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LIQUID CRYSTAL ELASTOMERS AND PHASE TRANSITIONS IN
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Abstract. In this article, we construct and analyze models of anisotropic crosslinked poly-
mers employing tools from the theories of nematic liquid crystals and liquid crystal elastomers. The
anisotropy of these systems stems from the presence of rigid rod molecular units in the network. We
construct energy functionals for compressible and incompressible elastomers as well as for rod-fluid
networks. The theorems on the minimization of these energies combines methods of isotropic nonlin-
ear elasticity with the theory of lyotropic liquid crystals. Two of the theorems refer to incompressible
elastomers, in the cases that the bulk liquid crystal energy is given by the well-known polynomial
form of the Landau–de Gennes theory and also in the case of a singular potential. Another theorem
refers to compressible elastomers, and in the last row, the rod density is taken as a main field of the
model. We apply our results to the study of phase transitions in networks of rigid rods, in order to
model the behavior of actin filament systems found in the cytoskeleton. Our results show a good
agreement with the molecular dynamics experiments reported in the literature as well as with some
laboratory experiments. The model does not include polydispersity effects due to variable rod shape
and size, and it does not account either for phase transitions to lamellar phases.
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1. Introduction. Cytoskeletal networks consist of rigid, rodlike actin protein
units jointed by flexible crosslinks, presenting coupled orientation and deformation ef-
fects analogous to liquid crystal elastomers. The alignment properties of the rigid rods
influence the mechanical response of the network to applied stress and deformation,
affecting functionality of the systems [40], [24]. Parameters that characterize these
networks include the aspect ratio of the rods and the average length of the crosslinks,
with a large span of parameter values found across in vivo networks. For instance,
cytoskeletal networks of red blood cells have very large linkers and small rod aspect
ratio [39], [23], whereas those of cells found in the outer hair of the ear have a very
large aspect ratio and short linkers favoring a well-aligned nematic, in order to achieve
an efficient sound propagation [29]. This article is motivated by the works on Monte
Carlo simulations of phase transitions in rigid rod fluids by Bates and Frenkel [6] and
the later application to actin networks by Dalhaimer, Discher, and Lubensky [14]. In
these articles, the authors discuss experimentally observed alignment states and their
phase transitions as well as predictions from numerical experiments. They report
on a wide range of anisotropic regimes, including the uncrosslinked fluid network, in
the nematic as well as the isotropic state, and the crystal-glass states involving elas-
tomer microstructure. A goal of our work is to obtain a continuum model matching
predictions of the molecular simulations and available experiments.

A nematic fluid consists of interacting rodlike molecules that have the tendency
to align along preferred directions and the ability to flow under applied forces. Liq-
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650 CALDERER, GARAVITO GARZÓN, AND LUO

uid crystal elastomers are anisotropic nonlinear elastic materials, with the source of
anisotropy stemming from elongated, rigid monomer side groups, or from main chain
rodlike elements. They are elastic solids that may also present fluid regimes of [13]
(see [15], [16], [21], [41]). The interaction between the rod units and the network
is at the core of liquid crystal elastomer behavior. In main chain elastomers, the
connected rigid units are part of the backbone chains of the system and in side chain
elastomers, the rod units are attached to the polymer backbone. In both cases, the
backbone chains are crosslinked into a network. Models of anisotropic polymer melts
and their non-Newtonian behavior have received significant attention [19], [38], [42].

Ordering in nematic fluids is affected by temperature in thermotropic liquid crys-
tals and by rod concentration in lyotropic ones. At high temperature or low concen-
tration, respectively, nematic fluids are found in the isotropic state, experiencing a
transition to the nematic upon cooling the thermotropic liquid or increasing the rod
concentration of the lyotropic [25]. In rodlike systems, such as actin fiber networks,
the phase transition behavior is affected by the density of rods.

We consider anisotropic systems such that the total energy is the sum of the
Landau–de Gennes liquid crystal energy of the nematic and an anisotropic elastic
stored energy function. This energy involves two sources of anisotropy expressed by
symmetric second order tensors, that associated with the rigid units, represented by
the nematic order tensor Q, and that of the network described by the positive definite,
step-length tensor L, which encodes the shape of the network: it is spherical for
isotropic polymers and spheroidal for uniaxial nematic elastomers, and has eigenvalues

l‖ and l⊥ (double). The quantity r :=
l‖
l⊥

− 1 measures the degree of anisotropy of
the network, with positive values corresponding to prolate systems and negative ones
to the oblate shapes. In the prolate geometry, the eigenvector n associated with l‖ is
the director of the theory, giving the average direction of alignment of the rods and
also the direction of shape elongation of the network. It is natural to assume that L
and Q share eigenvectors. In particular we assume that they are linearly related, so
that for L prescribed, we take Q as its traceless version, that is Q = L − 1

3 trLI [41,
p. 49]. The free energy may also carry information on the anisotropy L0 imprinted in
the network at crosslinking the original polymer melt. In this work, we assume that
L and Q are defined on the reference configuration Ω of the elastomer.

The Landau–de Gennes free energy density is the sum of scalar quadratic terms
of ∇Q and the bulk scalar function f(Q). In the de Gennes–Landau theory, f is a
polynomial function of the trace of powers of Q and describes the phase transition
between the isotropic and the nematic phases [25]. However, the polynomial growth is
not physically realistic since it is expected that an infinite energy should be required
to reach limiting alignment configurations [8], [18]. This turns out to be, as well, an
essential element of our analysis that we formulate as the blow-up of f as the minimum
eigenvalue, λmin(Q), approaches − 1

3 [33], [5]. In the latter article, the authors show
that, in the case of thermotropic liquid crystals, the asymptotic behavior of f is
required to guarantee the compatibility of the Maier–Saupe energy and the continuum
theory. A cautionary note about notation: we will employ the common symbol f to
denote the bulk nematic energy density in the different cases that we address.

Denoting F the deformation gradient, the elastic energy density proposed by

Bladon, Terentjev, and Warner is |L− 1
2FL

1
2
0 |2. It is the analog of the neo-Hookean

energy of isotropic elasticity, and also derived from Gaussian statistical mechanics.

