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Abstract
Climate change is leading to an increase in severity, frequency, and distribution of 
harmful algal blooms across the globe. For many harmful algae species in eutrophic 
lakes, the formation of such blooms is controlled by three factors: the lake hydrody-
namics, the vertical motility of the algae organisms, and the ability of the organisms 
to form colonies. Here, using the common cyanobacterium Microcystis aeruginosa as 
an example, we develop a model that accounts for both vertical transport and colony 
dynamics. At the core of this treatment is a model for aggregation. For this, we used 
Smoluchowski dynamics containing parameters related to Brownian motion, turbulent 
shear, differential setting, and cell-to-cell adhesion. To arrive at a complete descrip-
tion of bloom formation, we place the Smoluchowski treatment as a reaction term in a 
set of one-dimensional advection-diffusion equations, which account for the vertical 
motion of the algal cells through molecular and turbulent diffusion and self-regulating 
buoyant motion. Results indicate that Smoluchowski aggregation qualitatively de-
scribes the colony dynamics of M. aeruginosa. Further, the model demonstrates wind-
induced mixing is the dominant aggregation process, and the rate of aggregation is 
inversely proportional to algal concentration. Because blooms of Microcystis typically 
consist of large colonies, both of these findings have direct consequences to harmful 
algal bloom formation. While the theoretical framework outlined in this manuscript 
was derived for M. aeruginosa, both motility and colony formation are common among 
bloom-forming algae. As such, this coupling of vertical transport and colony dynamics 
is a useful step for improving forecasts of surface harmful algal blooms.
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1  |  INTRODUC TION

Microcystis aeruginosa is a common toxin-producing cyanobacte-
rium capable of forming harmful algal blooms (HABs). HABs threaten 
both ecological and public health, and they are expected to increase 
in distribution, frequency, and severity as a result of climate change 
(O'neil et al.,  2012). Predicting the timing of bloom formation has 
been challenging, but researchers in the field have reached consen-
sus on general trends leading up to a HAB. A study of the record-
breaking Lake Erie algae bloom of 2011 determined that—in addition 
to excessive nutrient loading—quiescent meteorological conditions 
allowed the bloom to form and proliferate to such a massive extent 
(Michalak et al., 2013), a finding that has been corroborated in many 
subsequent studies of cyanobacteria HABs (Wells et al., 2015). Using 
a Bayesian biophysical model with a high-frequency dataset, Del 
Giudice et al. (2021) were able to quantitatively show that quiescent 
conditions are not enough: High surface water temperatures and high 
irradiation are also necessary for bloom formation. Recently, it has 
been suggested that vertical heterogeneity (i.e., subsurface peaks) of 
M. aeruginosa concentration is an important precursor to Microcystis 
surface bloom formation (Seegers et al.,  2015; Xiao et al.,  2018; 
Wilkinson et al., 2019; Taylor et al., 2021). Therefore, it is reasonable 
to assume improving models for the drivers of M. aeruginosa vertical 
distributions will likely lead to improved predictions of HAB timing.

There are two key traits related to the ubiquity of M. aeruginosa: 
vertical motility and colony formation. Vertical motility is achieved 
through algal cell buoyancy regulation via intracellular gas vesicles. 
Under low levels of mixing, M. aeruginosa sinks to lower light intensities 
during the day and floats towards the water surface at night, although 
a critical water temperature threshold must be reached in order for 
cells to regain buoyancy (Ibelings et al., 1991; Thomas & Walsby, 1985, 
1986). Once that threshold is reached, increasing temperature increases 
buoyant velocity (You et al., 2018). Vertical motility gives M. aeruginosa 
a particular advantage in stratified lake environments. Stratified lakes 
are characterized by three distinct layers: The epilimnion or surface 
mixed layer is the hot, well-mixed surface layer; the hypolimnion is the 
cold, well-mixed bottom layer; and the metalimnion is the intermediate 
layer of steep temperature gradient connecting the epilimnion to the 
hypolimnion. Using the three-dimensional ecological-hydrodynamic 
modeling software ELCOM-CAEDYM, Chung et al.  (2014) were able 
to demonstrate a shallow mixed layer depth (close to the photic depth) 
favored buoyant cyanobacteria dominance, indicating lake thermal 
structure controls algal population dynamics.

Colony dynamics remain rather illusive, but colonies have been 
demonstrated to form in the presence of grazers, low to medium tur-
bulence, and low nutrient conditions. Colonies formed by reproduc-
tion and growth tend to be compact, whereas colonies that form by 
collisions tend to be fractal. There is also a well-documented progres-
sion from a unicellular morphology in the spring to a fractal colonial 
morphology in the summer (Xiao et al.,  2018). In a field study, Cao 
and Yang (2010) found that large colonies (greater than 20 cells per 
colony) did not appear until May but composed 90% of cells in a June 
surface bloom. They also calculated the mean number of cells in the 

surface bloom to be about 120 cells/colony. Between field work and 
experiments, Qin et al. (2018) found that wind promotes aggregation, 
creating heterogeneous size distributions in Microcystis populations.

There are two threads of previous models to follow. There are 
models that describe aggregation processes of phytoplankton, and 
there are models that describe the vertical motility of M. aerugi-
nosa. To describe the aggregation processes of phytoplankton, mod-
els use Smoluchowski aggregation terms (Ackleh & Miller,  2018; 
Jackson, 1990; Smoluchowski, 1917). Because these models typically 
have applications in wastewater treatment or marine snow, the only 
transport considered is the loss of aggregates via sinking out of the sur-
face mixed layer (Engel et al., 2004; Lee et al., 2000; Teh et al., 2016).

Early models of Microcystis motility use light intensity as a driver 
of changes in individual cell density—high light intensities lead to an 
increase in cell density, whereas low light intensities lead to a de-
crease in cell density. The buoyant velocity of cells is then calcu-
lated through a modified Stokes settling velocity that is governed 
by the difference between algal cell density and the surrounding 
water density (Wallace et al., 2000). Turbulent transport has since 
been incorporated into these models (Medrano et al.,  2013; Zhu 
et al.,  2018). By combining their model with principal component 
analysis, Feng et al.  (2018) demonstrated that turbulence-induced 
mixing explained over half of the variability of early surface bloom 
formation, and that buoyancy regulation was more important for 
bloom maintenance and formation of late-season blooms. Although 
the transport of different (fixed) colony sizes is investigated in the 
aforementioned Microcystis motility models, they do not incorporate 
aggregation dynamics, despite the well-documented progression 
from unicellular to colonial morphologies.

