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We study the shear flow of active extensile filaments confined in a thin channel. We apply the Ericksen-Leslie equa-

tions of liquid crystal flow with an activity source term. The dimensionless form of this system includes the Ericksen,

Activity and Reynolds numbers, together with the aspect ratio of the channel, as the main driving parameters. We

perform a normal mode stability analysis of the base shear flow. We arrive at a comprehensive description of the

stability properties and their dependence on the parameters of the system. The transition to instability occurs at a

positive threshold value of the activity parameter. The work is guided by experiments on active filaments in confined

channels and aims at quantifying their findings in the prechaotic regime.

This article presents a comprehensive stability analysis of the aligning shear flow of active

fibers driven by biological fuel. The study cover both extensile and contractile fibers con-

fined in narrow channels. Both types of materials are serving as controlled experimental

model relevant to biological and medical discoveries, with the contractile ones being used in

simulating actin filaments in cells. And for extensile fibers, we closely follow experiments

of microtubules as reported in the recent articles. In our study, to make predictions for

experiments in either cases, the activity level, the ratio of the viscous to the elastic torques,

and the channel geometry are quantitatively characterized as the mechanisms that trigger

instability, and their role on the vorticity profiles of the perturbing flow is analyzed. Par-

ticularly, it is found that contractile fibers are very sensitive to the Reynolds number of the

flow, which reveal possible signatures of plastic behavior. To conduct stability analysis, the

spectral method is used to solve the generalized eigenvalue problems arising in the analysis.

I. INTRODUCTION

We study laminar flow of active extensile filaments confined to thin channels. Our flow model is based on the

Ericksen-Leslie equations of liquid crystals with an added activity source term (

12
,

11
). We analyze the mechanisms

of instability of well-aligned shear flows with linear velocity profile and quantitatively explore regimes of instability.

We perform a normal mode analysis of the flow equations and find the instability thresholds of the uniformly aligned

shear flow in terms of the relevant nondimensional parameter groups. Increased activity and Ericksen number are

found to drive the system out of the stable regime. We also find that the vorticity and speed of the perturbing flow

increase as the activity number A increases. A numerical method based on the discretization of the linear system by

Chebyshev polynomials is used in the stability analysis, specifically, in solving the underlying spectral problem. The

outcome provides a comprehensive description of the stability profiles of the fibers in confinement, in terms of the

activity, Ericksen and Reynolds numbers, and the geometry of the channel.

Extensile fibers are known to form rodlike nematic liquid crystalline phases, due to their elongated molecular shapes.

The material that we study consists of self-propelled elongated fiber units formed by bundled microtubules that are

powered by adenosine triphosphate (ATP)-consuming kinesin 29

16
. Our results show very good agreement with the

laboratory experimental studies by the Catalan group

10
, aimed at understanding the behavior of active matter in

confinement.

The study of active matter in confinement is very relevant to understanding many biological systems as well as in

guiding potential applications. In contrast with passive systems, whose dynamics is the direct result of external agents

(e.g., a pump in Poiseuille flow), active matter systems are able to use stored energy or extract it from external sources

at small (or at individual) length scales and collectively enhance it at the macroscopic scale—often in cooperation with

the environment (e.g. bacteria swimming in a liquid crystal media)—and convert it into work

13,15
. Typical examples

of these systems include bacteria in either isotropic or liquid crystal media, cytoplasm networks, and cancer cells.

The aim of our work is to provide theoretical support to recent experiments of shear flow of extensile fibers in confined

channels of varying width in order to understand complex phenomenology of active flow in a controlled setting

10
.

Earlier theoretical work on extensile fibers found that laterally confined active nematics undergo an instability of a

spontaneous laminar flow when the channel width reaches a certain threshold value that depends on the strength of

the activity

20
. These results where later confirmed in experiments with spindle-shaped cells

5
.
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The Ericksen-Leslie equations of incompressible liquid crystal flow and their numerical simulations have been used

in many studies of active systems, especially in the turbulent regimes

9
. The variables of the model include the velocity

field v, the pressure p associated with the incompressibility constraint and the unit nematic director n, representing

the local average alignment of the system. Since the flows that we study are plane, we formulate the problem in terms

of the stream function  .

