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We use a variational principle to derive a mathematical model for a nematic electrolyte
in which the liquid crystalline component is described in terms of a second-rank order
parameter tensor. The model extends the previously developed director-based theory and
accounts for the presence of disclinations and possible biaxiality. We verify the model by
considering a simple but illustrative example of liquid crystal-enabled electro-osmotic flow
around a stationary dielectric spherical particle placed at the center of a large cylindrical
container filled with a nematic electrolyte. Assuming homeotropic anchoring of the nematic
on the surface of the particle and uniform distribution of the director on the surface
of the container, we consider two configurations with a disclination equatorial ring and
with a hyperbolic hedgehog, respectively. The computed electro-osmotic flows show a
strong dependence on the director configurations and on the anisotropies of dielectric
permittivity and electric conductivity of the nematic, characteristic of liquid crystal-enabled
electrokinetics. Further, the simulations demonstrate space charge separation around the
dielectric sphere, even in the case of isotropic permittivity and conductivity. This is
in agreement with the induced-charge electroosmotic effect that occurs in an isotropic
electrolyte when an applied field acts on the ionic charge it induces near a polarizable
surface.
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I. INTRODUCTION

Recent advancements in micro- and nanofluidics motivated a significant interest in electrokinetic
phenomena, both from the theoretical and applied points of view [1,2]. These phenomena occur
in systems exhibiting spatial separation of charges that results from dissociation of polar chemical
groups at the solid-fluid electrolyte interface and subsequent formation of an equilibrium electric
double layer. Application of the electric field causes electrokinetic flows with a characteristic velocity
proportional to the applied field. Besides this classical effect, there is a broad class of phenomena
in which separation of charges is caused by the electric field itself [3–7]. Since the induced charge
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is proportional to the applied field, the resulting flow velocities grow with the square of the field,
v ∼ E2 [3–7]. These phenomena, called collectively induced-charge electrokinetics (ICEK) [3],
are most often considered for ideally polarizable (conducting) solid particles. The ICEK velocity
scale is vmetal ∼ ε0εmediumE2a/η, where a is the radius of the colloid while ε0εmedium and η are the
dielectric permittivity and viscosity of the electrolyte, respectively [3,6,7]. If the particle is a solid
dielectric with permittivity ε0εp, the ICEK flows are still present but with a much reduced velocity,
vdiel ∼ ε0εpE2λD/η, where λD is the Debye screening length [6,7]. In aqueous electrolytes λD is
typically much smaller than a (tens of nanometers versus micrometers).

Another mechanism to achieve charge separation—even without a solid component—is to use
an anisotropic fluid, such as a nematic liquid crystal, as an electrolyte [8–13]. The anisotropy of
the medium in the presence of spatial gradients of the orientational order makes it possible to move
charged ions to different locations. The subsequent motion of the fluid induced by the electric
field gives rise to nonlinear effects [10], called the liquid-crystal-enabled electrokinetics (LCEK)
[8–12,14,15]. Both the experiments and theoretical considerations demonstrate that the LCEK flow
velocities are proportional to the square of the electric field [8–12,14,15]. Because the flow direction
is independent of the field polarity, LCEK transport can be driven by an alternating current, a feature
desired in technological applications. Note that the term “electokinetics”—as applied to a small
solid particle located in a fluid electrolyte—embraces two complementary phenomena. The first
is electrophoresis, i.e., the motion of the particle with respect to the fluid under the action of a
uniform electric field. The second is electroosmosis, the motion of a fluid electrolyte with respect
to the particle that is immobilized (for example, glued to the substrate), also under the action of
the externally applied uniform electric field. This classification can be applied to both the ICEK
and LCEK. In particular, Refs. [10,11] describe electrophoresis of solid colloidal particles freely
suspended in a nematic electrolyte, while Ref. [12] deals with a flow of the nematic electrolyte
around solid particles that are glued to a substrate; in both cases, the characteristic velocities grow
as ∼E2. The first effect is called the liquid-crystal-enabled electrophoresis (LCEP) [11], while the
second is known as the liquid-crystal-enabled electroosmosis (LCEO) [12]. In our work, we deal
with the LCEO effect, considering an immobilized spherical particle in the nematic electrolyte.

In this paper, we derive a mathematical model for electroosmotic flows in nematic liquid crystals,
where the nematic component is described by the second-rank tensor order parameter, known as the
Q-tensor. The model generalizes our previous work that extended Ericksen-Leslie formalism [16–18]
to nematic electrolytes, where we established a system of governing equations from the local form
of balance of linear and angular momentum within the framework of the director-based theory. An
alternative derivation can be found in Ref. [15], where we arrived at the same system of equations in a
more formal, but also more efficient manner following a variational formulation of nematodynamics,
as proposed in Refs. [19,20]. Because the director models have a limited applicability [21,22] in that
they cannot model nematic biaxiality and topological defects—other than vortices—here we use the
strategy in Refs. [15,19,20] to arrive at the appropriate Q-tensor-based theory.

As an illustrative example, we consider a stationary, relatively small (submicrometer) colloidal
sphere that sets a perpendicular surface anchoring of the preferred orientation of the nematic. The
director field around the particle is either of the quadrupolar type with an equatorial disclination
loop [23] or of dipolar symmetry, with a hyperbolic hedgehog point defect (strictly speaking, a small
disclination ring; see, e.g., Ref. [24] and references therein) residing on one side of the sphere [25].
Numerical simulations demonstrate electroosmotic flows around these two configurations that are
in qualitative agreement with the experimental data [12] but also highlight features characteristic
for the induced-charge electroosmotic (ICEO) flows around a dielectric sphere in the absence of
materials anisotropies [4,6,7]. Note that, since disclinations loops cannot be modeled within the
framework of a director-based theory, this particular system is beyond the scope of the approach that
we developed in Ref. [15].

The paper is organized as follows. In Sec. II, we recall the principle of minimum energy dissipation
and then use this principle in Sec. III to derive the system of governing equations for our model.
In Sec. IV we solve the governing system numerically to obtain the flow and charge patterns for
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electrokinetic flows around a stationary spherical particle in a cylindrical column of a nematic
electrolyte.