In a previous field study, statistical methods were used to elu-
cidate the reliance of Microcystis-dominated algal vertical distribu-
tions on lake thermal stratification variables (Taylor et al.,  2021). 
Following the protocol discussed in Vinatier et al. (2011), which sug-
gests using statistical and mechanistic models in an iterative manner 
to uncover forcings of spatial heterogeneity, we propose a mecha-
nistic model to analyze the effects of hydrodynamic and biological 
processes underlying the spatial patterns observed in the previous 
field study. The primary objective of this model is not to replicate 
exact field observations but to instead generate hypotheses for the 
biophysical drivers of general field trends and observations. To this 
end, we couple algal cell aggregation dynamics with algal motility in 
a system of one-dimensional partial differential equations that cap-
ture lake hydrodynamics to investigate the role of the colony and 
motility dynamics on M. aeruginosa surface bloom formation.

2  |  METHODS

2.1  |  Aggregation preliminaries

In the absence of any advective or diffusive transport, discrete ag-
gregation dynamics can be described by the Smoluchowski coagula-
tion model (Smoluchowski, 1917):
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where nk(z,t) is the concentration of an aggregate of size k, α(i,j) is 
the sticking probability and β(i,j) is referred to as the aggregation, or 
coagulation, kernel of particles of size i and j (Figure 1). Occasionally 
the product of α(i,j) and β(i,j) is referred to as the aggregation kernel, 
instead of just β(i,j). We leave the two parameters decoupled mainly 
for the sake of visualizing the process (Figure 1) but also to concep-
tually differentiate the hydrodynamic drivers of β(i,j) (Equations 2–5) 
from the biological drivers of α(i,j) (Section 2.2.2). The first term on 
the right-hand side describes the formation of a k-sized aggregation, 
whereas the second term on the right-hand side describes the loss of 
a k-sized aggregation through the formation of a k + i-sized aggregate. 
An infinitely-sized particle represents a loss of mass due to gelation. 
Equation 1 has had far-reaching applications in addition to phytoplank-
ton modeling, from aerosols to random graph theory and polymeriza-
tion to planet formation (Aldous, 1999).

While analytical solutions exist for some simple aggregation ker-
nels (�(i, j) ∼ 1, �(i, j) ∼ i + j, and �(i, j) ∼ ij), realistic aggregation kernels 
are rarely analytically tractable. In the present context, β(i,j) is calcu-
lated as the sum of aggregation kernels for Brownian motion, βBr(i,j,z), 
turbulent shear, βTS(i,j,z), and differential settling, βDS(i,j,z), each, respec-
tively, defined as (Ackleh & Miller, 2018; Thomas et al., 1999)

and

such that

where T(z) is the water temperature (K), kB is Boltzmann's constant 
(1.38 × 10−23 m2 kg s−2 K−1), μ(z) is the dynamic viscosity of water (kg/
m/s), G(z) =

(
�

�

) 1

2 is the turbulent shear rate (1/s), ϵ(z) is the rate of 
turbulent kinetic energy dissipation (m2/s3), and �(z) is the kinematic 
viscosity of water (m2/s). The equivalent spherical diameter of a colony 
of size i, di (m), is given by

where Df  =  2.5 is the fractal dimension (Nakamura et al.,  1993), 
d0  =  5  μm is the diameter of a single cell of M. aeruginosa (Xiao 
et al., 2018), and ϕ is the colony porosity that linearly decreases from 
ϕ = 1 for single cells and ϕ = 0.2 for colonies of size kmax (Medrano 
et al., 2013). Equation (2) is derived from thermodynamic principles of 

Brownian motion, Equation  (3) defines the rate of collisions for sub-
Kolmogorov particles in turbulent flow (i.e., the largest aggregate 
diameter is smaller than the length scale of the smallest turbulent 
eddies), and Equation  (4) describes collisions as a result of different-
sized aggregates moving at different velocities. Aggregation due to 
Brownian motion is typically much slower than aggregation due to tur-
bulent shear, and aggregation due to differential settling will be large 
for aggregates of drastically different sizes but will be small for aggre-
gates of close to the same size.

There are several assumptions of this formulation that should be 
addressed before continuing.

1.	 We assume diffusion-limited aggregation rather than reaction-
limited aggregation, meaning the aggregation process will be 
limited by diffusion due to Brownian motion and not by the 
sticking probability of collisions. This is reasonable for colony-
forming species of algae in a system where the domain size 
is much larger than the aggregate sizes.

2.	 We assume a maximum colony size, below which there will be no 
disaggregation—colonies cannot split up once formed. Effectively, 
we assume any colonies above the maximum colony size instanta-
neously disaggregate into their constituent parts. These assump-
tions are validated by the lab experiments of O'Brien et al. (2004), 
which demonstrated disaggregation of M. aeruginosa is negligible 
for the size range of aggregates being modeled subjected to ex-
pected field turbulence conditions.

3.	 We assume aggregates grow in size through particle collisions 
only. When aggregates consist of living organisms, it is pos-
sible for aggregates to increase in size through cell growth and 
reproduction in addition to particle collisions. However, it is hy-
pothesized that the fractal colonies of M. aeruginosa are formed 
primarily through collisions, so we neglect aggregation due to cell 
growth (Xiao et al., 2018).

(1)dnk

dt
=

1

2

∑
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F I G U R E  1 Schematic of aggregation. Circles indicate the 
equivalent spherical diameter, di, of the fractal aggregate of size 
i. (a) Two aggregates of size i and j collide. This collision can either 
result in (b) aggregation and the formation of a i + j sized aggregate, 
or (c) collision without aggregation. Rate of collisions is controlled 
by β(i,j,z), but the number of collisions that result in aggregation is 
controlled by α(i,j)

(a) (b)

(c)
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4.	 We assume aggregation is uniform over any given horizontal 
cross-section in order to facilitate the construction of a one-
dimensional model.