The dimensionless form of the equations involves, in addition to the aspect ratio ` of the channel, three main

parameter groups. Two of them—the Reynolds R
e

and Ericksen E
r

numbers—are defined in the same way as for

passive flows. The activity parameter A quantifies the activity level in the system. Although R
e

is significantly

smaller than other nondimensional parameters influences the stability behavior of the active system in some saddle

ways. The E
r

represents the ratio of the viscous to the elastic torques and may take very large values.

In this work, we focus on the plane shear flow of an active liquid crystal in the aligning regime. We find solutions

with linear velocity profiles and constant angles of alignment that agree with experimental observations of active

filaments in a channel when A > 0

10
. We also find a velocity gradient of equal magnitude but opposite sign for the

flow of contractile fibers. Aligning regimes are characterized by the dominance of the extensional e↵ect of the shear

flow over the rotating one, as characterized by the value |�| > 1 of the shear aligning parameter (for tumbling regimes

|�| < 1). The dominance of the extensional e↵ect causes the liquid crystal to align at a certain angle with respect

to the direction of the velocity. Moreover � > 0 for extensile systems. We find that the magnitude of the velocity

gradient is proportional to the activity parameter, and the angle of alignment solely depends on the ratio of two

relevant anisotropic viscosity coe�cients, as in the case of a passive shear flow.

Several works on active liquid crystals found in the literature use the Beris-Edwards model based on the evolution

of the order tensor Q rather than the director of the Ericksen-Leslie theory

6
. Q represents a symmetric, traceless

second order tensor whose two independent eigenvectors are the director fields of the theory. They reduce to a single

eigenvector n in the uniaxial case, with Q admitting the representation Q = s(n⌦n� 1
3I), where the scalar s 2 (� 1

2 , 1)

corresponds to the single, independent eigenvalue. For rodlike liquid crystals, s > 0.

We carry out a normal mode analysis of the shear flow, with ! representing the spatial frequency of the perturbation

and Im(c) the corresponding growth rate. A perturbation with frequency ! and Im(c) > 0 is unstable, and otherwise,

stable. The threshold Im(c) = 0 represents neutral stability. We choose boundary conditions so that the boundary

values of the base flow are not altered. The zero boundary conditions on perturbations suggest that a discretization

using Chebyshev polynomials is appropriate. We apply the Chebyshev-QZ-algorithm to solve the generalized eigen-

value problem resulting from the linearization of the governing system about the base shear flow. We emphasize the

secondary role of the director field boundary conditions. Indeed, one important di↵erence between active and passive

liquid crystals is that whereas the latter can be aligned by surface anchoring, this is not the case for active flows,

known to respond to alignment by flow only.

The stability plots in theA!-plane indicate positive threshold value ofA at which the system becomes unstable. This

critical value decreases with increasing values of E
r

and `, and with the range of unstable frequencies also increasing.

The growth rate profile calculated with respect to A shows a parabolic profile for low frequencies becoming linear at

a threshold frequency. The profile of Im(c) with respect to ! starts being positive for all values of A, reaching zero

growth at a threshold value of ! that appears to be independent of A. With further increase of !, Im(c) reaches a

positive maximum, subsequently tending to zero as ! increases, feature that is also independent of A. These trends

have been reported in the experimental literature

10
.

This paper is organized as follows. Section II presents the formulation of the Ericksen-Leslie system for active

liquid crystals, including the assumptions that lead to aligning flows and a description of the boundary conditions.

The scaling of the problem and non-dimensionalization of the equations are presented in Section III. The shear flow

geometry and calculation of the corresponding steady states are presented in Section IV. The framework for the

stability analysis is developed in Section V. The numerical method to analyze the stability of shear flows is presented

in Section VI. In Section VII, we present the stability results. In section VIII, we present the conclusions.

The fully developed equations for the Ericksen-Leslie and Ericksen models are presented in the Supplementary

Materials section. A summary of the plots that resulted from the numerical simulations is also given there.