Taking into account the relevant role played by the tensor G := (L−1FFTL0)
1
2 in

the trace form of the energy, and motivated by the theory of existence of minimizers
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LIQUID CRYSTAL ELASTOMERS 651

of isotropic nonlinear elasticity [4], we consider polyconvex stored energy density
functions W (X) = Ŵ (G(X)), X ∈ Ω. However, since G is not a gradient, we
must be able to recover the limiting deformation gradient F ∗ from the minimizing
sequences {Gk}k≥1. For this, it is necessary that the minimizing sequences {Lk} yield
a nonsingular limit. This is achieved, by either restricting the range of the eigenvalues
of Q in the admissible set so that λmin(Q) is strictly greater than − 1

3 , or by requiring
the blow up of f(Q) at the lower eigenvalue limit. The former enters in the first
theorem on existence of a minimizer of the incompressible elastomer (Theorem 3.4),
in the case of polynomial bulk energy f(Q). We believe that this case merits special
treatment, since the polynomial form of f(Q) is used in the vast majority of the
research carried out in the scientific community involving the Landau–de Gennes
energy. The assumption of f being a singular potential is made in our second theorem
on existence of a minimizer of the incompressible elastomer energy (Theorem 3.5) as
well as in the compressible (Theorem 3.6) and rod-network cases (Theorem 3.7) and
(Theorem 3.8). The simulations presented in section 4 are also based on the singular
potential that we construct.

In the case of compressible networks, we further assume that mechanical expan-
sion and compression are coupled with liquid crystal order, so that the bulk free
energy is now f(Q, detF ). Following the analogous assumptions of isotropic elastic-
ity, we require that, for each symmetric traceless tensor Q, f becomes unbounded
as detF → {0,∞}. We argue that the coupling between expansion and compression
with nematic order is qualitatively analogous to that of lyotropic uniaxial nematic
liquid crystals, as proposed by Kuzuu and Doi [31]. In this case, the bulk energy f(s)
is parametrized by the rod concentration of the nematic fluid. At low concentration,
the isotropic minimum dominates, with nematic becoming the preferred phase as the
concentration increases. In the application to rigid rod networks of section 4, two pa-
rameter rates emerge as very relevant: χ = La

Lx
, where La denotes the typical length of

a cylindrical rod, and Lx that of a crosslinker filament, and the aspect ratio Aa = La

Da

of the rod, where Da denotes a typical diameter. We assume that f depends on s
and the rigid rod density ρ, and it is also parametrized by the ratio χ. Specifically,
following the denominations of loose, semiloose, and tight for networks with small
through large values of χ, we assume that f evolves from a function with a single
isotropic well for χ small (large linkers), to having a single nematic well for large χ
(short linkers), presenting an intermediate double-well region. We also assume that
the liquid energy scales according to the aspect ratio of the rods, resulting in larger
nematic contribution with increasing aspect ratio. Proposition 4.1 summarizes the
results on phase transitions under three-dimensional expansion. In subsection 4.2.1,
we construct a bulk free energy density with the previously described properties and
present results on numerical simulations of the phase transition behavior under plane
extensions, plots of phase diagrams in the density-aspect ratio plane, and the graphs
of the equilibrium order parameter s with respect to the rod density. In particular,
we find oblate equilibrium states for small values of the aspect ratio, corresponding
to disklike molecules.

We point out that in the theorems of section 3, we assume the deformation map
ϕ ∈ W 1,p(Ω,Rn), with p ≥ 2. This assumption helps in simplifying the proofs.
However, in the case of three space dimensions, it is well known that 2 ≤ p ≤ 3 does
not guarantee injectivity of the minimizer map ϕ∗. Consequently, in the points of the
domain where injectivity fails (perhaps due to formation of cavities in the material
or boundary self-contact), it is not possible to define the Eulerian pull-forward tensor
maps Q(x) = Q(X−1(x)), L(x), as well as ρ(x). In particular, the latter is needed
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652 CALDERER, GARAVITO GARZÓN, AND LUO

to interpret (3.34) as the equation of balance of the mass of rods. Likewise, this also
prevents us from interpreting the Landau–de Gennes contribution terms in the energy
functionals (2.6), (2.7), and (2.8) in the Eulerian frame, as it might be suggested by
the liquidlike character of the Landau–de Gennes energy. This is due to the fact
that the change of volume formula does not hold in the absence of injectivity of the
deformation map. From a related point of view, we justify the Lagrangian expression
|∇Q|2 in the energy as a result of the scaling properties of the energy as stated in
Remark 4. Moreover, our proposed form is exact for small strain deformations (with
large rotations allowed).

In addition to the trace models of liquid crystal elastomer energy studied by
Warner and Terentjev ([41] and references therein), generalizations of these earlier
forms have been proposed and studied by several authors ([2] and [20]; [1], [10], [11],
and [17]). In the first two references, the authors propose energies based on powers
of the earlier trace form, including Ogden-type energies, and study their extensions
to account for semisoft elasticity. Articles by de Simone et al. also propose and study
Ogden-type energies. Furthermore, the analysis of equilibrium states presented in [1]
applies to elastomer energy density functions that are not quasi-convex. (For instance,
these are appropriate to model crystallike phase transitions.) Their methods of proof
combine the construction of lower quasi-convex envelopes, the rigidity theorem [22],
and tools from the theory of Γ-convergence. Our results apply to a more restrictive
class of energy density functions, that is, polyconvex functions with respect to the
anisotropic deformation tensor G. Our methods of proof use tools of isotropic nonlin-
ear elasticity, and as such, are directly tailored to treating polyconvexity. Moreover,
this approach readily applies to modeling the nonconvexity associated with nematic
liquid order in networks and the corresponding phase transitions, although it does
not cover the more general type of transitions linked to quasi-convexity. The arti-
cle [35] presents a finite element analysis of the trace model, including simulations
of domain formation under extension and stress-strain graphs that characterize the
semisoft elastic response.

This article is organized as follows. Section 2 starts with the formulation of the
energy functionals to be analyzed, which include the incompressible and compressible
liquid crystal elastomers as well as a rod-fluid network model. The anisotropy sources
of the systems are discussed and rigorously formulated. The main issues addressed
include the constitutive equations, linking the polymer anisotropy represented by the
tensor L and the liquid crystal order measured by Q, the coupling of volume change
and order encoded in the bulk liquid crystal energy f , the polynomial dependence of f
on Q versus the singular potential assumption, the scaling property of the term |∇Q|2
and its mathematical justification, and the choice of the Lagrangian frame, the related
regularity requirements on the admissible sets, and the issue of injectivity of the
deformation map. Section 3 is devoted to the statement and proof of 5 theorems on the
minimization of the energy functionals. The first two theorems refer to incompressible
elastomers in the cases that f(Q) is a polynomial and a singular potential, respectively.
Another of the theorems applies to a compressible elastomer, whereas the last two
explicitly consider the source of compressibility as a result of changes of density of
the rigid rods. Section 4 presents a study of density dependent liquid crystal phase
transitions, with figures corresponding to the phase transition diagram and the order
properties with respect to mechanical extension of the system. The conclusions are
described in section 5. Auxiliary results employed in the proofs of existence of a
minimizer have been included in the appendix. Some of the results of section 3 find
their motivation in the Ph.D. thesis dissertation by Luo [33].
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LIQUID CRYSTAL ELASTOMERS 653

Finally, we introduce some notation and basic definitions used in the paper. We let
the open and bounded domain Ω ⊂ Rn, n = 2, 3, with sufficiently smooth boundary,
denote the reference configuration of the elastomer. LetM3 denote the space of second
order tensors and

M
3
+ = {M ∈ M

3 : detM > 0}, M
3
+1 = {M ∈ M

3 : detM = 1},(1.1)

S
3 = {M ∈ M

3 : M = MT },
S
3
+ = {M ∈ S

3 : detM > 0}, S
3
0 = {Q ∈ S

3 : trQ = 0},(1.2)

Q+
0 =

{
Q ∈ S

3
0 : λmin(Q) > −1

3

}
.