2.2  |  The mathematical model

To provide a biophysical mechanistic understanding of field verti-
cal distributions of colonial and motile harmful algae, we develop 
the following model to couple colony formation with the vertical 
transport of M. aeruginosa. Let nk(z,t) be the number of colonies con-
taining k cells of M. aeruginosa per unit volume (colonies/m3), t be 
time (s), z be depth (m), DZ(z) be the sum of molecular diffusion and 
turbulent dispersion coefficients (m2/s), wk(z,t) be the buoyant ve-
locity of a colony containing k cells of M. aeruginosa (m/s), β(i,j,z) be 
the Smoluchowski aggregation kernel for colonies of size i and j at 
a depth z defined by Equation (5) (m3/s), and kmax be the maximum 
number of cells in a single colony. If we assume nutrients are not 
limiting, then we suggest that the combined vertical transport and 
aggregation of a colony of size k can be described by the following 
advection-dispersion-reaction equation:

with boundary conditions

and piecewise uniform initial conditions given by

where z = 0 at the air-water interface, z = hmax at the lakebed, and 
hML is the width of the surface mixed layer. The no-flux boundary 
conditions ensure cells cannot leave the water column through at-
mospheric or soil exchange. Due to the seasonal progression of M. 
aeruginosa from unicellular to colonial morphology, we begin simu-
lations with only single cells. Since we are typically more interested 
in overall M. aeruginosa concentration profiles rather than the con-
centration profiles of any given colony size, we convert concentra-
tions of colonies of size k to total M. aeruginosa concentration by

where C(z,t) is the total concentration of M. aeruginosa (cells/m3). Note 
that we have a discrete number of total cells in the system, but both 
concentration and time are continuous. Using the aforementioned 
relationships for the aggregation kernel, appropriate forms for the 

sticking probability and diffusion coefficient, and the specification of 
an expression for the settling velocity, wk(z,t), we can readily develop a 
numerical simulation of Equation (7).

2.2.1  |  System details

For M. aeruginosa, the largest stable colony size varies between 
220–420 μm, depending on the rate of turbulent kinetic energy 
dissipation in the water column (O'Brien et al.,  2004). Meaning 
for colonies of diameters smaller than 220 μm, we assume frag-
mentation is negligible for all reasonable environmental condi-
tions. Using the aggregation parameters listed in Section  2.1, 
this diameter roughly corresponds to a colony of size k  =  580 
cells/colony. To explore the features of the model in a numeri-
cally efficient manner, we have cut off the colony size domain at 
kmax = 101 cells/colony, which corresponds to a maximum colony 
diameter of d101 = 160 μm. This is approximately half the average 
maximum colony diameter determined by (O'Brien et al.,  2004), 
and the mean colony size that Cao and Yang (2010) measured in a 
Microcystis HAB. Further, diameters larger than this size may ex-

ceed the Kolmogorov length scale, thereby compromising the va-
lidity of Stokes' law and leading to the overestimation of buoyant 
velocities (Medrano et al., 2013).

Recall M. aeruginosa typically thrives in stratified lake 
environments. As such, the model must incorporate depth-
dependent water temperature, water density, and turbulence 
profiles. To get a sense of how the model behaves in field condi-
tions, we used data collected by a Self-Contained Autonomous 
MicroProfiler (SCAMP) from Ramsey Lake. Ramsey Lake 
(45.2073°N, 93.9969°W) is a stratified and eutrophic lake in 
Minnesota, USA with a maximum depth of approximately 24 m, a 
surface area of approximately 1.3 km2, and a history of M. aeru-
ginosa blooms (Rao & Hsu, 2008). SCAMP records temperature 
fluctuations throughout the water column. Following the pro-
tocol in Chen et al.  (2001), estimated spectra were calculated 
using Batchelor curve fitting, which were then used to calcu-
late turbulent kinetic energy dissipation rates. From this data-
set, profiles for water temperature, DZ, and ϵ were constructed 
from field data under low wind conditions and high wind con-
ditions (Figure 2). The low wind data were obtained on August 
2nd, 2018 11:22:20—the maximum value of ϵ was measured to 
be 3 × 10−7  m2/s3 during surface wind speeds of approximately 
2.3 m/s. The high wind data were obtained on August 30th, 2018 
11:34:26—the maximum value of ϵ measured was 4 × 10−4 m2/s3 
and corresponded to wind speeds of approximately 8 m/s. To put 
these choices in context, typical values of ϵ(z) in the field range 
from 10−11 to 10−6 m2/s3, and typical values of DZ(z) range from 
10−6 to 10−2 m2/s (Wüest & Lorke, 2003).
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=
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Since M. aeruginosa buoyancy is largely mediated by light inten-
sity, we must also construct diurnal light profiles. We generated sur-
face light intensities, I0(t), by

where Imax is the maximum surface light intensity and DL is the photo-
period. To best replicate previous models, values of Imax = 800 W/m

2 
and DL = 16 h were chosen (Medrano et al., 2013). Depth-dependent 
light intensities, I(z,t), can then be calculated by

where kI is the light attenuation coefficient (kI  =  1.3  m−1 (Medrano 
et al., 2013)).

2.2.2  |  Biological parameters

Let us address the sticking probability, α(i,j). Previous models of 
Smoluchowski aggregation have related α(i,j) to the fractal dimen-
sion of aggregates or to the estimated number of particles near the 
aggregate (Schmitt et al.,  2000; Zidar et al.,  2018). This particular 
situation warrants a more biological approach. M. aeruginosa uses 
extracellular polysaccharides (EPS) as adhesive during the aggrega-
tion process; therefore, it is reasonable to assume sticking prob-
ability will increase with EPS content. Zhu et al. (2014) determined 

that, in field samples of M. aeruginosa, EPS content peaks at colony 
diameters between 100 and 150 μm. Interestingly, these diameters 
are similar to the average colony size found in Microcystis HABs 
(Cao & Yang, 2010). Using this, we define a function that gives the 

(11)I0(t) = Imaxsin
�t

DL

(12)I(z, t) = I0(t)e
−kIz

F I G U R E  2 Smoothed field data. Low wind profiles for (a) temperature, (b) turbulent dispersion coefficient, DZ, and (c) rate of turbulent 
kinetic energy dissipation, ϵ. high wind profiles for (d) temperature, (e) turbulent dispersion coefficient, DZ, and (f) rate of turbulent kinetic 
energy dissipation, ϵ. Note the differences in orders of magnitude for DZ and ϵ under low wind and high wind conditions. Low wind 
conditions roughly correspond to wind speeds of 2 m/s, whereas high wind conditions roughly correspond to wind speeds of 8 m/s