II. ACTIVE LIQUID CRYSTALS: THE ERICKSEN-LESLIE EQUATIONS

As for its passive counterpart, an active liquid crystal is assumed to be a viscous anisotropic and incompressible

fluid with activity sources drawn from internal mechanisms or from the environment. Let ⌦ ⇢ R3
be an open domain

occupied by the liquid crystal with the smooth boundary @⌦. The Ericksen-Leslie equations of balance of linear and

angular momentum, and the incompressibility and unit director constraints for the velocity field v, pressure p and
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director field n in ⌦ and at time t > 0 are

11
:

⇢

˙

v = r · �, (1)

�1 ˙n⇥ n = r · (@WOF

@rn

)⇥ n� @WOF

@n

⇥ n+ �1⌦n⇥ n� �2An⇥ n, (2)

r · v = 0, (3)

n · n = 1, (4)

with ⇢ > 0 denoting the constant mass density. We point out that, since the system is strongly dissipative, rotational

inertia has been neglected in equation (2). Moreover, such an equation results from taking the cross product of the

original equation of balance of angular momentum by the vector n. This has the advantage of explicitly suppressing

the Lagrange multiplier associated with the unit director field constraint. The function WOF denotes the Oseen-Frank

energy of the liquid crystal, quadratic in the gradients of n:

WOF(n,rn) =

1

2

�
k1|r · n|2 + k2|(r⇥ n) · n|2 + k3|(r⇥ n)⇥ n|2 + (k2 + k4)r · [(v ·r)n� (r · n)n]

�
. (5)

with k1, k2, k3 > 0, k2 > |k4| and 2k1 � k2 + k4 denote the Frank elastic constants. The total energy is

E =

Z

⌦

✓
1

2

⇢

˙

v · ˙v +WOF(n,rn)

◆
dx.

The Cauchy stress tensor � is the sum of the elastic, viscous �̂ and active �

A

components, respectively.

� = �pI�rn

T

@WOF

@rn

+ �̂ + �

A

, (6)

�̂ = ↵1 (n ·An)n⌦ n+ ↵2N⌦ n+ ↵3n⌦N+ ↵4A+ ↵5An⌦ n+ ↵6n⌦An, (7)

�

A

= �an⌦ n, (8)

where

2A = rv + (rv)

T

, 2⌦ = rv � (rv)

T

and N =

˙

n�⌦n.

Here the superimposed dot denotes the material time derivative, that is,

˙

f(t,x) =

@f

@t

+(v ·r)f. The Leslie coe�cients

↵

i

, 1  i  6 represent the anisotropic viscosities of the liquid crystal. In particular, ↵4 corresponds to the isotropic

or Newtonian viscosity. The parameter a in (8) quantifies the activity of the system, with a = 0 corresponding to the

standard Ericksen-Leslie system for passive liquid crystals.

The active part (8) of the stress tensor accounts for the non-conservative forces generated by the individual fibers

and are assumed to be dipolar. Their expressions were obtained from the symmetry of the flow field that they generate,

with a > 0 corresponding to the extensile regime, and a < 0 to the contractile one

15
,

14
,

13
,

7
as illustrated in figure 1.

In the terminology of swimmers, extensile particles are known as pushers and contractile ones as pullers.

extensile contractile

FIG. 1. Flow profile (grey curves) generated by extensile (left) and contractile fibers (right). The thick black arrow represents

the nematic director, pointing along the rod axis in rodlike particles, and perpendicular to the disk in discotic ones.
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A. The Leslie coe�cients and the dissipativeness of the system

The rate of dissipation function is quadratic on the time-rate quantities and takes the form

� =

1

2

�
↵1(n

T

An)

2
+ �1|N|2 + (↵5 + ↵6)|An|2 + (↵3 + ↵2 + �2)N

T

An+ ↵4|A|2
�
. (9)

The second law of thermodynamics in the form of the Clausius-Duhem inequality reduces to the positivity of

the rate of dissipation function, � � 0. Necessary and su�cient conditions for the latter result in the well-known

inequalities

11
:

↵4 > 0,

↵1 +
3

2

↵4 + ↵5 + ↵6 > 0,

2↵4 + ↵5 + ↵6 �
�

2
2

�1
> 0,

�1 := ↵3 � ↵2 > 0,

�2 := ↵6 � ↵5. (10)

Parodi’s relation, a consequence of Onsager’s reciprocal relations in the microscale description of liquid crystals, is an

additional assumption of the theory:

↵6 � ↵5 = ↵2 + ↵3. (11)

This condition renders the rate of dissipation function of a potential for the viscous stress, that is �̂ =

@�
@rv . We

consider a class of liquid crystals able to align under the e↵ect of flow of small velocity gradient. This requires that

����
�1

�2

���� :=
1

�

 1, (12)

� known as the flow alignment parameter. It represents the ratio between the extensional and rotational e↵ects of

the shear flow, with the former dominating in the case � > 1 and so the director aligns along the flow direction. The

tumbling regime corresponds to � < 1, with a prevailing rotational couple that prevents n from choosing an aligning

direction

1
,

7
. Moreover for extensile liquid crystals

�2 < 0. (13)

(For disk-like, compressile liqud crystals, �2 > 0.)

B. Boundary conditions

The behavior of active liquid crystals on the domain boundary may be significantly di↵erent from that of their

passive counterparts. Whereas actin fibers may anchor and stick to the boundary, some active liquid crystals, such as

microtubules, do not align by anchoring on the boundary and can only become oriented by flow. There is no evidence

of non-slip behavior in experiments where microtubules are found to slide along the walls. Guided by experiments,

slip-free boundary conditions were used in numerical simulations in

10
. Hence, we require

v · ⌫ = 0, on @⌦, (14)

(�⌫) · ⌧ = 0, (15)

where ⌫ and ⌧ denote the outer unit normal and tangent vectors to the boundary, respectively. For the director field,

we impose zero Neumann boundary conditions:

dn

d⌫

= 0 on @⌦. (16)
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When ⌦ is a semi-infinite stripe domain with thickness 2L3, suppose that the flow and director field are restricted to

the xz-plane, and denote by � the angle between n and the z-axis. Then the conditions (14)-(16) become

v2(x,�L3) = v3(x, L3) = 0, (17)

�13 = 0, (18)

d�

d⌫

= 0, (19)

respectively.

Remark. In the calculations for the stability analysis, we impose Dirichlet boundary conditions on the perturbation

angle rather than the Neumann condition (19). This has been done to simplify the stability analysis but one would

naturally expect di↵erent results for other boundary conditions.

III. SCALING AND NON-DIMENSIONALIZATION

Next, we formulate the governing equations in terms of dimensionless time and space variables. For this, we choose

the positive quantities L1 and L3 to be the characteristic lengths along the x and z directions, respectively, and

let V > 0 denote the characteristic velocity. Moreover, we take the isotropic coe�cient ↵4 to be the characteristic

viscosity of the system, and let p0 > 0 represent the typical pressure. The resulting dimensionless variables are

x̃ =

x

L1
, z̃ =

z

L3
, ṽ1 =

v1

V

, ṽ3 =

v3

V

,

˜

t =

t

T

, T =

L1

V

, p̄ =

p

p0
, p0 =

V ⌘

L1
. (20)

The quantity T > 0 represents the typical time scale. We subsequently, divide the governing equations, term by term,

by the expression ↵4
V

L

2
1
. The resulting equations involve well-known dimensionless parameter groups: the Reynolds

number Re, the Ericksen number E
r

and the activity parameter A, as well as the aspect ratio of the channel, `. The

quantity E
r

represents the ratio of the viscous to the elastic torques. Further, we multiply the equation of balance of

angular momentum by

L

2
1

k

2
1
which also brings E

r

into the expression.