II. PRINCIPLE OF MINIMUM ENERGY DISSIPATION

There is a variety of variational principles governing behavior of evolutionary systems [26]. In
classical mechanics, for instance, irreversible dynamics of a system can be described by means of
a Rayleigh dissipation function R = 1

2ξij q̇i q̇j quadratic in generalized velocities q̇ = (q̇1, . . . ,q̇M )
(summation over repeated subscripts is implied hereafter). The basic idea is to balance frictional and
conservative forces in Lagrange’s dynamical equations,

d

dt

∂L
∂q̇m

− ∂L
∂qm

+ ∂R
∂q̇m

= 0, (1)

where q = (q1, . . . ,qM ) are generalized coordinates conjugated with the velocities q̇ and L =
1
2aij (q)q̇i q̇j − U(q) is the Lagrangian of the system, defined as the difference between the kinetic
energy 1

2aij (q)q̇i q̇j and the potential energy U(q). In what follows, we assume that the matrices (ξij )
and (aij ) are symmetric.

Similar to the nondissipative counterparts, Eq. (1) can be recast into a variational problem as the
solutions provide critical points of the functional∫

�

d3r{Ė + R},

with respect to a special class of variations δq̇ of the generalized velocities q̇. Here � ⊂ R3 is the
region occupied by the system, E = L + 2U is the total energy, and the superimposed dot (as well as
d
dt

) denotes the total or material time derivative. Unlike Hamilton’s principle of stationary action, the
current approach “freezes” both the configuration q and the generalized forces Xm := d

dt
∂L
∂q̇m

− ∂L
∂qm

,
m = 1, . . . ,M acting on the system at a given time. The state of the system is then varied by
imposing arbitrary instantaneous variations δq̇ of the velocities q̇. Note that variations δq, δq̇, and
δq̈ are mutually independent, except for the condition that the generalized forces Xm, m = 1, . . . ,M

should remain unaltered [27]. Then, by using the product rule and relabeling, we indeed have

δ

δq̇m

∫
�

d3r{Ė + R} = δ

δq̇m

∫
�

d3r

{
aij q̈j q̇i + 1

2

∂aij

∂qk

q̇kq̇j q̇i + ∂U
∂qi

q̇i + R
}

= δ

δq̇m

∫
�

d3r

{[
d

dt
(aij q̇j ) − 1

2

∂akj

∂qi

q̇kq̇j + ∂U
∂qi

]
q̇i + R

}

= δ

δq̇m

∫
�

d3r{Xiq̇i + R}

= Xm + ∂R
∂q̇m

= d

dt

∂L
∂q̇m

− ∂L
∂qm

+ ∂R
∂q̇m

, (2)

for every m = 1, . . . ,M . Hence, the Euler-Lagrange equation

δ

δq̇

∫
�

d3r{Ė + R} = 0 (3)

is identical to the generalized equation of motion, Eq. (1), and thus governs dynamics of a dissipative
mechanical system. Since the conservative forces are assumed to be fixed here and R is a positive-
definite function, Eq. (3) yields a minimum of energy dissipation [19,20]. It is worth noting that for
overdamped systems—where q̈ = 0—this principle of minimum energy dissipation is equivalent to
the Onsager’s variational approach [28].
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III. NEMATIC ELECTROLYTE

In this section, we apply the principle Eq. (3) to a nematic electrolyte subject to an external
electric field. It was shown earlier that under an appropriate choice of the generalized velocities this
framework is capable of reproducing the classical Ericksen-Leslie equations of nematodynamics
[19,20], as well as the equations for ionic transport [29], and flow and sedimentation in colloidal
suspensions [28]. Below we demonstrate that it can be extended so as to take into account the
presence of an ionic subsystem.

A. Energy of the system

Consider a nematic liquid crystal that contains N species of ions with valences zα at concentrations
cα , where 1 � α � N . We assume that all ionic concentrations are small so that the resulting
electrolyte solution is dilute. In LCEO experiments [12], the concentration of ions is on the order of
1019 m−3, which corresponds to typical distances between isolated ions to be rather large, ∼0.5 μm
in the absence of the electric field. Then one can write the energy density of the ionic subsystem as
a sum of the entropic and Coulombic contributions,

Eion = kB


N∑
α=1

cα ln cα +
N∑

α=1

ecαzα�, (4)

where kB and 
 stand for the Boltzmann constant and the absolute temperature, respectively, �

denotes the electric potential, and e is the elementary charge. Under the action of the field, the ions
move with the effective velocities uα , which satisfy the continuity equation,

∂cα

∂t
+ ∇ · (cαuα) = 0. (5)

Nematics are anisotropic ordered fluids. A typical nematic consists of elongated molecules whose
local orientation can be described by a coarse-grained vector field n ≡ −n with nonpolar symmetry,
the director. This unit-length vector field appropriately describes uniaxial nematic states with constant
degree of orientational order S.

In general, the degree of orientational order may not be constant, a nematic may contain
disclinations or be in a biaxial state (characterized by a spatially varying degree of biaxiality P (r)
and a set of not one, but two mutually orthogonal unit-length vector fields). Neither of these effects
can be modeled within the framework of the standard director theory [21,22]. The appropriate order
parameter to characterize all possible nematic states is a symmetric traceless second rank tensor Q
with three, possibly different, eigenvalues. In the uniaxial limit, two of the eigenvalues are equal so
that

Qij = S
(
ninj − 1

3δij

)
. (6)

Then the free energy per unit volume of a nematic liquid crystal can be written in the following
form:

ELdG = −A

2
QijQij + B

3
QijQjkQki + C

4
(QijQij )2 + L

2
(∂kQij )(∂kQij ), (7)

where the first three terms represent the so-called Landau-de Gennes potential,

Ep

LdG = −A

2
QijQij + B

3
QijQjkQki + C

4
(QijQij )2, (8)

given by an expansion of the free energy of the nematic in terms of the order parameter. The last
term L

2 (∂kQij )(∂kQij ) = Ee
LdG in Eq. (7) accounts for elasticity of the liquid crystal with one elastic

constant approximation being adopted from now on.
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In order to take into account the interaction between the electric field E = −∇� and the liquid
crystal, we have to supplement the potential energy Eq. (7) of the nematic by

EE = − 1
2 D · E, (9)

where D denotes the electric displacement vector that satisfies

∇ · D =
N∑

α=1

ecαzα. (10)

It should be noted that care must be taken in dealing with the electric field in this problem. The field
is substantially nonlocal, that is, its changes can affect the system even if they occur outside the
region � occupied by the system. In order to avoid dealing with the field outside of �, we assume
that the system under investigation is surrounded by conductors that are held at a prescribed potential
�∂�. Then the electric field exists in � only, so that Di = ε0εijEj , where

εij = 1
3 (ε‖ + 2ε⊥)δij + �εQij , (11)

with �ε = ε‖ − ε⊥, ε⊥, and ε‖ being dielectric permittivities perpendicular and along the director,
respectively, measured in units of the vacuum permittivity ε0. Equation (11) can, in fact, be used as
an implicit phenomenological definition of the tensor order parameter Q.