2. The Landau–de Gennes liquid crystal elastomer. In order to state the
energy functionals to be analyzed, we first present the dependent fields of the problem.
The deformation map of the polymer and its gradient, respectively, are given by

ϕ : Ω −→ Ω̄, x = ϕ(X),(2.1)

F = ∇ϕ, detF > 0,

Ω̄ = ϕ(Ω). Equilibrium states of nematic liquid crystal elastomers are characterized
by the deformation map ϕ, the step tensor and the order tensor fields, L : Ω −→ S3+

and Q : Ω −→ S30 describing the shape of the network and the nematic order of the
rigid units, respectively. The reference configuration is characterized by the fields L0

and Q0 ∈ S30, and, in some cases, by the density ρ0 = ρ0(X) of rigid rods.
A relevant quantity of the theory is the effective deformation tensor

(2.2) G = L− 1
2FL

1
2
0 .

Associated with the postulated material fields L and Q, we consider their Eulerian
counterparts L̄(x) = L(ϕ−1(x)) and Q̄(x) = Q(ϕ−1(x)), respectively. These are
well defined provided ϕ is injective, as discussed in Remark 6. The interpretation of
relation (2.2), based on ideas of plasticity and justified by the statistical theory of
polymers, is illustrated in Figure 1. Given functions

Ŵ : M3
+ −→ R,(2.3)

f, f̂ : M3
+ × R

+ −→ R,(2.4)

g : R+ −→ R,(2.5)

we let W (X) = Ŵ (G(X)) represent the elastic free energy density, and f(X) =

f(Q(X), detF (X)) and f̂(X) = f(Q(X), ρ(ϕ(X))) denote bulk liquid crystal en-
ergy densities of the material, the latter in terms of the rod density. In the case
that the material is incompressible, we use the notational convention f(Q) to de-
note the restriction f(Q, 1). Also, for the sake of simplicity, we treat the material as
homogeneous, with the extension to the inhomogeneous case being routine.

For given material parameters μ ≥ 0, ν ≥ 0, and k ≥ 0, the main types of energy
functionals treated in this work are the following.

1. Compressible liquid crystal elastomer:

(2.6) E =

∫
Ω

[μ
2

(
Ŵ (G) + g(detF )

)
+ νf(Q, detF ) + k|∇Q|2

]
dX.
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654 CALDERER, GARAVITO GARZÓN, AND LUO

Fig. 1. Decomposition F = L
1
2 G, G representing an effective deformation tensor, that is,

the deformation experienced by an isotropic material. The superposed soft mode deformation L
1
2

indicates the bias along the preferred direction, represented by the arrow. The special case of an
isotropic reference configuration (blank circle) L0 = I is shown.

2. Incompressible liquid crystal elastomer:

(2.7) E =

∫
Ω

(μ
2
Ŵ (G) + νf(Q) + k|∇Q|2

)
dX .

3. Network of rigid rods:

(2.8) E =

∫
Ω

[μ
2

(
Ŵ (G) + g(detF )

)
+ νf̂(Q, ρ) + ε|∇ρ|2 + k|∇Q|2

]
dX .

Remark 1. Here, we take a simplified form of the energy expression involving ∇Q
and ∇ρ. In the article [26], the authors give a full derivation of the energy, according
to the Onsager model for sphero-cylinder particles, listing all the terms that couple
the rod density with Q.

Next, we discuss the mechanical and liquid crystal coupling terms in the energy,
the classical ones as well as those that are original to this work, and establish their
mathematical properties.

2.1. Statistical mechanics of anisotropic polymers. We now focus on the
statistical treatment of single ideal chains, following the development in [41]. Let us
consider a freely jointed chain composed of N segments of length a, and let R denote
the end-to-end vector of a chain. The chain follows a random walk with step length
a. The average end-to-end distance is given by

(2.9) 〈|R|2〉 = Na2 = al, 〈RiRj〉 =
1

3
δijal, 1 ≤ i, j ≤ 3,

where l = Na is the arc length of the chain, and 〈·〉 denotes the ensemble average.
The probability of a given chain conformation to have an end-to-end vector R is the
Gaussian distribution

(2.10) pN (R) =

(
3

2πR2
0

) 3
2

e
− 3|R|2

2R2
0 ,
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LIQUID CRYSTAL ELASTOMERS 655

characterized by its variance R0. Moreover, consistency with (2.9) implies that R2
0 =

al. The partition function,

ZN (R) = pN (R)ZN

gives the number of configurations with end-to-end vector R, where ZN is the total
number of chain configurations. So, the free energy of a single chain is

(2.11) F = −kBT lnZn(R) = kBT

(
3|R|2
2R2

0

)
+ C,

where C is constant.
Another measure of the spatial extension of a single chain is the radius of gyration

RG. It is defined as the root mean square of the distance between each segment of
the chain and the center of mass. In the case that the number of segments N � 1,

〈R2
G〉 ≈

1

6
Na2 =

1

6
al =

1

6
R2

0.

So, on the average, the shape of a polymer chain at equilibrium is spherical with
radius RG.

The average shape of a liquid crystal polymer is that of an ellipsoid, with step-
length tensor L, so that the anisotropic analog of the average of end-to-end distance
(2.9) is now

(2.12) 〈RiRj〉 =
1

3
lLij.

Letting l1, l2, and l3 denote the ellipsoid semiaxes along directions ei, i = 1, 2, 3,
|ei| = 1, L admits the spectral representation

(2.13) L = Σ3
i=1liei ⊗ ei.

We take l1 = l2 := l⊥ to represent a uniaxial network giving the spheroidal represen-
tation for L, and denote l‖ := l3 and n := e3, so that

(2.14) L = (l‖ − l⊥)n⊗ n+ l⊥I.

In the prolate symmetry corresponding to main chain polymers, l‖ > l⊥, in which
case the polymer backbone will stretch along the nematic director n. (The reverse
inequality holds in the case of side-chain oblate elastomers).

The Gaussian distribution of chain conformations generalized to the anisotropic
case is

(2.15) pN(R) =

[(
3

2πl

)3
1

detL

] 1
2

e−
3
2l (R·L−1R).