We also need the following nondimensional parameters

↵̃

i

=

↵

i

⇢V L

, �̃

i

=

�

i

⇢V L

,

˜

k =

k

⇢V

2
L

2
, (21)

where ↵̃

i

and �̃

i

are the dimensionless viscosity coe�cients and

˜

k is the dimensionless elastic modulus. The list of the

dimensionless parameters groups of the model is

R
e

=

L1V ⇢

⌘

: Reynolds number,

E
r

=

⌘L1V

k

: Ericksen number,

A =

aL1

V ⌘

: Activity number,

` =

L3

L1
: Domain aspect ratio, (22)

where ⌘ := ↵4.

In summary, the list of the model parameters is

PEL := {R
e

, E
r

,A, `,↵

i

, �

i

}. (23)

Likewise, {ṽ,n, p̃} and the Lagrange multiplier �, maintaining the unit director constraint, are the unknown fields of

the Ericksen-Leslie model.

Since our work deals with the active liquid crystal confined in a channel, in a latter section we will recast the

governing equations in terms of two space dimensions.
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IV. SHEAR FLOW OF THE ERICKSEN-LESLIE MODEL

We suppress the superimposed bar notation and assume that all the variables are already dimensionless. We look

for solutions such that the velocity field is unidirectional v = (U(z, t), 0, 0) and the director angle � = �(z, t). From

equations (A1)-(A3), we get the reduced one-dimensional problem

R
e

@U

@t

= �@p
@x

+ `

�2 @

@z

✓
g(�)

@U

@z

� 1

2

A` sin 2�
◆
, (24)

0 = �@p
@z

� 2E�1
r

`

�3 @

@z

✓�
@�

@z

�2
◆
+ `

�2 @

@z

✓
g0(�)

@U

@z

�A`cos2 �
◆
, (25)

��1`
2

2↵4

@�

@t

=

@

2
�

@z

2
+

E
r

`

4↵4

@U

@z

(��1 + �2 cos 2�) , (26)

where

g(�) =

1

4↵4

�
↵1 sin

2
2�+ 2(↵5 � ↵2) cos

2
�+ 2(↵6 � ↵3) sin

2
�+ 2↵4

�
, (27)

g0(�) =
1

4↵4

�
↵4 + 2↵1 sin 2� cos

2
�+ (↵2 + ↵3 + ↵5 + ↵6) sin 2�

�
. (28)

The function g(�) is the dimensionless form of the rate of dissipation � of the flow:

g(�) = ↵

�1
4 � > 0. (29)

Next, we eliminate the pressure p from the equations of balance of linear momentum. Taking the partial derivative

of equation (25) with respect to x, we get

0 =

@

2
p

@z@x

. (30)

Likewise, taking the derivative with respect to z in equation (24) and applying to it the previous result, we get

R
e

@

2
U

@z@t

= `

�2 @
2

@z

2

✓
g(�)

@U

@z

� 1

2

A` sin 2�
◆
. (31)

Integrating once with respect to z, we get

R
e

@U

@t

= `

�2 @

@z

✓
g(�)

@U

@z

� 1

2

A` sin 2�
◆
+ c1(t), (32)

where c1(t) is arbitrary. The governing system reduces now to equations (26) and (32). Subsequent use of equation

(25) determines the pressure.

A. Steady state flow

Let us now look for one-dimensional fields v = (U(z), 0, 0), � = �(z) and s = s(z). They satisfy the system of

equations

0 =g(�)

dU

dz

� 1

2

A` sin 2�+ c1z + c2, (33)

0 =

d

dz

(

d�

dz

) +

E
r

`

4↵4

dU

dz

(��1 + �2 cos 2�), (34)

where c1 and c2 are arbitrary constants obtained in setting U

t

⌘ 0 in equation (32) and further integrating it with

respect to z. Let us now determine the constants c1 and c2. We point out that combining equation (24) in the steady

state case with equation (33) yields

c1 = �`2 @p
@x

.
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FIG. 2. Shear flow velocity profiles with shear rate 2 dimensionless units (red) and 3 (blue).