Thus, neglecting inertia of molecular rotations (Q̈ij = 0), one can write the total energy per unit
volume of the system in the form

E = 1
2ρvivi + ELdG + EE + Eion, (12)

with ρ being the electrolyte mass density and v the macroscopic velocity of its flow, which we
assume to be incompressible, ∇ · v = 0. The incompressibility assumption is justified, since a
typical electrokinetic velocity is negligibly small compared to the speed of sound in nematics [30],
corresponding to the Mach number ∼10−8. Note that the assumption that the nematic electrolyte
solution is dilute allows us to think of ρ and v as the density and the velocity of the nematic
flow, respectively. Indeed, both of these quantities are defined as weighted volume averages of the
velocities of the nematic and ionic constituents and the volume fraction of ions in the dilute solution
is small.

B. Dissipation function

Within the current approach, we require the dissipation function to be frame-indifferent, positive-
definite, and quadratic in the generalized velocities, v and Q̇. This restriction, however, does not
specify the dependence of the dissipation function on Q which, in general allows for a large number of
nematic viscosity coefficients [19]. Following Ref. [31], we reduce the number of these coefficients
by restricting Rnem to the terms that are at most quadratic in the scalar order parameter S. Then

2Rnem = ζ1Q̊ij Q̊ji + 2ζ2Aij Q̊ji + 2ζ3Aij Q̊jkQki + 2ζ4AijAjkQki + ζ5AijAjkQklQli

+ ζ6(AijQji)
2 + ζ7AijAjiQklQlk + ζ8AijAji , (13)

where Aij = 1
2 (∂jvi + ∂ivj ) represents the symmetric part of the velocity gradient and Q̊ij = Q̇ij −

WikQkj − WjkQki , with Wij = 1
2 (∂jvi − ∂ivj ), gives the rate of the Q-tensor change relative to a

flow vorticity [19]. Inserting the uniaxial representation Eq. (6) of the tensorial order parameter Q
into Eq. (13) and taking into account that n̊i = ṅi − Wij nj and assuming that Ṡ = 0, the dissipation
function takes the form

2R(n)
nem = (α3 − α2)n̊2

i + 2(α6 − α5)n̊iAij nj + (α5 + α6)(Aij nj )2 + α4(Aij )2 + α1(niAij nj )2, (14)
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when written in terms of the director n. Now one can relate the viscosities ζi to the Leslie’s viscosities
αj [32]:

α3 − α2 = 2S2ζ1, α6 − α5 = 2Sζ2 + 1
3S2ζ3,

α1 = S2ζ6, α5 + α6 = Sζ4 + 1
2S2ζ5, (15)

α4 = ζ8 − 1
3Sζ4 + 1

3S2
(

1
3ζ5 + 2ζ7

)
.

It follows from Eq. (15) that the viscosities ζ3, ζ5, and ζ7 are higher-order corrections to the Leslie’s
viscosities in terms of the scalar order parameter S. Thus, one can set ζ3 = ζ5 = ζ7 = 0 and arrive
at a simpler form of the dissipation function,

2Rnem = ζ1Q̊ij Q̊ji + 2ζ2Aij Q̊ji + 2ζ4AijAjkQki + ζ6(AijQji)
2 + ζ8AijAji , (16)

which involves only five nematic viscosities. As we will demonstrate below, this choice of Rnem

results in the expression for viscous stress identical to that derived in Ref. [33].
For the nematic electrolyte, we also need to incorporate dissipation due to the motion of ions.

Taking into account that the mobilities of ions along and perpendicular to the director n are different
and treating uα with 1 � α � N as the generalized velocities, the contribution of ions to dissipation
is given by [34]

2Rion = kB


N∑
α=1

cα
(
Dα

ij

)−1(
uα

i − vi

)(
uα

j − vj

)
. (17)

Here the diffusion matrix Dα
ij accounts for the anisotropy of the liquid crystal electrolyte.

Equation (17) is a direct generalization of the dissipation function for ordinary colloidal
solutions [28].

Thus, the total energy dissipation rate in the nematic electrolyte is equal to the sum R = Rnem +
Rion with Rnem as specified in Eq. (16).

C. Governing equations

Once the energy E , the dissipation R, and the generalized velocities of the system are defined,
we are in a position to derive equations describing electroosmotic flows in nematics. The equations
are implicitly given by

δ

δv

∫
�

d3r{Ė + R − p′(∂ivi) − �Qii} = 0,

δ

δQ̇

∫
�

d3r{Ė + R − p′(∂ivi) − �Qii} = 0, (18)

δ

δuα

∫
�

d3r{Ė + R − p′(∂ivi) − �Qii} = 0,

where the two Lagrange multipliers, p′ and �, are associated with the flow incompressibility and
the tracelessness of the tensor order parameter, respectively.