As in the isotropic case, the affinity property of chain conformations leads to the
anisotropic version of the neo-Hookean energy in the form

WBTW = μ(F · L−1F ),(2.16)

where μ denotes the shear modulus. An expression that includes the shape at
crosslinking encoded in the initial step-length tensor L0 is

WBTW = μtr(L0F
TL−1F ).(2.17)
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656 CALDERER, GARAVITO GARZÓN, AND LUO

The latter is the form proposed by Bladon, Warner and Terentjev [41]. In their
original work, it is represented in terms of the nematic director n and the uniaxial
order parameter s:

WBTW =
1

2
μ
l0⊥
l⊥

(
(|F |2 − (1− r)|FTn|2)

+

(
1− r0
r0

)
(|Fn0|2 − (1− r)(FTn · n0)

2)

)
,

r =
l⊥
l‖
, r0 =

l0⊥
l0‖
,(2.18)

as in [41], with n0, l
0
‖, and l0⊥ representing rod alignment and polymer shape, respec-

tively, at crosslinking. From (2.18), we observe that the configuration at crosslinking
is also the reference one.

2.2. Material assumptions. Following the property of freely joined rods, we
assume that L and Q have common eigenvectors and propose the constitutive relation

(2.19) L = a0

(
Q +

1

3
I

)
, a0 > 0,

where a0 = trL is constant. The linear constitutive equation (2.19) is analogous to
those proposed by Warner and Terentjev [41] and Fried and Sellers [20] stating that,
given a symmetric and traceless tensor Q, there is a unique step-length tensor L with
trace a0.

In order to interpret this condition, and following the approach in [34], we appeal
to the spectral representation

(2.20) Q =

3∑
i=1

λiei ⊗ ei, λ1 + λ2 + λ3 = 0.

The eigenvalues of Q satisfy − 1
3 ≤ λi ≤ 2

3 , i = 1, 2, 3. For a biaxial nematic, Q admits
the representation in terms of the order parameters r and s,

(2.21) Q = r

(
e1 ⊗ e1 −

1

3
I

)
+ s

(
e2 ⊗ e2 −

1

3
I

)
,

where

s = λ1 − λ3 = 2λ1 + λ2, r = λ2 − λ3 = λ1 + 2λ2.

The inequality constraints on λi imply restrictions on r and s. Specifically, admissible
values of (r, s) belong to the interior of the triangle T determined by the edges ∂T :
r+ s = 1, r− 2s = 1, and s− 2r = 1 (Figure 2). It is easy to check that Q reaches its
minimum eigenvalue λ = − 1

3 on each edge of ∂T . Hence,

(2.22) detL = 0 ⇔ det

(
Q+

1

3
I

)
= 0 ⇔ λmin(Q) = −1

3
⇔ (r, s) ∈ ∂T .

We finally notice that the uniaxial states correspond to the lines r = 0, s = 0,
and r = s. In the latter case, the uniaxial order tensor representation is

(2.23) Q = −s

(
n⊗ n− 1

3
I

)
, −s ∈

(
−1

2
, 1

)
, |n| = 1,
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Fig. 2. Q attains the minimum eigenvalue λ = − 1
3
on each one of the edges of the triangle T .

Reproduced from [34].

with n := e3 representing the director of the theory. Consistency with (2.13) yields

(2.24) a0r = (l1 − l3), a0s = (l2 − l3).

This reduces to the uniaxial nematic with director n and order parameter s in the
case that

l2 = l1 := l⊥, l3 := l‖.

Remark 2. In the uniaxial theory, the order parameter −s in (2.23) is simply
denoted as s, a convention that we will follow for the remainder of the article.

2.3. Landau–de Gennes liquid crystal energy. We now examine the energy
terms in (2.6), (2.7), and (2.8) involving |∇Q|2 and the bulk liquid crystal contribution
f(Q, ξ), ξ > 0. These are the analogs of a Landau–de Gennes energy density form of
a thermotropic liquid crystal,

(2.25) WLdG = νf(Q) + k|∇Q|2,

where

(2.26) f = a tr(Q2)− b

3
tr(Q3) +

c

4
(trQ2)2 + C(a, b, c), a =

α

2
(T − TNI),

b, c, α > 0 are material constants, T denotes the absolute temperature, and TNI

represents the temperature of transition between the isotropic and nematic phases.
The constant C ≥ 0 guarantees

(2.27) f(Q) ≥ 0.

The function f as in (2.26) has a double-well structure and encodes the phase tran-
sition behavior between the nematic and isotropic phases, according to values of the
parameter T . In its general form, the second term in (2.25) is a combination of
distinctly weighted components of ∇Q [25].

For uniaxial, liquid crystals (2.25) reduces to

(2.28) WE = k(|∇s|2 + s2|∇n|2) + νf(s), s ∈
(
−1

2
, 1

)
.
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658 CALDERER, GARAVITO GARZÓN, AND LUO

In the case of lyotropic liquid crystals, Kuzuu and Doi ([31] and [32]) assume that f is
parametrized by the rod concentration, with high concentration favoring the nematic
phase. Moreover, in later work by Ericksen [18], and related applications [8], f is
assumed to be a singular potential satisfying

(2.29) lim
s→{− 1

2 ,1}
f(s) = +∞.

Remark 3. We point out that the term k|∇Q|2 in (2.25) results from simplifying
the multiconstant form of the Landau–de Gennes energy [25].

In the current article, we consider the bulk liquid crystal energy densities f(Q),

f(Q, detF ), and f̂(Q, ρ). In the latter two functions, the dependence on detF and
ρ, respectively, generalizes that on the concentration parameter of the uniaxial bulk
energy density f(s) in (2.28). Indeed, expansion or contraction of the network and
changes in rod density have the effect of varying rod concentration. Consequently,
statement (2.29) was generalized as follows [33]:

(2.30) lim
det(Q+ 1

3 I)→0
f(Q, ξ) = +∞ for every ξ > 0.

This is equivalent to

(2.31) lim
λmin(Q)→− 1

3

f(Q, ξ) = +∞ for every ξ > 0.

In the case of nematic liquid crystals, the singular limits of f(Q) were stated in [5].
The authors also formulate them in terms of the order parameters as follows: there
exists a smooth function Φ : T → R+ such that f(Q) = Φ(s, r) and

(2.32) lim
(s.r)→∂T

Φ(s, r) = +∞.

Remark 4. Finally, we point out the regularizing role of the term |∇Q|2 in
the Landau–de Gennes elastomer energies (2.6), (2.7), and (2.8). Using the Onsager
theory of rigid rods, and assuming either the Lennard–Jones or a hard core interaction
potential ([26] and [30]), the material constants k and ν are found to satisfy the
relation ν = O( k

L2
a
). For the systems that we consider, typical values of the rod

length La are in the range from 10−9 to 10−6 m, rendering the gradient term a small
perturbation of the energy.