(a) (b) (c)

(d) (e) (f)

F I G U R E  3 New figure to elaborate on the sticking probability 
function. Sticking probability, αk, vs colony diameter, dk 
(μm), and colony size, k (cells/colony), where αk is defined by 

�k
(
dk
)
= 0.994e

−
(
(dk−0.000116)

0.000134

)2

. Single cells will aggregate upon 
colliding 50% of the time, whereas colonies of size k = 95 
cells/colony will always aggregate after collisions. Note that 
�(i, j) = max

{
�i ,�j

}
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sticking probability of a colony of size k, αk = f(dk), which achieves 
a minimum value of αk  =  0.5 at d1  =  5 μm and a maximum value 
of αk = 1 at d95 = 125 μm (Figure 3). To calculate the sticking prob-
ability for a collision between a colony of size i and size j, we define 
�(i, j) = max

{
�i ,�j

}
 . Larger colonies will therefore be ‘stickier’ than 

small colonies, so more of their collisions will result in aggregation.
The buoyant velocity, wk, is calculated using subroutines de-

scribed in previous models, which (i) relate light intensity to individ-
ual cell density, then (ii) relate individual cell density to colony density 
using the fractal dimension of M. aeruginosa aggregates, then (iii) use 
the colony density to calculate a modified Stoke's velocity (Medrano 
et al., 2013; Nakamura et al., 1993; Wallace et al., 2000) by

where ρk is the density of a colony of size k. Subroutine details to cal-
culate ρk can be found in Appendix A. We use the same equations and 
parameter values used in the work of Medrano et al.  (2013), with a 
modification for the ratio of cell volume to colony volume that ac-
counts for the fractal geometry of aggregates and the relationship 
between EPS content and colony size. We expect sinking during the 
day (positive wk) and floating at night (negative wk), although velocity 
magnitudes and general transport dynamics will vary across colony 
size. In experiments, You et al. (2018) recorded buoyant velocities of 
10−6 m/s at 17.5°C and 10−5 m/s at 28°C for small colonies. For large 
colonies, buoyant velocities have been recorded as large as 10−3 m/s 
(Wallace et al., 2000).

2.2.3  |  Numerical considerations

We are using an explicit forward-in-time upwind numerical scheme 
with fluxes defined at grid cell interfaces and concentrations defined at 
grid cell node points (Figure 4). For a given grid cell i at time step m, the 
new concentration of colonies of size k in that grid cell is calculated as

where the subscripts i ± 1

2
 denote parameters defined at the top or 

bottom interface of grid cell i, the aggregation terms are defined by 
Equations (2–5), and

by upwinding.
Table  1 shows numerical parameter values used for all simula-

tions. The time step, Δt, was chosen to be small enough to ensure the 

stability of the numerical scheme, and the grid cell width, Δz, was cho-
sen to be small enough to minimize numerical dispersion of the upwind 
scheme while also maintaining stability. To address numerical disper-
sion, we tested the time to large colony appearance for the parameters 
described in Table 1 against a finer grid size. In the base case simula-
tion, large colonies appear in 13.4 days; if we instead use Δz = 0.1 m 
(and a correspondingly smaller time step of Δt = 5 s), large colonies ap-
pear in 16.1 days. This three-day slowdown indicates that our scheme 
is not completely devoid of numerical dispersion. However, the goal 
of this manuscript is first and foremost to investigate the applicabil-
ity of Smoluchowski aggregation to describe M. aeruginosa colony 
dynamics—not to solve the inverse problem of parameter estimation 
or make predictions with a real dataset. In this sense, we feel that our 
choices of space and time steps efficiently capture the correct physi-
cal behaviors and provide an appropriate order of magnitude predic-
tion for the timing and appearance of large colony sizes.

3  |  RESULTS

3.1  |  Appearance and distribution of colonies

We will start with the simplest simulation that still allows for the 
investigation of important model features: six weeks of a repeating 
photoperiod and constant lake thermal and hydrodynamic profiles 
(Table 2). The repeating photoperiod is generated by Equations (11) 
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F I G U R E  4 Schematic of numerical scheme. Fluxes, qtop,i 
and qbot,i, are calculated as the sum of diffusive and advective 
fluxes at grid cell interfaces, but concentrations are calculated 
at grid cell node points. n∗

k,i
 depends on the sign of wk,i and 

is defined in Equation (15). Since we can calculate the new 
concentration of a colony of size k in grid cell i at time step m by 
nm+1
k,i

=
Δt

Δz

(
qtop,i−qbot,i

)
+Δt(aggregation terms) , conservation of 

mass is ensured by setting qtop,i + 1 = qbot,i. To satisfy boundary 
conditions, fluxes at the top of the first grid cell and at the bottom 
of the last grid cell are defined to be zero for all time
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and (12); the constant lake thermal and hydrodynamic profiles are 
shown in Figure 2d–f. For the base case simulation, the lake ther-
mal and hydrodynamic profiles represent high wind conditions. Field 
data indicate Microcystis can transition from a predominantly uni-
cellular morphology to a predominantly colonial morphology over a 
monthly period (Cao & Yang, 2010; Xiao et al., 2018), so a six-week 
simulation time was chosen to ensure aggregation would be evident. 
Using the conditions outlined in Table  2, Equation  (13) predicted 
buoyant velocities ranging from −10−4 (floating) to 10−3 m/s (sink-
ing) and Equations (2)–(5) predicted aggregation kernels in the range 
β(i,j,z) ∈ [10−13, 10−9] m3/s.

The model demonstrates small colonies will diffuse throughout 
the mixed layer (Figure 5a–c), but large colonies exhibit diurnal mi-
grations to a depth with preferred low light intensity (Figure 5d,e). 
In general, small colonies will lose mass as they aggregate into larger 
colonies, which gain mass. Medium-sized colonies never achieve high 
mass (Figure 5c,d), and colonies of size k = 101 appear before colonies 
of size k = 67. This indicates large colonies aggregate with each other 
faster than they aggregate with small colonies, a finding consistent 
with coagulation kinetic theory (Smit et al., 1994). The overall con-
centration profile, C(z,t) (Equation 10), is mostly influenced by large 
colonies by approximately the fifth week of simulation (Figure 5f).