But before deriving the explicit form of Eq. (18), let us specify the boundary conditions for
our problem. Although one can simply use the natural boundary conditions that follow from the
principle of minimum energy dissipation Eq. (3), here we impose Dirichlet conditions on ∂�. In
particular,

v = 0, Q̇ = 0, uα = 0 on ∂�. (19)

This choice of boundary conditions slightly simplifies further consideration and corresponds to a
majority of experimental setups.
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Next, we calculate the rate of change of the energy in Eq. (18): we start by computing

d

dt

∫
�

d3r

{
1

2
ρv2 + ELdG(Q,∇Q)

}

=
∫

�

d3r

{[
ρv̇l + ∂k

(
∂ELdG

∂(∂kQij )
(∂lQij )

)]
vl +

[
∂ELdG

∂Qij

− ∂k

(
∂ELdG

∂(∂kQij )

)]
Q̇ij

}
, (20)

and

d

dt

∫
�

d3rEE(Q,∇�) =
∫

�

d3r

{
∂EE

∂Qij

Q̇ij + ∂EE

∂(∂i�)
(∂i�̇) − ∂EE

∂(∂i�)
(∂k�)(∂ivk)

}
, (21)

with help of the identity ˙(∂kQij ) = ∂kQ̇ij − (∂kvl)(∂lQij ).
Recall that

EE = −ε0(ε̄δij + �εQij )(∂i�)(∂j�)/2,

where ε̄ = (ε‖ + 2ε⊥)/3. Then

∂EE

∂Qij

= −1

2
ε0�ε(∂i�)(∂j�) and

∂EE

∂(∂i�)
= −ε0εij (∂j�). (22)

Hence,

d

dt

∫
�

d3rEE(Q,∇�) =
∫

�

d3r

{
−1

2
ε0�εEiEj Q̇ij − (∂iDi)�̇ − ∂i(ε0εijEjEk)vk

}

+
∫

∂�

d2r{(νiε0εijEj )�̇}. (23)

On a conductor-dielectric interface, the normal component of the displacement, Diνi , is given by
the surface charge density σ . It follows from Eq. (19) and the definition of a material derivative that
the surface integral in Eq. (23) can be written as∫

∂�

d2r{(νiε0εijEj )�̇} =
∫

∂�

d2r Diνi

∂�

∂t
=

∫
∂�

d2r σ
∂�

∂t
. (24)

This integral gives the power spent by charges located at ∂� and can be omitted when �∂� varies
slowly compared to the timescales of the dynamics associated with v, uα , and Q̇.

For the ionic subsystem, we have

d

dt

∫
�

d3rEion(cα,�) =
∫

�

d3r

N∑
α=1

{
(∂iμ

α)cα
(
uα

i − vi

) + ecαzα�̇ − μαcα(∂ivi)
}
, (25)

where μα = ∂Eion
∂cα = kB
(ln cα + 1) + ezα� is the chemical potential of the αth ion species [35].

Note that Ėion includes the term
∑

α ecαzα�̇, whereas ĖE contains −(∂iDi)�̇; these terms cancel
out when combined together in the expression for the total power Ė . This is due to the fact that the
electric field obeys the Maxwell’s Eq. (10).

We could have instead obtained the same Eq. (10) for D from Eq. (3), if we chose to treat �̇ as a
generalized velocity. Then

δ

δ�̇

∫
�

d3r{Ė + R − p′(∂ivi) − �Qii} = −∂iDi +
N∑

α=1

ecαzα = 0. (26)

Since the present framework deals with the energy of the entire system, this derivation properly
addresses the nonlocality of the field.
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The variational derivatives of the total dissipation function R are given by

δ

δQ̇ij

∫
�

d3rR = ∂Rnem

∂Q̊ij

= ζ1Q̊ij + ζ2Aij , (27)

δ

δuα
i

∫
�

d3rR = kB
cα
(
Dα

ij

)−1(
uα

j − vj

)
, (28)

δ

δvi

∫
�

d3rR = δ

δvi

∫
�

d3rRnem − kB


N∑
α=1

cα
(
Dα

ij

)−1(
uα

j − vj

)
. (29)

Using the explicit form Eq. (16) of Rnem and the chain rule,

∂

∂(∂jvi)
= ∂

∂Aij

+ Qki

∂

∂Q̊jk

− Qkj

∂

∂Q̊ik

,

we obtain that

δ

δvi

∫
�

d3rRnem = −∂jTV
ij ,

where the viscous stress tensor,

TV
ij = ζ1(Q̊jkQki − Q̊ikQkj ) + ζ2Q̊ij + (ζ4 + ζ2)AjkQki

+ (ζ4 − ζ2)AikQkj + ζ6(AklQlk)Qij + ζ8Aij , (30)

is identical to that suggested in Ref. [33].
Thus, it follows from Eqs. (25) and (28) that

δ

δuα
i

∫
�

d3r{Ė + R − p′(∂ivi) − �niṅi} = cα
[
∂iμ

α + kB

(
Dα

ij

)−1(
uα

j − vj

)] = 0. (31)

Combining this with the continuity Eq. (5), we arrive at

∂cα

∂t
+ ∂j

[
cαvj − cα

kB

Dα

ij (∂iμ
α)

]
= 0. (32)

Likewise, Eqs. (20), (23), and (27) yield

δ

δQ̇ij

∫
�

d3r{Ė + R − p′(∂ivi) − �Qii}

= ∂ELdG

∂Qij

− ∂k

[
∂ELdG

∂(∂kQij )

]
− �δij − 1

2
ε0�εEiEj + ζ1Q̊ij + ζ2Aij = 0. (33)

Finally, combining Eqs. (20), (23), (25), (29), and (31), we arrive at

δ

δvi

∫
�

d3r{Ė + R − p′(∂ivi) − �Qii}

= ρv̇i + ∂k

[
∂ELdG

∂(∂kQmn)
(∂iQmn) − TV

ik − ε0εkjEjEi

]
+ ∂ip

′ + ∂i

[
N∑

α=1

cαμα

]
= 0. (34)

The sum p′ + ∑
α cαμα can be defined as the total pressure p, thus yielding an alternative form

ρv̇i + ∂k

[
∂ELdG

∂(∂kQmn)
(∂iQmn) + pδik − TV

ik − ε0εkjEjEi

]
= 0 (35)
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of Eq. (34). Equations (10), (32), (33), and (35) along with the definition of the chemical potential,

μα = ∂Eion

∂cα
= kB
(ln cα + 1) + ezα�, (36)

and constraints ∇ · v = 0, Qii = 0 constitute the full set of equations governing electroosmosis in
nematic liquid crystals, which can be written in the following invariant form:

∂cα

∂t
+ div

[
cαv − cα

kB

Dα(∇μα)

]
= 0,

∂ELdG

∂Q
− div

[
∂ELdG

∂(∇Q)

]
− �I − 1

2
ε0�εE ⊗ E + ζ1Q̊ + ζ2A = 0,

ρv̇ + div[−Tel + pI − TV − ε0E ⊗ ε̂E] = 0,

div

[
1

3
(ε‖ + 2ε⊥)E + �εQE

]
= e

ε0

N∑
α=1

cαzα, (37)

μα = kB
(ln cα + 1) + ezα�,

div v = 0,

Tr Q = 0,

where the elastic stress tensor Tel = − ∂ELdG
∂(∂kQmn) (∂iQmn) ei ⊗ ek and the dielectric tensor ε̂ = εij ei ⊗ ej .

