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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 29, Number 3, August 1971 

A BRIEF PROOF OF CAUCHY'S INTEGRAL THEOREM 

JOHN D. DIXON' 

ABSTRACT. A short proof of Cauchy's theorem for circuits ho- 
mologous to 0 is presented. The proof uses elementary local proper- 
ties of analytic functions but no additional geometric or topolog- 
ical arguments. 

The object of this note is to present a very short and transparent 
proof of Cauchy's theorem for circuits homologous to 0. The proof is 
based on simple 'local' properties of analytic functions that can be 
derived from Cauchy's theorem for analytic functions on a disc, and 
it may be compared with the treatment in Ahlfors [1, pp. 137-145]. 
It is apparent from this proof that this version of Cauchy's theorem is 
not only much more natural than the homotopic version which ap- 
pears in several recent textbooks; it is also much easier to prove 
(contra Dieudonne [2, p. 192]). It is reasonable to argue that the 
concept of homotopy in connection with Cauchy's theorem is as 
extraneous as the notion of Jordan curve. 

We recall that if y is a circuit (= "continuous, piecewise smooth, 
closed curve"), and wEC does not lie on y, then the index of w with 
respect to y is Ind(y, w) = (2wri)-'f, (z-w)-ldz. It is easily proved 
that E= {wCC| Ind(y, w) =01 contains a neighbourhood of co and 
is open (see [1, p. 116]). In the following proof we give full references 
to the 'local' properties used in order to emphasize the elementary na- 
ture of the proof. 

CAUCHY'S THEOREM. Let D be an open subset of C and let y be a 
circuit in D. Suppose that y is homologous to 0 in D, i.e. each wED 
lies in the set E defined above. Then, for each f analytic on D: 

(i) f f(z)dz=0; 
(ii) Ind(y, w)f(w)=(2ri)-1f (z-w)-'f(z)dz for all wED not 

lying on y. 

PROOF. Consider g: D XD-?C defined by g(w, z) = (f(z) -f(w))/(z-w) 
for zpw and g(w, w) =f'(w). Then g is continuous, and for each 
fixed z, wi-*g(w, z) is analytic [1, p. 124]. Define h:C-C by h(w) 
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626 J. D. DIXON 

=fj g(w, z)dz on D and h(w) =fj (z-w)-1f(z)dz on E. Note that 
C=DUE by hypothesis, and that these two expressions for h(w) 
are equal on DnE because Ind(,y, w) =0 there. 

Now h is differentiable on both D and E ( [1, p. 123] or [3, p. 137]), 
and so h is an entire function. Since the image of y is bounded, and 
E contains a neighbourhood of co, h(w)-*O as w--* o. This implies 
firstly that h is constant (Liouville's theorem), and secondly that h 
is 0. Thus f, g(w, z)dz =0 for all wCD not lying on y; and (ii) follows. 
Finally, let u be some fixed point of D not lying on sy. Then applying 
(ii) to the function z->f(z)(z-u) in place of f, and evaluating at 
w=u, we obtain (i). 

REMARK. The proof goes through word for word when y is a cycle 
(see [1, p. 138 ]) rather than a circuit. Then, as in Ahlfors' treatment, 
the general form of the residue theorem follows immediately. 
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