3.2  |  Factors affecting vertical distribution

While advection is negligible for single cells and small colonies, motil-
ity plays a key role in the vertical distribution of large-sized colonies 
(Figure 6). The time it takes for large colonies to appear is approxi-
mately equivalent to whether advection is on or off, but the inclusion 
of motility allows the large colonies to migrate to a preferred depth 
of low light intensity (Figure 6a).

We also see changes in vertical distributions when we change 
wind conditions (Figure 7). During high wind conditions, small col-
onies become uniformly distributed throughout the mixed layer. 
If we instead run the simulation under constant low wind condi-
tions shown in Figure 2a–c, smaller colonies (e.g., k = 34) are able 

to advect to a preferred depth of low light intensity, although their 
diurnal migrations are not as pronounced (compare Figure  7b to 
Figure 6a or Figure 5e). In addition, wind also seems to significantly 
control the time it takes for colonies to appear. Synthesizing these 
results, high wind conditions lead to more medium-sized colonies, 
but they will be well-mixed throughout the surface mixed layer. On 
the other hand, low wind conditions lead to far fewer medium-sized 
colonies, but the colonies will be able to concentrate around a depth 
of preferred low light intensity.

3.3  |  Factors affecting aggregation

There are few situations less likely to occur than 6 weeks of the 
exact same meteorological conditions on repeat, so we must explore 
how the model behaves under different conditions. To this end, let 
us define

to be the total number of cells in a colony of size k. Since nk is a contin-
uous variable and nkΔz is not necessarily greater than one, it is possible 
for Nk < k. We are more concerned when colonies of various sizes appear 
at some comparative concentration value rather than the actual concen-
tration, so Nk(t) acts as a suitable marker for the appearance of colonies. 
We can now rerun the simulation described in the previous Section 3.1 
while changing one condition at a time to see how each individual change 
affects Nk(t) for various colony sizes (Figures 8 and 9). Using low wind 
conditions (Figure  2) dramatically reduces aggregation—in the entire 
six-week simulation, the largest colony size achieved is k = 3 cells/col-
ony (Figure  8b). If we introduce transient hydrodynamic profiles that 
represent stepwise intermittent wind conditions between high wind 
50% of the time and low wind the other 50% of the time, either on a 
daily or hourly time scale, aggregation is slowed down by a factor of ap-
proximately two (Figure 8c,d). Setting the sticking probability, α(i,j), to 
be unity for all colony sizes allows the large-sized colonies to show up 
approximately 5 days before their appearance in the base case simula-
tion, eventually becoming more abundant than the single cell population 
(Figure 9b).

Along with wind conditions, the speed of aggregation is highly 
sensitive to initial algal concentrations (Figure 10). Let us define τk to 
be the time such that Nk(τk) = 1. As long as initial algal concentrations 
are greater than 1 × 107 cells/m3, then τk is approximately inversely 
proportional to initial concentrations within the mixed layer, n0

1
 .

Nk(t) =
∑
z

knk(z, t)Δz

TA B L E  1 Numerical parameters

Variable Description Value

Δz Grid cell width 0.2 m

Δt Time step 10 s

zmax Maximum depth of domain 10 m

Condition Description
Further 
details

Motility Regulated by light-dependent buoyancy Equation (13)

Meteorological forcings Constant high wind and lake thermal profile Figure 2d–f

Sticking probability α(i,j) ∈ [0.5,1] with peak at d95 = 125 μm Section 2.2.2

Initial algal concentration Only single cells in mixed layer Equation (9)

TA B L E  2 Base case simulation 
conditions
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3.4  |  Summary of main results

1.	 For constant high wind conditions and initial uniform sin-
gle cell concentrations of 107 cells/m3 within the surface 
mixed layer, the largest colonies of size k  =  101 appear 
in approximately 2 weeks and dominate in approximately 
5 weeks.

2.	 Large colonies exhibit diurnal migrations, with concentration 
peaks located around a depth of preferred low light intensity; 
small colonies are dispersed throughout the surface mixed layer. 

The minimum colony size capable of diurnal migrations increases 
with increasing wind speed.

3.	 Aggregation is negligible during low wind conditions.
4.	 Intermittent wind conditions, which oscillate between high and 
low winds at some given frequency such that high wind condi-
tions are achieved 50% of the time, slow the appearance of large 
colony sizes by a factor of two.

5.	 Above an initial algal concentration of 107 cells/m3, there is a 
power-law dependence between the time to appearance of large 
colonies and initial algal concentration.

F I G U R E  5 Concentration profiles over six weeks of simulation during high wind conditions (shown in Figure 2d–f) for (a) n1(z,t), (b) n5(z,t), 
(c) n34(z,t), (d) n67(z,t), (e) n101(z,t), and (f) C(z,t). Color bar changes scale for each subfigure. The wiggles visible in (d)–(e) show the diurnal 
migration of large-sized colonies

(a) (b) (c)

(d) (e) (f)

F I G U R E  6 Differences in vertical 
distributions of large-sized colonies 
between (a) the base case simulation in 
Figure 5 and (b) turning off advection by 
setting wk(z,t) ≡ 0

(a) (b)
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4  |  DISCUSSION AND CONCLUSION

4.1  |  Discussion of model results

Our results generally coincide with those of existing literature, 
with a few important caveats. Ackleh and Miller  (2018) found ag-
gregation rates on the order of 10−12 m3/s using Smoluchowski ag-
gregation to model phytoplankton dynamics, which is in line with 
those calculated in our simulations (β(i,j,z) ∈ [10−13,10−9] m3/s). 
Medrano et al. (2013) found maximum buoyant velocity magnitudes 
on the order of 10−3 m/s for large colonies, which is an equivalent 
order of magnitude of our maximum calculated buoyant velocities 
(wk(z, t) ∈

[
− 10−4, 10−3

]
 m/s). Our model also predicts aggregation 

at a time scale that roughly corresponds with the field study by Cao 
and Yang (2010), wherein the dominant morphology of Microcystis 
transitioned from single cells to large colonies in about a month. The 
model of Medrano et al.  (2013) showed that small colonies of M. 
aeruginosa are not able to overcome turbulent mixing, whereas large 

colonies exhibit notable daily migrations controlled by the photic 
depth. This is directly compatible with our model results, keeping 
in mind that the intensity of wind controls the minimum colony size 
capable of diurnal migrations (Figures 5–7). If we define the sticking 
probability to be unity for all colony sizes, the large-sized colonies 
appear within a couple of days, much faster than they appear in field 
conditions (Figure 9). Relating the sticking probability to the extra-
cellular polysaccharide content, which is in turn related to colony 
size, slows down aggregation to a rate consistent with field observa-
tions. These findings support the claim that Smoluchowski coagula-
tion kinetics qualitatively describe the aggregation processes of M. 
aeruginosa.