3. Energy minimization. We present and analyze several variational problems
associated with the energy functionals (2.6) and (2.8). The motivations leading to
the choice of such problems are multifold. First of all, we pay special attention to
the incompressible elastomer since it is a valid model for anisotropic rubbers. Within
this class, we consider two distinctive bulk liquid crystal energy density functions,
corresponding to f(Q) being a polynomial (2.26), and to the case that it is a singular
potential as in (2.31) (with detF = 1). The first case, although it will require a
restriction on the class of admissible fields Q, is abundantly justified since the vast
majority of works found in the physics literature assume the polynomial form (2.26).
Two main reasons call for the analysis of the compressible elastomer. First of all, it
offers the appropriate setting for the mathematical treatment of gels, and second, it is
appropriate for the case when rod density is a main variable field of the problem, such
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as in the study of actin filament networks. Auxiliary results that enter the proofs of
the forthcoming theorems are set in the appendix.

Remark 5. The results that follow hold for any prescribed L0 ∈ S3+ in the
definition (2.2). However, to simplify the presentation, we develop the proofs for
the case L0 = I.

We start with making the following assumption s on Ŵ (G) motivated by the
analogous ones in isotropic nonlinear elasticity [4].

Polyconvexity: there exists a convex function Ψ : M3
+ ×M3

+ × (0,∞) −→ R such

that Ŵ in (2.6) and (2.8) satisfies

(3.1) Ŵ (G) = Ψ(G, adjG, detG).

Coerciveness: there exist constants α, β, p, q, r such that

α > 0, p ≥ 2, q ≥ p

p− 1
, r > 1,

Ŵ (G) ≥ α(|G|p + | adjG|q + (detG)r) + β

for almost all X ∈ Ω and for all F ∈ M
3
+.(3.2)

Moreover, in the case that the elastomer is compressible, we also require
Growth near zero determinant:

(3.3) lim
detG→0+

Ŵ (G) = +∞.

Remark 6. The assumption p ≥ 2 has deep consequences on the nature of the
energy minimizers established in this section. It is well known that for 2 ≥ p ≥ 3
and in three space dimensions, injectivity of the deformation map x = ϕ(X) is not
guaranteed and, therefore, the Lagrangian tensors Q(X), L(X), and the scalar ρ(X)
may not admit Eulerian counterparts, defined in ϕ(Ω). These can be addressed by
two approaches. The first one consists in imposing the more restrictive assumption
p > 3 in (3.2) and Dirichlet boundary data on the boundary (or part of it). However,
this is not quite a desirable outcome, since the resulting class of elastomer energies do
not involve the neo-Hookean form by Bladon, Warner, and Terentjev. In the second
approach, we maintain p ≥ 2 but we add a new energy term in (2.6) and (2.8). This
term penalizes the surface created around cavities and boundary contact points, both
resulting from possible loss of injectivity [27]. (This is the subject of current work by
the authors.)

Remark 7. The following statement is a straightforward consequence of (2.2),
(2.19), and (2.22):

(3.4) detG → 0+ ⇐⇒ detF → 0+ provided λmin(Q) > −1

3
+ ε

for some ε > 0.
Remark 8. We observe that the condition on the exponents p and q of (3.2)

guarantees 1
p+

1
q < 4

3 . This is a required condition to obtain convergence of weak limits

of sequences of determinants in the proof of existence of a minimizer (Theorem 3.1).

We impose Dirichlet boundary conditions on Γ0 ⊆ ∂Ω. Let ϕ̂ ∈ H
1
2 (Γ0,R

3) be

injective and Q̂ ∈ H
1
2 (Γ0, S

3
0) be prescribed and such that

(3.5) ϕ(X) = ϕ̂(X) and Q(X) = Q̂(X), X ∈ Γ0.
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660 CALDERER, GARAVITO GARZÓN, AND LUO

The following theorem is a special case of [4, Theorem 6.2]. We will apply it in
the proofs of the existence of minimizer of the total energy, as in the case of isotropic
elasticity.

Theorem 3.1. Suppose that Ω ⊂ Rn is open.
• n = 3: If ur ⇀ u in W 1,p(Ω) and adj∇ur ⇀ adj∇u in Lq with p > 1, q > 1,
and 1

p + 1
q < 4

3 , then det∇ur −→ det∇u in D′(Ω).

• n = 2: If ur ⇀ u in W 1,p(Ω) and p > 4
3 then det∇ur −→ det∇u in D′(Ω).

3.1. Incompressible Landau–de Gennes elastomer. In this section, we
prove existence of an energy minimizer for two different forms of the liquid crys-
tal bulk energy f(Q). We first consider the case that f(Q) is the standard Landau–de
Gennes polynomial and in our second approach, we assume that the function f(Q) is
defined as in (2.30) and (2.32).

3.1.1. Restriction on the domain of Q. We now include a new constraint on
the elements Q ∈ S30 of the admissible set: for a given ε > 0, λmin(Q) ≥ − 1

3 + ε. We
note that even the strict bound λmin(Q) > − 1

3 is not sufficient to guarantee that the
limit Q∗ of the minimizing sequences {Qk} satisfies the same strict lower bound so as
to guarantee the invertibility of L obtained from (2.19).

As in [10], we define the set

(3.6) Q(a) = {Q ∈ S
3
0, λmin(Q) ≥ a},

where a is some real number, and define Qε = Q(−1/3+ ε), where 0 < ε ≤ 1/3 is an
arbitrary constant.

Proposition 3.2. The set Q(a) is convex in S30.
Proof. Take any two matrices Q1 and Q2 in Q(a), and let

Q = α1Q1 + α2Q2,

where αi ≥ 0, i = 1, 2, and α1 + α2 = 1. Since Q ∈ S30, we only need to show that
λmin(Q) ≥ a. By Rayleigh’s formula, we have

λmin(Q) = min
|x|=1

xTQx = min
|x|=1

(
2∑

i=1

αix
TQix

)

≥
2∑

i=1

αi min
|x|=1

xTQix = a.

Hence Q ∈ Q(a) and so the convexity of Q(a) follows.
For any matrix Q ∈ S30, since tr(Q) = 0, λmin(Q) ≤ 0 and λmax(Q) ≥ 0 hold. The

following proposition gives a bound on λmax(Q) based on λmin(Q).
Proposition 3.3. Let Q ∈ S30. Then

(3.7) λmax(Q) ≤ −2λmin(Q).

Proof. For any matrix Q in S30, let its eigenvalues satisfy λ1 ≤ λ2 ≤ λ3. Since
tr(Q) = λ1 + λ2 + λ3 = 0, we have

−λ3 = λ1 + λ2 ≥ 2λ1.