In addition, {ei}i=1,2,3 is a set of mutually orthonormal vectors in R3 and I is the identity tensor.

IV. ELECTROOSMOTIC FLOW AROUND A SPHERICAL PARTICLE

In this section, we consider a simple but illustrative example of liquid crystal-enabled
electroosmotic flow (LCEO) around an immobilized spherical particle placed at the center of a large
cylindrical domain filled with a nematic electrolyte. Recently, a similar problem in a rectangular
container was experimentally examined in Ref. [12]. Despite the difference in geometry, the physical
mechanism of LCEO is essentially the same in both cases. The colloidal inclusion distorts the
otherwise uniform ordering of the liquid crystal molecules, inducing spatial variations of the order
tensor Q field. In the presence of an electric field, inhomogeneities of Q, along with the anisotropy of
dielectric permittivity and conductivity of the liquid crystal give rise to spatial separation of electric
charges present in the system. This field-induced charging of distorted regions of the nematic
electrolyte is a distinctive feature of LCEO, which consequently yields electroosmotic flow with the
velocity quadratic in the electric field. The profile of the flow, as will be seen below, depends on the
symmetry of the tensor field Q as well as on anisotropies of ionic conductivities and the dielectric
permittivity of the nematic.

Let us consider a micron-sized spherical colloidal particle suspended in a nematic electrolyte
subject to a uniform electric field E = (0,0,−E). For the sake of simplicity, assume that the ionic
subsystem consists of two species with valences z+ = 1 and z− = −1 and concentrations c+ and
c−, respectively. We assume equal mobility matrices,

D+ = D− = Dij = D̄[λ̄σ δij + (λσ − 1)Qij ] ei ⊗ ej ,

where λσ = σ‖/σ⊥ > 0 denotes the ratio of the conductivity along and perpendicular to the nematic
director, respectively; λ̄σ = 1

3 (λσ + 2) and D̄ > 0.
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For further analysis of the system of governing Eqs. (37), it is convenient to introduce
nondimensional variables,

r̃ = r
a
, t̃ = t

t̄
, �̃ = �

Ea
, c̃± = c±

c̄
,ṽ = v

v̄
,

p̃ = p

p̄
, D̃ij = Dij

D̄
, T̃V

ij = TV
ij

a

ζ8v̄
, (38)

where a is the radius of the particle and x̄ denotes the characteristic value of x. Then omitting the
tildes for notational simplicity, one can rewrite the system Eq. (37) in the following nondimensional
form:

Pe

(
∂c±

∂t
+ div[cαv]

)
− div[D(∇c± ∓ c±GE)] = 0,

∂ELdG

∂Q
− div

[
∂ELdG

∂(∇Q)

]
− �I − 1

2

a2sign(�ε)

ξ 2
E

E ⊗ E + Er

(
ζ1

ζ8
Q̊ + ζ2

ζ8
A

)
= 0,

Re v̇ + div

[
− 1

Er
Tel + pI − TV − E ⊗ ε̂

ε⊥
E

]
= 0,

div

[
1

3
(λε + 2)E + (λε − 1)QE

]
= B(c+ − c−),

div v = 0,

Tr Q = 0, (39)

which implies p̄ = ζ8v̄

a
and v̄ = ε0ε⊥aE2

ζ8
, and where the nondimensional parameters

Pe = v̄a

D̄
, Er = ζ8v̄a

L
,

a2

ξ 2
E

= ε0|�ε|E2a2

L
,

Re = ρv̄a

ζ8
, B = ec̄a

ε0ε⊥E
, G = eaE

kB

, (40)

along with λε = ε‖/ε⊥ are introduced. Here, ξE =
√

L/(ε0|�ε|E2) is the electric coherence length.
We consider the colloidal sphere to be relatively small, a ≈ 1 μm; the rest of the parameters are
close to the ones used in typical experiments on LCEO: ρ ≈ 1 g/cm3, �ε ≈ 10, ε⊥ ≈ 10, L ≈ 10
pN, D̄ ≈ 5 × 10−11 m2/s, ζ8 ≈ 0.1 Pa × s, c̄ = 1019 m−3, E ≈ 40 mV/μm, and 
 = 293 K. Then
the nondimensional parameters have the following values:

Pe ≈ 0.03, Er ≈ 0.01,
a2

ξ 2
E

≈ 0.01, Re ≈ 1 × 10−8, B ≈ 0.45, G ≈ 1.6. (41)

Smallness of the first three characteristic numbers is of particular importance in what follows. Since
diffusive transport of ions prevails over advective transport (the Peclet number Pe � 1) and the
elasticity of the liquid crystal dominates over its viscosity (the Ericksen number Er � 1), the order
parameter Q and the concentrations of ions c+ and c− are not significantly affected by the liquid
crystal flow. Moreover, due to the small ratio of the particle radius a to the electric coherence length
ξE , we can also neglect the influence of the electric field on the molecular alignment.

Among the parameters listed above, only the radius a of the sphere has a value that is different
from what was used in the experiment in Ref. [12], where a = 1 μm in simulations versus a = 25 μm
in the experiment. This departure is motivated by the two closely related reasons, (i) by the fact that
small particles in a large nematic domain can feature both dipolar director field with a hyperbolic
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hedgehog and a quadrupolar director with an equatorial disclination ring and (ii) by the fact that the
model developed in our work allows us to describe the LCEO effects in presence of the disclination
rings which are naturally stable around the small spheres. As discussed below, the relative stability
of the two director geometries around a small sphere can be tuned by slightly adjusting the size of the
particle. This allows us to compare the electroosmotic flow patterns for the two different symmetries
of director distortions while keeping the physical parameters close to each other in the two cases. As
the particles become bigger, the hedgehog configuration in a large domain becomes progressively
more stable, while the ring configuration needs to be supported either by an external field or by
strong confinement [36]. In the experiments [12], the comparison between the hedgehog and ring
configuration was made possible by placing the spheres into a shallow cell with the thickness that
is only slightly larger than the diameter of the spheres. Proximity of bounding walls complicates
the numerical analysis of the flows and to some extent masks the difference caused by the different
symmetry of the director field near the surface of the spheres. To avoid the complications associated
with the strong confinement, in what follows we analyze the case of the small particles.

