158 1.105 0.355
0.141 0.028 0.515 0.047 1.269

 h =


2.0
2.0
2.0
2.0
2.0


We show the computation of example trust scores from the perspective of agent v1. For the global hitting time

and PageRank mechanisms, let Fq be a uniform distribution over the original vertex set V as before. Applying
(5), (6), (7), and (8) for PHT, GHT, PPR, and PageRank scores, respectively, we find the following trust scores
from the perspective of v1:

PHT
xPHT,12 0.218
xPHT,13 0.093
xPHT,14 0.338
xPHT,15 0.120

GHT
xGHT,2 0.080
xGHT,3 0.227
xGHT,4 0.148
xGHT,5 0.270

PPR
xPPR,12 0.113
xPPR,13 0.059
xPPR,14 0.187
xPPR,15 0.076

PageRank
xPR,2 0.042
xPR,3 0.143
xPR,4 0.082
xPR,5 0.171
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Comparing the scores allows one to create a ranking of the agents based on relative trustworthiness from the
perspective of v1. The orderings returned by the global mechanisms are consistent with each other, and the
orderings returned by the personalized mechanisms are consistent with each other. However, the two mechanism
types do not agree when compared. For instance, while agent v1 considers agent v4 the most trustworthy under
the PHT and PPR mechanisms, v4 is considered relatively untrustworthy globally. These results suggest that the
personalized mechanisms, and particularly the PHT mechanism, give a more refined calculation of trust scores
using the perspective of single agents.

The value of α acts as a general indication of trust within the network. A large value of α indicates a generally
higher distrust between all interacting agents since the random walk is likely to terminate more quickly. At larger
values of α, as in the example, one sees that the personalized mechanisms can differ greatly from the global ones.
In such cases, the opinions of agents in the personalized mechanisms are dominated by the trust reports on
incident edges. In contrast, the global mechanisms can remain relatively invariant under different values of α.
Users of the algorithm may compute the mechanisms under different values of α to explore the variation in the
personalized mechanisms. Since computing the scores for each value of α requires an O(n3) computation, the
importance of producing trust scores efficiently becomes even more pertinent.

6 Conclusion and Future Work

In this paper, we proposed an optimized algorithm for computing various graph-based trust mechanisms intro-
duced in [LPS16]. In particular, we showed how the personalized hitting time (PHT) mechanism, most robust
against sybil attacks compared to the global hitting time (GHT), personalized PageRank (PPR), and PageRank
mechanisms, can be computed quickly using a probabilistic formulation. We expressed each of the trust mecha-
nisms succinctly in terms of the fundamental matrix of an absorbing Markov chain modeling a random walk over
a trust graph. Finally, we showed a simple calculation of the four trust mechanisms on an example trust graph,
noting that the personalized mechanisms differed from the global mechanisms in providing a ranking of relative
trustworthiness. In agreement with [LPS16], we found that personalized mechanisms appeared to give a more
informative view of trustworthiness in the calculation. Future work should use real data taken from sources such
as the Stanford Large Network Dataset Collection to explore the proposed algorithm on large, real-life networks.
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