The conclusion follows by multiplying both sides of the previous inequality
by −1.
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Now we turn to the questions of estimating eigenvalues of L and L0 given by
(2.19) for Q,Q0 ∈ Qε. Note that L and L0 are both symmetric and positive definite,
so that the anisotropic deformation tensor G in (2.2) is well defined. By Proposition
3.3, we have that

λmax(Q) ≤ −2λmin(Q) ≤ 2

3
− 2ε.

So, using the constitutive relation (2.19) gives

(3.8) λmax(L) ≤ a0(1− 2ε) ≤ a0.

Moreover, since λmin(Q0) ≥ − 1
3 + ε, using again (2.19) yields

(3.9) λmin(L0) ≥ a0ε.

Hence, from Lemma 6.3, we have that

|G| ≥
√
ε|F | and(3.10)

|adj(G)| ≥ 1

3
ε|adj(F )|.(3.11)

Let ε > 0 and consider the problem of minimizing (2.6) on the admissible set

Aε ={ϕ ∈ W 1,p(Ω,R3), Q ∈ W 1,2(Ω,Qε) : adj(∇ϕ) ∈ Lq(Ω,M3),

det∇ϕ = 1 a.e., and (3.5) holds}(3.12)

with p and q as in (3.2). The following theorem proves existence of a global minimizer
of the energy.

Theorem 3.4. Let Ω ∈ R3 be open and bounded, with smooth boundary ∂Ω,
and let Γ0 ⊆ ∂Ω be as in (3.5). Let the total energy be as in (2.7) and suppose that
relations (2.2) and (2.19) hold. Assume that hypotheses (2.26), (3.1), and (3.2) hold.
Then, there exists at least one pair (ϕ∗, Q∗) ∈ Aε such that

(3.13) E(ϕ∗, Q∗) = inf
(ϕ,Q)∈Aε

E(ϕ, Q).

Proof. First of all, we point out that the integrals in the definition of E are well
defined. We observe as well that Aε �= ∅ and therefore, there exists a constant K1 > 0
such that the following inequality holds:

(3.14) inf
(ϕ,Q)∈Aε

E < K1.

Step 1. Coercivity. From the coercivity hypothesis (3.2) on Ŵ (G) and property
(2.27), it follows that

E(ϕ, Q) ≥ α

∫
Ω

(
|G|p + | adjG|q + |∇Q|2

)
dX.(3.15)

Likewise, the positivity of Ŵ (G) implies that

(3.16) E(ϕ, Q) ≥
∫
Ω

f(Q) dX.
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662 CALDERER, GARAVITO GARZÓN, AND LUO

According to the generalized Poincaré inequality [12, p. 281], there exists a constant
c > 0 such that

(3.17)

∫
Ω

|ϕ|p dX ≤ c

{∫
Ω

|∇ϕ|p dX + |
∫
Γ0

ϕ dS|p
}

for all ϕ ∈ W 1,p(Ω). Likewise,

(3.18)

∫
Ω

|Q|2 dX ≤ c

{∫
Ω

|∇Q|2 dX + |
∫
Γ0

QdS|2
}
.

Now, combining (3.10), (3.11), (3.17), and (3.18) with the fact that p ≥ 2 gives the
existence of constants C > 0 and c0 such that

(3.19) E(ϕ, Q) ≥ C‖ϕ‖p1,p + ‖ adjF‖q0,q + ‖Q‖21,2 − c0.

The latter inequality guarantees the existence of a constant K0, which together with
(3.14) yields

(3.20) K0 < inf
(ϕ,Q)∈Aε

E < K1.

Let (ϕk, Qk) ∈ Aε be a minimizing sequence for E , that is,

(3.21) lim
k→∞

E(ϕε, Qε) = inf
(ϕ,Q)∈Aε

E .

Step 2. Compactness. From inequality (3.19), it follows that

E(ϕk, Qk) −→ ∞, as (‖ϕk‖1,p + ‖ adjFk‖0,q + ‖Qk‖1,2) → ∞,

which together with the second inequality in (3.20) implies that

(ϕk, adj∇ϕk, Qk) is bounded in the reflexive Banach space W 1,p × Lq ×W 1,2.

Therefore there exist weakly convergent subsequences such that

ϕk ⇀ ϕ∗ in W 1,p,(3.22)

adj∇ϕk ⇀ H∗ in Lq,(3.23)

Qk ⇀ Q∗ in W 1,2.(3.24)

Step 3. Properties of ϕ∗ and Q∗. From (3.22) and (3.23), we have by Theorem 3.1
that

H∗ = adj(∇ϕ∗) and

det(∇ϕ∗) = det(∇ϕk) = 1 a.e. in Ω.(3.25)

Also, by Proposition 3.2 and Mazur’s theorem, the set {Q ∈ H1(Ω,M3) : Q ∈
Qε a.e. in Ω} is weakly closed. Thus it follows from (3.24) that Q∗ ∈ Qε a.e. in
Ω. Hence (ϕ∗, Q∗) ∈ Aε.

Finally, the existence of a minimizer follows from the lower semicontinuity of E ,
due to the polyconvexity assumption on Ŵ (G) and the continuity of f . This concludes
the proof of the theorem.

Remark 9. Note that the previous result applies to the Bladon–Terentjev–Warner
energy only in the case n = 2. This is a direct consequence of Theorem 3.1.

D
ow

nl
oa

de
d 

12
/0

5/
16

 to
 1

28
.1

01
.1

52
.2

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIQUID CRYSTAL ELASTOMERS 663

3.1.2. Nonpolynomial growth of the bulk energy f(Q): Case of singular
potential. We now study the case that f(Q) is a singular potential that blows up at
the limit det(Q+ 1

3I) = 0. Let Q+
0 be as in (1.2) and define the following admissible

set:

A0 ={ϕ ∈ W 1,p(Ω,R3), Q ∈ W 1,2(Ω,Q+
0 ) : adj(∇ϕ) ∈ Lq(Ω,M3),

det∇ϕ = 1 a.e., and (3.5) holds.(3.26)

Theorem 3.5. Let Ω and Γ0 be as in Theorem 3.4 and suppose that relations
(2.2) and (2.19) hold. Assume that hypotheses (3.1) and (3.2) hold, and that the
bulk energy density satisfies limλmin(Q)→− 1

3
f(Q) = +∞. Suppose that the prescribed

boundary tensor has the property λmin(Q̂) > − 1
3 + ε for some ε > 0. Then the total

energy (2.7) has a global minimizer in (3.26).
Proof. It is easy to see that Steps 1 and 2 of the proof of the previous theorem

follow as well in this case. Let {(ϕk, Qk)}k≥1 denote a minimizing sequence of the
energy in A0.