A significant computational simplification associated with choosing the particle to be small
results from the decoupling of Eqs. (39). Note that in Ref. [12], for a particle of radius 25 μm,
the experimentally observed velocity of propagation was 4 μm/s, which corresponds to Er = O(1).
The system Eq. (37) can still be solved numerically in this situation, but at a significantly higher
computational cost since the equations remain fully coupled.

Thus, the system of Eqs. (39) can be solved in three consecutive steps. First, we find the alignment
tensor Q from

∂ELdG

∂Q
− div

[
∂ELdG

∂(∇Q)

]
− �I = 0,

Tr Q = 0, (42)

then calculate the concentrations c±(r) and the electric field E = −∇� given by

div[D(∇c± ∓ c±GE)] = 0,

div
[

1
3 (λε + 2)E + (λε − 1)QE

] = B(c+ − c−), (43)

and finally, solve

div

[
− 1

Er
Tel + pI − TV − 1

ε⊥
E ⊗ ε̂E

]
= 0,

div v = 0 (44)

for the pressure p(r) and the velocity field v(r).

A. Alignment tensor

The nondimensionalized Landau-de Gennes free energy ELdG, which enters Eq. (39) and
subsequently Eqs. (42) and (44), is given by

ELdG =
(

a

ξ

)2{
−1

2
Tr Q2 + B

3A
Tr Q3 + C

4A
(Tr Q2)2

}
+ 1

2
|∇Q|2, (45)

where ξ = √
L/A ∼ 10 nm stands for the nematic coherence length and A > 0, B, and C are

constant at a given temperature. The Landau-de Gennes potential Ep

LdG defined in Eq. (8) determines
whether the nematic phase is thermodynamically stable. It is minimized by a uniaxial tensor Q =
S0(n ⊗ n − 1

3 I) with S0 = 1
4C

(−B + √
B2 + 24AC) for any n ∈ S2. Following Fukuda et al. [38,39],

we set C = −B = 3A so as S0 = 1. Assuming the same scalar order parameter S0 = 1 at the particle
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(a)

n0

(b)

n0

FIG. 1. Spherical particle accompanied by a Saturn ring (a) and a hyperbolic hedgehog (b) topological
defects. Nonzero values of the biaxiality parameter u given by Eq. (47) indicate lack of uniaxial alignment of
the liquid crystal molecules.

surface and introducing a unit-length vector ν normal to it, we impose the Dirichlet boundary
condition Q = ν ⊗ ν − 1

3 I corresponding to the strong homeotropic anchoring of the nematic. At
infinity we assume the uniform nematic alignment, i.e., Q = n0 ⊗ n0 − 1

3 I, where n0 = (0,0,1).
The topological constraints imposed by our choice of boundary data produce either a line or point
singularity in the vicinity of the particle. Theoretical [38,40,41] and experimental [42,43] studies
show that a small particle (a/ξ � 60) will be encircled by a disclination loop, known as a Saturn
ring, whereas a point defect, a hyperbolic hedgehog, will be energetically favorable provided that
a/ξ � 60. Note that both configurations are axisymmetric with respect to n0. Therefore, in cylindrical
coordinates {ρ,φ,z} with the z axis pointing along the director at infinity n0, the alignment tensor
Q = Q(ρ,z) does not depend on the azimuthal angle φ.

While the problem Eq. (42) was solved explicitly in the limit of small particles [44], there
is no analytical solution for the hedgehog configuration in three dimensions. In two dimensions
the solution, however, is well known [45]. Indeed, the director field n2D = (cos ψ, sin ψ) around a
circular particle located at the origin of Cartesian coordinate system {x,y} and a pointlike topological
defect at (0,−y0) is given by

ψ = 2 arctan
x

y
− arctan

x

y + y0
− arctan

x

y + 1/y0
. (46)

In our study, this two-dimensional solution n2D is used as an initial guess for the axially symmetric
problem. We use the nonlinear variational solver developed by the FEniCS Project—a collection of
open source software for automated solution of differential equations by finite element methods [46–
57]. In the case of small particles (a/ξ � 60), the initial state relaxes to a Saturn ring configuration,
while for large particles (a/ξ � 60) it results in a hedgehog-like solution that, in agreement with
Refs. [24,38,41], is in fact a small ring disclination rather than a point defect.

The computed solutions of the problem Eq. (42) for a/ξ = 30 and a/ξ = 70 are visualized in
Fig. 1 by plotting of a scalar criterion u proposed in Ref. [58]. The criterion utilizes the fact that the
eigenvalues of the tensor order parameter Q corresponding to a uniaxial nematic state can be written
as −s, −s, 2s. Then Tr Q2 = 6s2 and det Q = 2s3 and one can introduce a scalar quantity,

u = (det Q)2

(Tr Q2)3
− 1

54
, (47)
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FIG. 2. Domain of simulation. The mesh was generated by Gmsh [37]. Thick red lines depict physical
boundaries of the domain.

whose nonzero values indicate nonuniaxial alignment of the liquid crystal molecules. Note that in
the absolute units, the radius of the colloidal spheres is rather small, 0.3 and 0.7 μm, respectively;
experiments reported so far deal with bigger spheres, a = 25 μm [12].

B. Charge separation

Once the tensor field Q is known, we solve Eq. (43) for the ionic concentrations c± = c±(ρ,z)
and the electric potential � = �(ρ,z), subject to Dirichlet boundary conditions c± = 1 and � = z

at z = ±Z (see Fig. 2). Here, the Maxwell equation in Eq. (43) should also be solved inside the
particle. Therefore, the dielectric permittivity εp of the particle has to be specified as it determines
the distribution of ions in the system and thus influences the flow. In the present study, we focus on
dielectric colloids which are commonly used in practice. In particular, Fig. 3 shows nondimensional
charge density q = c+ − c− around a dielectric spherical particle with εp = 0.4ε⊥.