The model unveils two important dependencies of aggregation 
on wind speed and algal concentration. Colony size distributions 
are highly sensitive to wind-induced mixing (Figure  8), a phenom-
enon that was previously revealed in experiments and field work 
(Qin et al.,  2018). Colonies of size k  =  101 cells/colony appeared 
within 15 days during high wind conditions, but the largest colony 

F I G U R E  7 Differences in vertical 
distributions of colonies of size k = 34 
between (a) the base case simulation 
in Figure 5 and (b) low wind conditions 
(Figure 2)

(a) (b)

F I G U R E  8 Cell count, Nk(t), of 
various colony sizes for (a) the base 
case simulation (Table 2), (b) low wind 
conditions (Figure 2), (c) switching 
between high wind and low wind 
conditions every day, and (d) switching 
between high wind and low wind 
conditions every hour. Total number 
of cells is conserved for all simulations. 
Cell counts, Nk, were calculated by 
Nk =

∑
zknkΔz

(a) (b)

(c) (d)
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size to appear during low wind conditions was k  =  3 cells/colony 
(Figure 8a,b). Cutting the large wind events in half—either daily or 
hourly—slowed the appearance of the large-sized colonies by a fac-
tor of two (Figure 8c,d). This implies that the speed of aggregation 
is directly proportional to the duration of large wind events, causing 
relatively short-lived wind events to lead to rapid aggregation (recall 
the dependence of β(i,j,z) on the turbulent shear rate in Equation (3)).

When our model indicates aggregation is negligible for low 
wind conditions, it does not mean aggregation is not occurring. 
Instead, this indicates that processes like light-driven motility are 
considerably more significant than aggregation during low wind 
conditions. While this may seem to disagree with the conclusions 
of Qin et al. (2018), which stated that low to medium turbulence is 
necessary to promote colony formation, this finding is actually just 
placing their experimental results in the context of a deep, dimictic 
lake. Small to moderate amounts of turbulence will in fact promote 
aggregation, but it does not do so at a rate that will lead to large 
colonies appearing in a six-week time frame. Furthermore, even in 
shallow Lake Taihu, Qin et al. (2018) measured a significant increase 
in average colony size over a short period of several days during a 

typhoon event with consistently high wind speeds, a result consis-
tent with our findings.

This observation has profound consequences on the subsequent 
formation of surface blooms. Shortly after large wind events, the 
newly large colonies will be able to overcome turbulent mixing that 
the previously small colonies could not, leading to drastically differ-
ent vertical transport results. Since blooms typically consist of large 
colonies (Cao & Yang, 2010; Wu et al., 2020; Zhu et al., 2014), this 
also means short periods of mixing via large wind events could act as 
a necessary precursor to surface harmful algal bloom formation as 
long as algal concentrations are high enough (see discussion below 
and Section 4.3 for more details). In a laboratory mesocosm exper-
iment, Wu et al.  (2019) found that increasing wind (up to 3.6 m/s) 
increased the volumetric median colony diameter at the water sur-
face. Field experiments by Yang et al. (2020) found that intermittent 
wind-induced disturbance favored (i) larger colony sizes, (ii) higher 
biomass, and (iii) stronger dominance of Microcystis over constant 
quiescent or constant wind conditions. We believe this result agrees 
nicely with our conclusion that wind is necessary to promote aggre-
gation, quiescent conditions are necessary for algal growth, and the 
combination of the two in subsequent order is a recipe for a harmful 
algal bloom.

In regards to the sensitivity of aggregation to the initial algal 
concentration, the inversely proportional relationship between algal 
concentration and time to large colony appearance, τ101, has been 
documented in previous studies of marine snow. Jackson  (1990) 
found their large-sized colonies appeared within half a day of algal 
concentrations reaching 108 cells/m3, a rate in line with the results 
described in this manuscript (Figure 10). We relate τ101 to initial con-
centrations only, but that is simply because we have a conserved 
number of total cells in our system. If instead we had growth and/
or decay terms, we could track τ101 as a function of instantaneous 
algal concentration. By maintaining conservation of mass, however, 
we can clearly see that any location in the water column with algal 
concentrations on the order of 107 cells/m3 will take over 10 days to 
form large colonies, whereas locations with concentrations on the 
order of 108 cells/m3 will have large colonies within a day.

Since higher densities would lead to increased collisions, this 
finding is unsurprising from a physical standpoint; however, it does 
provide some important biological modeling insight. Regardless 
of wind conditions, aggregation will be negligible until algal 

F I G U R E  9 Cell count, Nk(t), of 
various colony sizes for (a) the base case 
simulation from Figure 5 and (b) enforcing 
all collisions result in aggregation by 
setting α(i,j) ≡ 1. Total number of cells is 
conserved for all simulations

(a) (b)

F I G U R E  1 0 Initial concentration of singles cells within the 
mixed layer vs time to appearance of colonies of size k = 101. 
Both x- and y-axes are log scales. Solid line shows the best fit, 
with a slope of −1.2 (�101 = 1.1 × 1010

(
n0
1

)−1.2). Dashed lines 
show an exactly inversely proportional relationship between τ 
and n0

1
 (�101 = 2.7 × 108

(
n0
1

)−1). With a starting concentration of 
1 × 107 cells/m3, colonies of size k = 101 never appear within the 
42-day simulation period
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concentration exceeds 107 cells/m3. After this threshold is reached, 
the rate of aggregation will increase as concentration increases. A 
large wind event later in the season—when algal concentrations are 
high—will therefore have dramatically different aggregation con-
sequences than a large wind event in the beginning of the season, 
when algal concentrations are low. Further, nonuniform algal con-
centration profiles will lead to nonuniform aggregation. Any depth 
where there is a peak in algal concentration will also act as a hot 
spot for aggregation, leading to nonuniform colony size distributions 
within the water column.

