In our last lecture, we saw that weakening cocommutativity from condition
\[A \otimes B \rightarrow B \otimes A \]
to any isomorphisms \(e_{A,B} \) compatible ("braided monoidal category")
with associativity, module action
\[\leftrightarrow \text{ giving invertible elt. } R \in H \otimes H \]
satisfying certain properties.

Restate def'n and lemma and prove lemma.

Reminder about \(R \) - "universal R matrix"

given \(\varphi : \text{rep of } H \), then \((\varphi \otimes \varphi)(R) \) defines elt. in \(V \otimes V \)
giving solution to QYBE on \(V \otimes V \).

more generally, we can choose
three reps \(\varphi_1, \varphi_2, \varphi_3 \) with spaces \((U, V, W) \).
get QYBE on \(U \otimes V \otimes W \).
A quasitriangular Hopf algebra is a pair \((H, R)\) where

\[T \circ \Delta H = R (\Delta h) R^{-1} \quad \forall h \in H. \]

So \(R = id \) would be "cocommutative" condition and s.t.

\[R \in H \otimes H \text{ on both sides.} \]

Reference: Lecture 5 of Majid, QG Primer

In \(H_{(1)} \otimes H_{(2)} \otimes H_{(3)} \) we have the following identities:

\((\Delta \otimes id) R = R_{13} R_{23} \quad (id \otimes \Delta) R = R_{13} R_{12}\)

(where, as before \(R_{13} \) means \((\otimes) (\otimes) (\otimes) \))

\(R = R^{(a)} \otimes R^{(b)} \), then \(R_{13} \) means \(R^{(a)} \otimes 1 \otimes R^{(b)} \)

Lemma: If \((H, R)\) is quasitriangular, then

1. \((\varepsilon \otimes id) R = (id \otimes \varepsilon) R = 1\)
2. \((id \otimes S) R^{-1} = R\)
3. \(R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12}\) in \(H \otimes H \otimes H\). (abstract QYBE)

If, for \((\Delta \otimes id) R = R_{13} R_{23}\) from axioms,

\((\Delta \otimes id) (R^{(a)} \otimes R^{(b)}) = \Delta (R^{(a)}) \otimes R^{(b)}\)

if

\(R = R^{(a)} \otimes R^{(b)} \)

\(R^{(a)}, R^{(b)} \in H\) (in general, might be linear combination of \(H\) elements)

Apply \(\varepsilon \otimes id \otimes id \),

\(\varepsilon (R^{(1)}) (R^{(2)}) \otimes R^{(3)} \)

Coalgebra axioms →

\(R^{(a)} \)
For \(1 \), \((\Delta \otimes \text{id}) R = R_{13} R_{23} \) from axioms,

and \((\varepsilon \otimes \text{id}) \Delta = \text{id} \) (coalgebra axiom) \(\varepsilon \otimes \text{id} \)

So \((\varepsilon \otimes \text{id}) (\Delta \otimes \text{id}) R \)

\[= R \]

and on the other hand \(= (\varepsilon \otimes \text{id} \otimes \text{id}) R_{13} R_{23} \)

\[= (\varepsilon \otimes \text{id}) R \varepsilon(1) R \]

\(E \text{ is alg. map.} \)

since \(R \) invertible, then comparing two sides, \((\varepsilon \otimes \text{id}) R = 1 \) as desired.

use other coalgebra axiom for \(\text{id} \otimes E \) to prove \((\text{id} \otimes E) R = 1 \) in same fashion.

\(\text{(2)} \) is straightforward since \(E \) is simple map, so checking axioms easy.

\(R_{12} R_{13} R_{23} = R_{12} (\Delta \otimes \text{id}) R = (\tau \otimes \Delta \otimes \text{id})(R) R_{12}^{\text{apr}} \) (4)

so \(R_{12} \Delta (x) R_{12}^{-1} = \tau \Delta (x) \forall x \in H \)

i.e. \(R_{12} \Delta (R^{(e)}) = \tau \Delta (R^{(e)}) \cdot R_{12}^{\text{apr}} \)

\((4) = (\tau \otimes \text{id} \otimes \text{id}) (R) R_{12} \)

\[= (\tau \otimes \text{id}) (R_{13} R_{23}) R_{12} \]

\[= R_{23} R_{13} R_{12} \]

\[\checkmark \]

NOTE THE PARENTHESES!