Note that the separation of charges in the system arises from an interplay between the orientational
ordering of the nematic and its anisotropic permittivity and conductivity, determined by the tensor
field Q and the parameters λε and λσ , respectively. This result is in line with the expectations that the
space charge around colloidal spheres is proportional to the anisotropy of dielectric permittivity and
electric conductivity [12]. A similar, but probably simpler, interplay in patterned nematics [14,15,34],
where spatially varying director field is induced by means of specific anchoring at the substrates,
yields the electrokinetic charge density qpat ∝ λε − λσ . In the system under investigation, the charge
distribution q(r) is also sensitive to the values of λσ and λε, but it does not vanish when λε = λσ .
This is not surprising, given the fact that even in isotropic electrolytes—where λε = λσ = 1—a
dielectric sphere in the presence of an applied electric field is capable of generating space charges
and cause induced-charge electroosmosis (ICEO) [3,4,6]. This effect is especially pronounced when

the Debye screening length λD = 1
e

√
ε0εmediumkB


n
(where n is the concentration of ions) around the
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(a)

E

(b)

E

(c)

E

(d)

E

(e)

E

(f)

E

FIG. 3. Nondimensional charge density q = c+ − c− around a spherical particle with: a Saturn ring (a),
(c), (e); and a hedgehog (b), (d), (f) topological defect. Here λε=1, λσ =2 in (a), (b); λε=2, λσ =1 in (c), (d);
and λε = λσ =2 in (e), (f).

colloid is comparable to the radius of the colloid, as will be discussed later in the context of the
field-induced electroosmotic velocities.

C. Flow profile

We are now in a position to solve the system of Eqs. (44) for the pressure p = p(ρ,z) and the
velocity v = v(ρ,z) of the electroosmotic flow. One can further simplify the problem by taking
advantage of the fact that Er � 1 and a2/ξ 2

E � 1. Since these two parameters are small, the elastic
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stress tensor Tel = − ∂ELdG
∂(∂kQmn) (∂iQmn) ei ⊗ ek is determined by the order parameter Q that satisfies

Eq. (42). It follows then that divTel = −∇ELdG. Now splitting the total pressure p into the static
p0 = const − ELdG/Er and hydrodynamic ph parts [59], we arrive at the following system:

div

[
phI − TV − 1

ε⊥
E ⊗ ε̂E

]
= 0,

div v = 0. (48)

Here the viscous stress is

TV = ζ̃1(QQ̊ − Q̊Q) + ζ̃2Q̊ + (ζ̃4 + ζ̃2)QA + (ζ̃4 − ζ̃2)AQ + ζ̃6Tr(QA)Q + A, (49)

where ζ̃ = ζ/ζ8, 2A = ∇v + (∇v)T , and Q̊ = Q̇ − WQ + QW with 2W = ∇v − (∇v)T .
Solutions to Eq. (48) computed under no-slip conditions (v = 0) at the physical boundaries of the

domain of simulation (see Fig. 2) are depicted in Fig. 4. Similar to the charge density q discussed
above, the flow v is sensitive to the degrees of anisotropy λε and λσ , as well as to the symmetry
of the director field. In particular, the quadrupolar flow profiles around the particle encircled by
an equatorial Saturn ring are symmetric with respect to the plane of the defect. On the contrary,
the particle accompanied by a hedgehog gives rise to the velocity fields v of dipolar symmetry, in
qualitative agreement with Ref. [12]. Indeed, the direct comparison can be made between the Fourier
analysis of the experimental velocity data in Fig. 4 in Ref. [12] and the insets (a) and (b) in Fig. 4,
given that λσ > 1 and λε = 1 in both cases. The flow profiles in Fig. 4(c) around the sphere with
a disclination ring, shown in Ref. [12] and Fig. 4(a) are both of the “puller” type with the streams
along the axis parallel to the electric field being directed toward the sphere. The flow in Fig. 4(a)
consists of the two rolls, which are also present in Fig. 4(c) in Ref. [12]. The experiment also shows
pairs of microvortices located very closely to the poles of the sphere of a size that is smaller than
the radius of the sphere. These microvortices are not featured in the simulations, apparently because
of the differences between the confinement geometries considered here and in Ref. [12]. Note that
the quadrupolar symmetry of the director pattern in the disclination ring configuration makes the
electroosmotic flows symmetric with respect to the equatorial plane of the sphere. There is thus no
“pumping” of the fluid from one pole of the sphere to another, as demonstrated experimentally in
Ref. [12]. The situation changes for the sphere with an accompanying hedgehog, as described below.

The flow profiles around the sphere with a dipolar director configuration caused by the hedgehog
are of the “pumping” type in both the experiments (Fig. 4(f) in Ref. [12]) and simulations [Fig. 4(b)],
with the mirror symmetry with respect to the equatorial plane being broken. The flow in Fig. 4(b)
consists of one roll. The flow at the axis of rotational symmetry of the configuration is directed from
the side that is defect free to the surface of the sphere. The maximum velocity of the axial flow is
achieved at the defect-free side of the sphere; the axial velocity is much lower near the hedgehog. All
these features are in complete agreement with the experiment; see Fig. 4(f) in Ref. [12]. The vortex in
Fig. 4(b) rotates in the counterclockwise direction; its center is shifted toward the defect-free end of
the sphere, again as in the experiment in Ref. [12]. The only difference is that the experiment shows
an additional vortex in a far field, with the center that is separated from the sphere by a distance
about 4a; this vortex does not appear in the simulations, apparently because of the difference in the
confinement geometry (note that in addition to being shallow, the experimental cell is practically
infinitely long and wide in the horizontal plane, which brings another difference as compared to the
domain of simulations).

Interchanging the values of λσ and λε in Figs. 4(c) and 4(d) essentially reverses the direction
of the flow, confirming the observation that the velocity in LCEO should be proportional to the
difference between these quantities at leading order [12]. This reversal is also in agreement with the
recent experiments and 2D director-based numerical simulations [60] performed for a liquid crystal
in which the sign of λσ − λε can be reversed by a suitable choice of composition or temperature.
However, if one extends the comparison of the present simulations to the experimental LCEO flows
in patterned nematic cells without colloidal inclusions [14,15,34], then one can observe an important
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FIG. 4. Velocity field around a spherical particle with: a Saturn ring (a), (c), (e); and a hedgehog (b), (d), (f)
defect. Here λε = 1, λσ = 2 in (a), (b); λε = 2, λσ = 1 in (c), (d); and λε = λσ = 2 in (e), (f). The nondimensional
viscosities are as follows: ζ̃1 = 0.3, ζ̃2 = 0, ζ̃4 = 1.3, ζ̃6 = −0.15.

difference. Namely, the LCEO flows in patterned nematics [14,15,34] vanish when λε and λσ are
equal. In contrast, our simulations demonstrate nonzero velocity field v even in the case of λε = λσ .
As mentioned above, this effect is in line with the model developed for ICEO flows around dielectric
spheres [3,4,6]. We now discuss this issue in greater detail.