4.2  |  An evaluation of model assumptions

Before addressing the implications of these findings on harmful algal 
blooms, we must discuss how model assumptions may impact re-
sults. Let us start with our neglect of disaggregation and our limi-
tation on maximum colony size. Large colonies (dk > 420 μm) would 
almost surely fragment under our high wind/strong turbulence con-
ditions (O'Brien et al., 2004). The fact that turbulence also promotes 
aggregation through enhanced mixing represents a colony size 
trade-off. Turbulence causes the colony size distribution to skew 
towards the largest stable colony size, but the largest stable colony 
size decreases with increasing turbulence. If we were to allow larger 
colony sizes in the model, we would have to include fragmentation, 
a conclusion arrived at by Ackleh and Miller  (2018) as well. Byrne 
et al. (2011) derived postfragmentation density functions for fractal 
bacterial flocs of Klebsiella pneumoniae in laminar flow, which indi-
cated the number of postfragmentation flocs increases with increas-
ing shear. A similar analysis could be conducted for M. aeruginosa 
and other colonial and motile harmful algae. Based on the results of 
Byrne et al.  (2011), we would expect fragmentation to seed more 
small colonies in the surface mixed layer than in the metalimnion, 
which may balance out some of the heightened aggregation in the 
surface mixed layer.

Another constraint of this model is the restriction of algal 
growth, which is negligible over short timescales but significant 
over seasonal timescales. Recall this decision was made because 
M. aeruginosa colonies tend to be fractal in shape, and fractal ag-
gregates are often the result of aggregation due to collisions in-
stead of cell growth (Xiao et al., 2018). However, in experiments, 
Duan et al. (2018) found that Microcystis colony size significantly 
increased with increasing temperature. Although the aggregation 
kernel related to Brownian motion scales linearly with tempera-
ture (Equation (2)), this thermodynamic dependency alone cannot 
explain this variability. For the strains of Microcystis being inves-
tigated in the experiments, it seems increased algal growth with 
increasing temperature is responsible for the increase in colony 
size. In deriving our model, we have previously assumed aggrega-
tion due to cell growth is negligible, but this may not be true during 
peak surface water temperature conditions, leading to an under-
estimation of average colony diameter during high-temperature 
conditions. To account for cell growth in future iterations of this 

model, the method of Ackleh and Miller (2018) for calculating cell 
growth within a colony–where only a certain proportion of cells 
along the edge of the colony are able to reproduce new cells–
should be incorporated into Equation (7).

If we consider that quiescent conditions are hypothesized to be 
an immediate precursor to surface HABs (Michalak et al., 2013), then 
incorporating a growth term would likely change our results for in-
termittent high wind events (Figure 8c,d). We would expect slower 
frequencies of wind mixing to result in more opportunities for 
growth at the water surface during low wind conditions, leading to 
faster aggregation, which would cause a discrepancy between slow 
frequency and high-frequency wind mixing not currently demon-
strated in this model. Recall that Yang et al. (2020) determined that 
intermittent disturbance not only promoted aggregation in M. aeru-
ginosa but total biomass as well.

4.3  |  Implications for harmful algal blooms

So far we have only discussed the mechanistic insight provided by 
the model into the vertical distributions of M. aeruginosa, but it is 
important to remember the ecological consequences of this insight. 
Surface HABs are mostly comprised of large colonies. Because wind-
induced mixing increases the rate of aggregation, we can think of 
large wind events as a necessary precursor to Microcystis bloom for-
mation. Mainstream consensus on cyanobacteria HABs states that 
quiescent conditions are necessary for bloom formation (Michalak 
et al., 2013). While this may be true immediately preceding bloom 
formation, it is also true that there must be enough large wind events 
before the quiescent period to encourage aggregation in order for a 
surface bloom to form. But, the occurrence of large wind events is 
still not enough: These wind events must occur when algal concen-
trations exceed 108 cells/m3 in order for large colonies to form within 
a day. In addition to modeling concerns, this finding has implications 
for water quality management. If water samples are taken from well 
above the photic depth in a lake dominated by motile and colonial 
cyanobacteria, algal concentrations will likely be low and the aver-
age colony size will likely be quite small, which may give the appear-
ance that HAB formation is unlikely. Meanwhile, large colonies could 
be rapidly forming at subsurface algal concentration peaks near the 
photic depth, indicating a surface bloom is imminent.

4.4  |  Future work

A major objective of a mechanistic model is to generate hypotheses 
that drive further research. The results of this model suggest the 
need for a subsequent field study where meteorological conditions, 
lake thermal profiles, and both Microcystis concentration and colony 
size are tracked over depth and time at a relatively high frequency. 
Once model results can be validated with field data, there are many 
further avenues of the study suggested by the model, both from 
an ecological and numerical perspective. One major ecological 
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concern of M. aeruginosa is the ability to produce and release mi-
crocystins, a cyanotoxin. Microcystins are known to increase in ex-
tracellular concentration when Microcystis is stressed, and they also 
seem to have a relationship with extracellular polysaccharide con-
tent and colony size (Hu & Rzymski, 2019; Li et al., 2020; Rzymski 
et al., 2020; You, 2020). In fact, it is even hypothesized that micro-
cystins can trigger colony formation via quorum-sensing processes 
(Rzymski et al.,  2020). This raises an important question: How 
might the coupling of microcystin-triggered quorum sensing with 
colony dynamics improve model predictions of both the spatial het-
erogeneity of M. aeruginosa biomass and extracellular microcystin 
concentrations? After all, M. aeruginosa is a threat to public health 
because they release microcystins. In this regard, the fundamental 
question is not necessarily where the Microcystis is, but where the 
microcystins are.