We shall take c1 = 0 which corresponds to the assumption that there is no applied external pressure gradient driving

the flow. Furthermore, requiring that the velocity gradient vanishes when the activity is equal to zero implies that

c2 = 0. The resulting expression of the velocity gradient is then

U

0
(z) = A` sin(2�)/g(�), (35)

Rewriting the previous equation in terms of the original dimensional variables, we get

v

0
3(z) =

↵L1

⌘V L2
sin(2�)/g(�), (36)

where now the ’prime’ notation indicates derivative with respect to the dimensional transverse variable, z, and ↵

denotes the activity parameter in (8). This indicates that the shear rate depends on the activity only but not on the

width of the channel as observed in experiments

10
.

Substitution of equation (35) into (34) gives

0 =

d

dz

✓
d�

dz

◆
+

E
r

A`2

4↵4g(�)
sin 2�(��1 + �2 cos 2�). (37)

Next, we look for solutions of equation (37) such that � and consequently U

0
(z) are constant. The latter corresponds

to the observed states with linear velocity profile.

The angle of orientation of the director is

cos(2�) =

�1

�2
. (38)

From the properties of �1 and �2 (13) for rodlike nematics, we observe that cos 2� < 0 and so,

⇡

4

< � <

⇡

2

.

That is, the angle 0  ⇡

2 � �  ⇡

4 between the director field an the horizontal direction is smaller than

⇡

4 radians,

⇡

2 >

⇡

2 � � >

⇡

4 . The velocity field is given by

U(z) = A`g�1
(�) sin(2�)z, (39)

where the constant of integration has been chosen to give the odd profile. Rewriting the previous equation in terms

of the original dimensional variables as in (36), we find that the velocity profile does not depend on the channel

width. We observe that the solutions show very good agreement with the experimental results. Indeed, in the shear

flow regimes, the activity parameter does not directly influence the flow alignment, but it does increase the velocity

gradient, i.e., the shear rate.

Note that equation (38) shows that the director angle does not depend on the activity parameter A whose de-

pendence enters the expression (39) of the velocity gradient. Both properties are found to be in full agreement with

experiments

10
.
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V. STABILITY ANALYSIS

From henceforth, we study the stability of the solution (U(z),�0) under perturbations of the form

ṽ1 = U + ✏v1(t, x, z),

ṽ3 = ✏v3(t, x, z),

˜

� = �0 + ✏�1(t, x, z),

where U in (39) and �0 in (38) are the shear base flow solution and s0 and �0 are constant. Substituting these

expressions into the full two-dimensional system of governing equations (A1), (A2) and (A3), we obtain the linear

system (B1), (B2) and (B3) for the fields (v1(t, x, z), v3(t, x, z),�1(t, x, z)).

Moreover, we propose the following exponential expressions of the unknown fields, consistent with those used in

the normal mode stability analysis:

 (t, x, z) =  (z)e

i!(x�ct)
(40)

v1(t, x, z) =
@ 

@z

= e

i!(x�ct) d 

dz

(41)

v3(t, x, z) = �@ 
@x

= �i! (z)e

i!(x�ct)
, (42)

where  denotes the stream function of the flow. Also, for the direction angle, we assume that

�1(t, x, z) = �(z)e
i!(x�ct)

. (43)

Here, ! and c are dimensionless complex numbers corresponding to the spatial frequency and to the speed or growth

of the perturbation, respectively. Specifically, separating  and � into their real and imaginary parts, it follows that

Re(!) represents the spatial oscillatory part of the perturbation and Im(c) corresponds to its time growth rate. From

now on, we will restrict ourselves to the case when

Im(!) = 0.

Substituting the expressions (40)-(43) into the linear governing equations (B1), (B2) and (B3), we obtain a linear

system (C3) and (C4) for the new variables. Specifically the former is a fourth order linear ordinary di↵erential

equation for  and the latter is a second order equation for �.

A relevant quantity in the analysis of flow which also helps quantify the transition to turbulence is the vorticity

vector: W = r⇥ v. Since we are dealing with two-dimensional flow, it reduces to a scalar,

W (x, z) =

@v1

@z

� @v3

@x

= e

i!(x�ct)


d

2
 

dz

2
� !

2
 (z)

�
. (44)

The governing equations for the perturbations are given by (C3) and (C4) in the Supplementary Materials section,

where their derivation is carried out.