Step 3. Properties of ϕ∗ and Q∗. First of all, we note that (3.25) also holds in
this case. We now study properties of the minimizing sequence {Qk} to show that
Q∗ ∈ Q+

0 . We first observe that the strong convergence of {Qk} to Q∗ in L2 follows
from (3.24), and, up to a subsequence, it implies that

(3.27) Qk −→ Q∗ a.e. in Ω.

Let qm := det(Qm + 1
3I) and note that

qm > 0 a.e. in Ω ⇔ q∗ ≥ 0 a.e. in Ω.

We want to prove that q∗ > 0 a.e. in Ω. For this, suppose that q∗ = 0 on a set A ⊂ Ω,
vol(A) > 0. Since 0 < dl ⇀ d∗, we have∫

A

∣∣∣∣det
(
Ql +

1

3
I

)∣∣∣∣ dX =

∫
A

det

(
Ql +

1

3
I

)
dX −→

∫
A

det

(
Q∗ +

1

3
I

)
dX = 0.

We now consider the sequence fm := f(Qm) of measurable functions of X. Since
fm ≥ 0, by Fatou’s theorem∫

A

lim inf
m→∞

fm(X) dX ≤ lim inf
m→∞

∫
A

fm(X) dX .

By the growth assumption (2.32) on f

lim inf
m→∞

fm = lim
det(Q+ 1

3 I)→0
f(Q) = +∞,

and consequently limm→∞
∫
A f(Qm(x)) dX = +∞. But the latter relation contradicts

the statement that
∫
Ω
f(Qk) < K1 that follows from (3.16). Hence Q∗ ∈ Q+

0 a.e. in
Ω.

Finally, existence of an energy minimizer in A0 follows from the polyconvexity
of Ŵ , the weak lower semicontinuity of

∫
Ω
f that follows from Fatou’s theorem, and

the fact that the pair (ϕ∗, Q∗) satisfies the boundary conditions prescribed to the
elements of A0. The latter is a consequence of the compactness of the trace operator
mapping W 1,p(Ω) to Lp(Ω) (and the analogous one for the tensor Q).
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3.2. Compressible Landau–de Gennes elastomer. In this section, we study
minimization of the energy functional (2.6). In addition to (2.30), we also assume that

(3.28) lim
detF→(0,∞)

f(Q, detF ) = +∞ for each Q ∈ S3
0 .

This condition penalizes deformations with extreme volume change and it is similar
to (2.2) on the elastic energy. The admissible set is

AC = {ϕ ∈ W 1,p(Ω,R3), Q ∈ W 1,2(Ω,Q0) : adjG ∈ Lq(Ω,M3),

detG ∈ Lr(Ω, R+), det∇ϕ > 0 a.e., and (3.5) holds}.(3.29)

Theorem 3.6. Let Ω and Γ0 be as in Theorem 3.4 and suppose that relations
(2.2) and (2.19) hold. Suppose that the free energy density is as in (2.6). Assume that
(3.1), (3.2), (2.30), (3.3), and (3.28) are satisfied. Moreover, we require that one of
the following holds:

1. if f in (2.6) is convex with respect to detF , we take g ≡ 0;
2. if f is nonconvex, we assume that g ≥ 0 and not identically 0 is a smooth

and convex function.
Then the total energy admits a minimizer in AC .

Proof. We observe that Steps 1 and 2 of the proof of Theorem 3.4 apply to this
case as well. We need to establish that (ϕ∗, Q∗) belong to the admissible set by
showing that det∇ϕ∗ > 0. If g �= 0, it follows by Fatou’s theorem along the same
lines of the proof of det∇ϕ∗ = 1 in the incompressible case. If g ≡ 0, the proof can
also be given using Mazur’s theorem on f . Existence of a minimizer follows from
the polyconvexity of Ŵ together with Fatou’s theorem that provides the weak lower
semicontinuity of f and g.

Remark 10. The energy minimizer may not be uniaxial even in the case that
L0 and Q̂ are uniaxial. In fact, the same statement is true for the minimizer of
the Landau–de Gennes energy of the pure liquid crystal problem [34]. In that case,
numerical results give strong evidence of uniaxiality when Q̂ is uniaxial.

Remark 11. The two sets of assumptions on f and g are meant to deal with the
convexity properties of f(detF,Q) with respect to detF . Convexity of f is sufficient
to provide information on the weak limits of sequences of determinants. However,
nonconvexity occurs when phase transitions are involved, in which case g has the role
of controlling the determinant.

3.2.1. Rod fluids with elastic crosslinks. We now analyze a model for the
elastically interacting nematic units motivated by models of actin networks. We as-
sume that the total energy is as in (2.8).

Let ϕ̂ and Q̂ be as in (3.5) and ρ̂ ∈ H
1
2 (Γ0,R

+). We assume that

f̂ ∈ C(S3
0 × (0,∞),R+),(3.30)

g ≥ 0 is smooth and convex,(3.31)

lim
ρ→{0,∞}

f̂(Q, ρ) = +∞ for each Q ∈ S3
0 ,(3.32)

lim
det(Q+ 1

3 I)→0
f̂(Q, ρ) = +∞ for each ρ ∈ (0,∞).(3.33)

We let ρ0 > 0 denote the prescribed reference rod density and assume that the equa-
tion of balance of mass

(3.34) ρ(X) det(∇ϕ)(X) = ρ0, X ∈ Ω a.e.
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of rods holds. We define the admissible set as

Aρ ={ϕ ∈ W 1,p(Ω,R3), Q ∈ W 1,2(Ω,Q+
0 ) : adjG ∈ Lq(Ω,M3),

detG ∈ Lr(Ω,R+), ρ ∈ W 1,2(0,∞), ρ > 0 a.e., (3.34) holds,

ρ = ρ̂, ϕ = ϕ̂, and Q = Q̂ on Γ0}.(3.35)

We now formulate the main theorem of existence of a minimizer for the rod system.
Theorem 3.7. Let Ω and Γ0 be as in Theorem 3.4 and suppose that relations

(2.2) and (2.19) hold. Suppose that the free energy density is as in (2.8) with g ≡ 0.
Suppose that the assumptions (3.1), (3.2), (3.3), (3.30), (3.32), and (3.33) are satisfied.
Then the total energy admits a minimizer in Aρ.

Proof. Once more, Steps 1 and 2 of the proof follow as in Theorem 3.4. This
yields sequences {φk, Qk} with properties (3.22), (3.23), (3.24). Moreover, it follows
from Theorem 3.1 that det∇ϕk → det∇ϕ∗ > 0 in D′(Ω).

Let {ρk} denote the minimizing sequence corresponding to the rod density. It is
easy to see that the analog of relations (3.20) and (3.19) now yield

(3.36)

∫
Ω

|∇ρk|2 dX < K.