Considering an uncharged immobilized dielectric sphere placed in a uniform electric field,
Murtsovkin found the analytical solutions for the radial and azimuthal ICEO flows that show a
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E

FIG. 5. Charge density and velocity of LCEO around the particle with a hedgehog generated by the electric
field of inverted polarity. Here, λε = 1, λσ = 2, ζ̃1 = 0.3, ζ̃2 = 0, ζ̃4 = 1.3, ζ̃6 = −0.15.

quadrupolar symmetry [6] and a typical amplitude near the surface,

vdiel = β
ε0εmedium

η

aE2

1 + εmediuma

εpλD

, (50)

where β is a scalar coefficient that depends on the geometry of the system (for an infinite system with
λD � a and β = 9

32π
≈ 0.1). For an aqueous electrolyte we have that εmedium ≈ 80, λD ≈ 50 nm,

thus for a typical dielectric particle of a micron size and a permittivity of glass, εp ≈ 5, one can
safely assume εmediuma � εpλD so that vdiel = β

ε0εp

η
λDE2. This velocity is, by a factor about λD/a,

smaller than the ICEO flow velocities around ideally polarizable (conductive) spheres [3,6]. The
smallness of this effect around dielectric spheres has been confirmed experimentally by a direct
comparison of ICEO velocities around conducting (gold) and dielectric (glass) spheres of the same
size in the same aqueous electrolyte [61]. In the case of a nematic electrolyte, the ratio εmediuma/εpλD

is not necessarily very large, as εmedium and εp are often of the same order of magnitude and the
Debye screening length is in the range 0.1–1 μm [62–64]. For the micron-size particles considered
in this study, εmediuma/εpλD is of order 1. On the other hand, analytical estimates of the LCEO
flows velocities yield a typical amplitude vLCEO = α ε0ε⊥

η
(�ε

ε⊥
− �σ

σ⊥
)aE2, where α is an unknown

dimensionless parameter of order 0.1–1 that is expected to depend on the director field, strength
of anchoring, etc. [12]. Recent experiments [60] on LCEP of spheres with a = 5 μm show that
α approximately equals 1. The ICEO and LCEO flow velocities around dielectric spheres in the
nematic electrolyte can thus be of comparable magnitudes. When �ε

ε⊥
− �σ

σ⊥
= 0, the total velocity

around the sphere would not vanish, being determined by the isotropic contribution Eq. (50). For
example, with εmedium = εp = 7, η = 0.1 Pa s, a = λD = 0.3 μm, E = 40 × 103 V/m, the estimate
is vdiel = 0.01 μm/s. The ICEO effect is apparently more pronounced around smaller particles
explored in this work; as the particles become larger as in the experiments [12], this effect would
become of a lesser importance. On the other hand, the LCEO effect is expected to diminish as the
particle becomes smaller, since the smaller (submicrometer and less) particles are not capable to
produce strong director gradients needed for charge separation. It would be of interest to explore
the relative strength of ICEK and LCEK in the isotropic and the nematic phases of the same liquid
crystal material for particles of a different size.

It is also worth noting that, if the applied electric field reverses, the charge distributions depicted
in Fig. 3 is inverted while the flow profiles shown in Fig. 4 remain unaltered [compare, for instance,
Figs. 5 to 3(b) and 4(b)].
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We conclude that the differences between the flow profiles shown in Fig. 4 and the experimental
observations in Ref. [12] are primarily due to different geometry of the experiment [12], where
the electrolyte was confined to a planar cell of thickness comparable to the particle diameter.
Furthermore, these differences stem from the fact that the particles considered in this study are much
smaller than those in Ref. [12].

V. CONCLUSIONS

In this paper, we derived a mathematical model for electroosmosis in nematic liquid crystals
described in terms of the tensor order parameter. Following Onsager’s variational approach to
irreversible processes, we use the formalism that balances conservative and frictional forces obtained
by varying the appropriately chosen free energy and dissipation functionals. In the current study these
are given by their established expressions for nematic liquid crystals and colloidal suspensions. To
illustrate the capabilities of the model, we consider a relatively simple example of electroosmotic flow
around an immobilized spherical particle. The physically relevant micrometer-size of the particle is
chosen so that (a) the elastic energy minimizing nematic configuration contains disclination loops
that can only be described within a tensor order parameter theory and (b) the equations of the
governing system decouple, simplifying the computational procedure.

The numerical simulations for these particles demonstrate that both induced-charge- and liquid-
crystal-enabled electrokinetic effects are simultaneously present in the nematic electrolyte. The
quadrupolar flow profiles around the particle encircled by an equatorial Saturn ring are symmetric
with respect to the plane of the defect, while the particle accompanied by a hedgehog gives rise to
the velocity fields v of dipolar symmetry. Unlike the LCEO in patterned nematics, which vanishes
when λε and λσ are equal, here we observe nonzero velocity field v even in the case of λε = λσ . This
effect is in line with the model developed for ICEO flows around dielectric spheres and it should
become more pronounced with the decreasing radius of the particle. When the applied electric field
is reversed, the charge distribution within the system is inverted, while the flow profiles remain
unaltered, confirming that the LCEO velocity is proportional to the square of the applied field.

We attribute the differences between the flow profiles obtained in this work and the experimental
observations in Ref. [12] to the fact that the particle in the experiment was much larger and the
geometry of the experiment itself was different. Here the particle was assumed to be suspended in
space filled with the nematic electrolyte with the uniform director orientation away from the particle.
On the other hand, in Ref. [12], the electrolyte was confined to a planar cell of thickness comparable
to the particle diameter.

The proposed model can be also employed to study general electrokinetic phenomena in
nematics, including the systems that contain macroscopic colloidal particles and complex network
of topological defects.
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