We require that the perturbations do not change the boundary values of the velocity and alignment of the basic

solutions. That is, we impose the conditions

 (±1) = 0, (45)

 

0
(±1) = 0, (46)

�(±1) = 0. (47)

VI. THE NUMERICAL METHOD

The Chebyshev polynomials

18,19
in the variable z form an orthogonal family on z-interval [�1, 1]. We apply the

Chebyshev-QZ algorithm

3
,

2
to solve the generalized eigenvalue problem (45), (46), (47) (C3) and (C4). We first
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approximate the stream function  (z) and angle function �(z) by the truncated Chebyshev expansions

 (z) =

NX

n=0

a

n

T

n

(z), �(z) =

N�2X

n=0

b

n

T

n

(z), (48)

where T

n

(z) denotes the n-th order Chebyshev polynomial of the first-kind. Our goal is to determine the coe�cients

a

n

, b

n

and the eigenvalue c. To keep the unknown coe�cients evenly distributed over the two functions, we choose

di↵erent orders of truncations for  (z) and �(z). We collocate the Galerkin truncation at the extrema of the Chebyshev

polynomial

z = cos

✓
j⇡

N � 2

◆
, j = 1, · · · , N � 3 (49)

Thus, evaluating the governing equations at these extrema points, we obtain 2N � 6 linear algebraic equations. Six

additional relations are provided by the corresponding boundary conditions (45)-(47), which complete the system.

The substitution of the truncated expansions (48) into the boundary conditions yields rows of zeros, which produce a

spurious eigenvalue

3
, and therefore, we eliminate them. The full system of equations becomes the algebraic eigenvalue

problem

[A

R

+ iA

I

]x = c [B

R

+ iB

I

]x (50)

where x = (a3, · · · , aN , b2, · · · , bN�2)
T 2 C2N�5

, A

R

, A

I

, B

R

and B

I

denote (2N � 5) ⇥ (2N � 5) real matrices.

Using the QZ-algorithm of MATLAB, we obtain the eigenvalues and corresponding eigenvectors. Details of the steps

leading to the system (50) are given by equations (E1)-(E2) and (E3) in the supplementary material.

We end this section by listing the values of the Leslie viscosity coe�cients used in the simulations. For extensile

liquid crystals, we take

↵1 = 0, ↵2 = �1.5, ↵3 = �0.5, ↵4 = 2, ↵5 = 2, ↵6 = 0, �1 = 1, �2 = �2. (51)

The data list to be used in the simulations of contractile liquid crystals is

↵1 = 0, ↵2 = �1.5, ↵3 = �0.5, ↵4 = 4, ↵5 = �2, ↵6 = 0, �1 = 1, �2 = 2. (52)

These provide simple values that still maintain the anisotropy of the viscosity, satisfy the positivity of the rate of

dissipation function, and also represent the aligning regime in each class. Moreover, we take the constant order

parameter as s0 = 1.0.

The numerical study yields plots of ! with respect to the A, for di↵erent values of E
r

, ` and R
e

, showing regions of

the spatial frequency domain for which the corresponding perturbation is either stable or unstable, that is, whether it

decays or grows in time. The study also yields plots of the streamlines, vorticity and director angle of the perturbation

fields. The tangent vector field of the former corresponds to the velocity field of the system. We focus in quantitatively

understanding the role of the parameter values in determining the instability behavior. Specifically, we assume that

the Leslie coe�cients ↵

i

are fixed and seek how the dimensionless parameters E
r

,A, `

2
and R

e

a↵ect the stability of

the shear flow.

Our analysis follows along the lines of many previous investigations of the physical mechanisms that cause either

instability or stability in terms of eigenmodes of the linearized system

8
and

17
,

4
. To characterize the stability of the

shear flow steady state, we check the growth rate of the dominant unstable eigenmode of the perturbation that a↵ects

the system. For unstable systems, the largest value of the linear growth rate and the corresponding wavenumber

excite the system and modify the basic state in some essential fashion. On the other hand, stable perturbation modes

also modify the system but decay in time.