Keeping in mind that the goal is to improve predictions over a 
seasonal time scale, then it will be necessary to use our model as 
a subroutine—in addition to a subroutine for disaggregation—in 
larger modeling software that can handle hydrodynamics, bio-
geochemical cycling, and algal life cycles (e.g., AEM3D (Hodges & 
Dallimore, 2016) or Delft3D-WAQ (Q. Chen & Mynett, 2006)). Since 
this model demonstrates aggregation is negligible except during 
high wind events at high algal concentrations, future models could 
also include a term that switches aggregation off when those condi-
tions are not met. It would also be worthwhile to use these results 
to instead explore the evolution of the average colony size, dk, as 
a function of algal cell concentration and turbulence intensity. The 
model proposed in this manuscript is necessary to gain biological 
and physical insight into algal aggregation processes, but it may be 
possible to reduce some complexity once the system is understood. 
Aggregation processes mostly affect buoyant transport, which is 
governed by the colony diameter-dependent settling velocity de-
scribed in Equation (13). By restructuring the modeling in this way, 
the system of k equations can be avoided and bulk parameters re-
main the focus, removing most of the numerical expense that would 
be added by incorporating Equation (7) as a subroutine in software 
like AEM3D.

While the model described here has been derived for M. aeru-
ginosa specifically due to their ubiquity and ecological importance, 
the modeling framework can easily be applied to any motile and 
colonial phytoplankton species. Different species have different 
motility and sticking mechanisms, so calculations of the advective 
velocity, wk(z,t), and sticking probability, α(i,j), will need to be tai-
lored to each individual species. M. aeruginosa uses intracellular gas 
vesicles and buoyancy regulation mechanisms to achieve vertical 
motility, but many species of green algae use flagella to move about 
the water column, as an example. Despite these differences in sub-
routine calculations, the theoretical framework will remain largely 
unchanged from species to species and lake to lake. To promote 
the use of this model for different algal species, editable and an-
notated Matlab code used to simulate the base case scenario in 
Section 3.1 can be found at the Data Repository for the University 
of Minnesota (DRUM).

5  |  CONCLUSION

We have developed a theoretical model that tracks the 
meteorological-driven movement and aggregation of M. aeruginosa 
in lake water columns. There are limitations in this model—in par-
ticular, disaggregation is not accounted for and no explicit validation 
with field data has been made. However, the process of construct-
ing the model and the predictions generated by the model provide 
important insights into the possible drivers of harmful algal blooms. 
First, we have demonstrated that Smoluchowski aggregation quali-
tatively represents the colony dynamics of M. aeruginosa, and the 
coupling of transport and colony dynamics is an important mecha-
nism of M. aeruginosa population models in stratified lakes. Further, 
the model is capable of generating the diurnal migrations exhibited 
by large colonies of M. aeruginosa to a depth of preferred light inten-
sity, but small colonies are susceptible to turbulent entrainment and 
generally become well-mixed throughout the surface mixed layer. 
Model results also clearly demonstrate that wind-induced mix-
ing and algal concentrations exceeding 107 cells/m3 are necessary 
to promote the aggregation of an initial single cell population to an 
algal population dominated by large colonies (d101 = 160 μm) within 
6 weeks, a time scale in accordance with field measurements (Cao & 
Yang, 2010; Xiao et al., 2018). This finding suggests quiescent condi-
tions alone are not sufficient for surface bloom formation of colonial 
and motile harmful algae—large wind events prior to quiescent con-
ditions are an important necessary precursor. In addition, the model 
provides guidance for future field data collection and model studies 
(e.g., quantifying the roles of extracellular polysaccharide and micro-
cystin content as they relate to aggregate sticking probability). To 
practically implement the results of this theoretical model, we have 
identified ways to (i) incorporate this model into larger software in 
computationally efficient ways, and (ii) extrapolate this theoretical 
framework to different algal species.
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APPENDIX A

Calculation of the buoyant velocity
Following the work of Medrano et al.  (2013), we can calculate the 
change in individual cell density, ρcell, in light conditions by

and in dark conditions by

where I(z,t) is the irradiance, I0 is the irradiance such that ρcell(I0) is 
maximum, d is the background rate of density change when I = 0, ρref 
is the minimum cell density below which cells will not reduce their 
carbohydrate content, a is a normative factor, b is the slope of den-
sity change in the dark, and H(x) is the Heaviside function defined 
to be unity when the argument x is positive and zero otherwise. We 
used a value of Icrit = 5.75 W/m

2 to differentiate between light and 

dark conditions and an initial single cell density of ρ0 = 1060 kg/m3. 
For all parameter values, see Table A1.

We assume that the cell density of each individual cell, whether 
it belongs to a colony or not, will react to the instantaneous light 
intensity in every grid cell at every time step by these equations. 
To calculate colony density, ρk, from single cell density, we use the 
relationship

where ncell(k) is the ratio of cell volume to colony volume, ngas is the 
ratio of gas vesicle volume to colony volume, and ρmuc is the density 
of cell mucilage (Medrano et al., 2013). Like Medrano et al. (2013), we 
have kept ngas and ρmuc constant for all simulations; unlike Medrano 
et al. (2013), ncell is not constant but will vary with colony size because 
we assume all M. aeruginosa colonies have a fractal geometry and the 
relative content of mucilage to cells will increase with increasing cell 
size (Zhu et al., 2014). For parameter values, please see Table A1. Once 
ρk has been calculated for all values of k at every time step in every grid 
cell, we can then calculate the buoyant velocity, wk(z,t), by Equation (13).

(A1)d�cell

dt
=

a

60
Ie

−I∕I0 + d

(A2)
d�cell

dt
= − b

(
�cell − �ref

)
H
(
�cell − �ref

)

(A3)�k = �cellncell(k)
(
1 − ngas

)
+ �muc

(
1 − ncell(k)

)

TA B L E  A 1 Parameters used to calculate the buoyant velocity

Variable Description Value

a Normative factor in Equation (A1) 4.96 × 10−5 s2/m3

I0 Irradiance such that ρcell(I0) achieves a maximum 146.43 W/m2

d Background rate of density change when I = 0 −2.75 × 10−4 kg/m3/s

b Slope of density change in dark conditions given by Equation (A2) 1.58 × 10−5 1/s

ρref Critical density where cells will no longer reduce their carbohydrate content 1037 kg/m3

Icrit Critical light intensity differentiating between light and dark conditions 5.75 W/m2

ρ0 Initial density of single cells 1060 kg/m3

ngas Ratio of gas vesicle volume to colony volume 7%

ncell Ratio of cell volume to colony volume ncell(k) = −0.0073 k + 0.9373 (%)
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