VII. STABILITY ANALYSIS

In this section, we perform a stability analysis of the basic shear flow solution for extensile fibers, that is, in the case

A > 0. For this, we solve the system (50) following the method presented in Section VI. The result of the analysis

is presented in the graphs of figures 3-9. Figures 10 and 11 show the profiles of the perturbing fields. We summarize

the results of the computations as follows.

• The main general trend is that increasing, either one of the quantities E
r

, ` or A, prompts unstable behavior of

the system.
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• In particular, Fig. 3 shows that, for fixed E
r

= 100 and R
e

= 5, the critical value of the activity number A,

above which the system becomes unstable, decreases with `, with A
c

⇡ 250 dimensionless units, for l = 0.1,

A
c

⇡ 100, for l = 0.2, and A
c

⇡ 20 for l = 0.3.

• Fig. 4(a) shows the analogous behavior but with respect to increasing E
r

. The increase of E
r

, while keeping the

other parameter fixed, also promotes unstable behavior. For R
e

= 0.1, ` = 0.2 the threshold values of A above

which the flow becomes unstable are found to be A ⇡ 950 for E
r

= 100, A ⇡ 200 for E
r

= 500 and A ⇡ 100

E
r

= 1000.

• Fig.5 shows that increasing R
e

may not decrease the critical activity number threshold leading to instability,

but it does increase the unstable frequency range as shown in Figure 5(b). Figure 5(c) reiterates the role of the

the channel width in promoting instability, showing the instability threshold of A ⇡ 100, even for R
e

= 5 and

E
r

= 250 but with ` = 0.4.

• Fig. 8 shows the growth rate given by max Im(c) with respect to A, for the wave lengths ! = 50, 75, and

100. The remaining parameters are chosen as R
e

= 5, E
r

= 1000 ` = 0.2. We find that the system is stable

(max Im(c) < 0) for small A, with a stability threshold between A = 100 (for ! = 50) and A = 150 (for ! = 100)

dimensionless units. For small frequencies, the growth rate shows a parabolic profile, reaching a maximum whose

A-location increases with frequency, with a possible return to stability at higher A. For instance, for ! = 50,

the system changes from stable to unstable at A ⇡ 100, and then regaining stability at A ⇡ 500. This behavior

is also reflected in Fig. 3(b). The profile becomes linear at ! = 100.

• Fig. 9 shows the graphs of the growth rate with respect to the frequency, at three di↵erent activity values,

A = 150, 200, 250. We observe the nonconvex shape of the graphs, for small frequencies, reaching a positive

maximum. All the graphs tend to neutral stability, with increasing !, following a profile nearly independent of

A.

• Figures 10 illustrate the form of the perturbation fields that contribute to the shear flow. We present contour

plots of the stream function, the angle and the vorticity contour (Fig. 11).
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FIG. 3. Regions of stability in the A!-plane for di↵erent channel ratios. The black dotted curve separates the stable and

unstable regions in the plane. In all three plots Re = 5 and Er = 1000.

VIII. CONCLUSION

This article examines the onset of instability of a uniformly aligned shear flow of active extensile fibers in a confined

channel. The results point to a transition towards turbulent regimes as the width of the channel or the level of

activity increase. The follow up work will examine the observed pairwise, (± 1
2 ) defect elimination that accompanies

the transition to turbulence.

SUPPLEMENTARY MATERIALS

See the supplementary materials for detailed derivation of model equations and numerical implementations.
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FIG. 4. Regions of stability in the A!-plane, with the black dotted curves having the same meaning as in Figure 3. These

plots correspond to Re = 0.1 and ` = 0.2.
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FIG. 5. Regions of stability in the A!-plane, with the black dotted curves having the same meaning as in Figure 3. Plot 5(c)

corresponds to Re = 5, Er = 250 and ` = 0.4 to compare with Fig. 3(c).
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FIG. 6. Regions of stability in the A!-

plane, with the black and dotted curves

having the same meaning as in Fig. 3.

Re = 100 and ` = 0.2.
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FIG. 7. Stability diagrams in `!-plane
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For these results, Re = 5, Er = 1000 and ` = 0.2.
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