This, together with Poincaré’s inequality yields a subsequence such that ρk → ρ∗ in
L2(Ω) and ρk → ρ∗ a.e. in Ω. The a.e. convergence of {ρk} to ρ∗ and the convergence
of the sequence of determinants yield

ρ0 = ρk det∇ϕk ⇀ ρ∗ det∇ϕ∗.

Hence the balance of mass equation (3.34) is satisfied at the limit. The verification
that the limiting fields satisfy the boundary conditions in (3.35) follow as in Theorem
3.4.

Finally, we state the theorem of existence of a minimizer in the case that Φ in
(3.1) is independent of adjF and detF , that is, the elastomer free energy density
function is that of a Hadamard material [12]. In this case, we set the admissible set as

AH ={ϕ ∈ W 1,p(Ω,R3), Q ∈ W 1,2(Ω,Q+
0 ), ρ ∈ W 1,2(0,∞),

ρ > 0 a.e. in Ω, (3.34) holds, ρ = ρ̂, ϕ = ϕ̂, and Q = Q̂ on Γ0}.

The proof of the next theorem follows as that of Theorem 3.7, where now the con-
vergence of the sequence of determinants and the positivity of the limit determinant
follow from the convexity of g.

Theorem 3.8. Let Ω and Γ0 be as in Theorem 3.4 and suppose that relations
2.2 and 2.19 hold. Suppose that the free energy density in (2.8) is such that Ŵ (G) =
Ψ(|G|) ≥ 0, with Ψ(·) smooth and convex and let g �= 0 satisfy (3.31). Suppose that
the assumptions (3.30), (3.32), and (3.33) are satisfied. Then the total energy admits
a minimizer in AH.

4. Liquid crystal phase transitions in actin networks. In this section, we
apply the energy functions (2.8) to model density dependent liquid crystal phase
transitions in actin networks. These are a class of cytoskeletal networks consisting
of stiff actin rods jointed by flexible crosslinkers. Their properties emerge from the
interaction of liquid rod behavior and network elasticity.

Parameters to characterize these networks include the ratio χ = La/L
0
x of the

typical lengths La of the actin rod and that of the the crosslinker, L0
x, in the reference
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Loose
Semi−loose

Tight

Fig. 3. Three types of actin network according to χ. Reproduced from [14].

configuration, the rod aspect ratio Aa, the rod reference density ρ0, and the reference
crosslink density σ0

x. These are also the reference parameters used in the Monte Carlo
simulations of these systems by Bates and Frenkel [6] (rigid rod fluids) and Dalhaimer,
Discher, and Lubensky [14] (crosslinked rigid rod networks). These works together
with the studies of lyotropic liquid crystals by Kuzuu and Doi [31] motivate the
constitutive assumptions in our continuum mechanics treatment. We assume that the
molecular interactions responsible for nematic phases in rodlike fluids compete with
the solidlike elastic forces due to network crosslinking. We formulate this assumption
in terms of the relative energy scales of fluid and solid systems. Our goal is to adopt
the simplest possible set of assumptions capable of explaining the phase transition
behavior.

In [14], the authors argued that the actin network can be classified into three
regimes according to values of the ratio χ = La/L

0
x, where La is the length of the

actin fiber, and L0
x is the typical length of the crosslinker in the reference configuration,

as shown in Figure 3. They found that
• when χ < χl, the network is isotropic in the stress-free state (external force
Σ = 0) or under expansion (Σ > 0), and the network will become nematic
under large enough compression (Σ ≤ Σc < 0);

• when χl < χ < χr, the network is nematic in the stress-free state (external
force Σ = 0), or under compression (Σ < 0), and the network will become
isotropic under large enough expansion (Σ ≥ Σc > 0);

• when χ > χr, the network is nematic regardless of the type of applied force.

4.1. Parameters of the model and assumptions. We assume that the sys-
tem is characterized by

1. the reference configuration Ω ⊂ R3 and the previously defined positive quan-
tities L0

x, ρ0, σ
0
x, χ, and Aa;

2. the energy scaling parameters

(4.1) μ = RTσ0
x, ν = RTAaρ0,

where R is the gas constant and T the absolute temperature. In particular,
they reflect the property that an increase in the rod aspect ratio, while holding
the other parameters fixed, tends to favor nematic equilibrium.
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Remark 12. Since the rods are not randomly located in space as in the case of
a fluid but serve as crosslink sites, ρ0 and L0

x are not independent. For systems such
that L0

x � La, the following estimate holds:

(4.2) ρ0 =
total volume of rods

total undeformed volume
= K

χ3

A2
a

.

We have taken the material of the rod as having mass density 1. K is a network
constant that accounts for the number of crosslinks per actin unit and the coordination
number of the network. Moreover, in estimating the denominator, we have assumed
that the total volume of the system is fully spanned by the network.

Physiological values for the model parameters are available in the literature. In
the case of cochlear outer hair cells the diameter of a typical actin filament varies from
5 to 8 nm. The maximum reported length is 1 μm [28, 7]. Data for the linkers length
is also available; for this type of material, lengths vary in the range from 50 nm to
260 nm. With these values we estimate model parameters like χ and the aspect ratio
Aa. In particular, typical values of χ can be found in the range from 3.8 to 20.

4.1.1. Nematic rod fluid. We assume that f : (− 1
2 , 1)× (0,∞) −→ R repre-

sents a uniaxial bulk energy, parametrized by χ > 0, so that the following hold.
1. There exists a critical value χt such that, for 0 < χ < χt, f has two local

minima {s = 0, ρ = ρ0} and {s∗ > 0, ρ∗ > ρ0}. For χ > χt, only the nematic
minimum remains.

2. There exists a critical value χl < χt such that,

f(0, ρ0;χ) < f(s∗, ρ∗;χ) for 0 < χ < χl,(4.3)

f(0, ρ0;χ) > f(s∗, ρ∗;χ) for χl < χ < χt,(4.4)

f(0, ρ0;χl) = f(s∗, ρ∗;χl).(4.5)

3. f(s∗, ρ∗;χ) decreases with increasing χ, and s∗ increases and ρ∗ decreases,
also with respect to χ.

4. f has a maximum at s = s∗∗, ρ = ρ∗∗, 0 < s∗∗ < s∗, ρ0 < ρ∗∗ < ρ∗.
5. It satisfies growth conditions with respect to s and ρ:

lim
s→{− 1

2 ,1}
f(s, ρ;χ) = +∞ for all ρ > 0,(4.6)

lim
ρ→{0,∞}

f(s, ρ;χ) = +∞ for all s ∈
(
−1

2
, 1

)
.(4.7)

An example of a function satisfying the proposed growth conditions is presented
in Figure 4. In the next section, we provide a method of constructing a function f
satisfying these properties.

4.2. Density dependent phase transitions. Let us consider deformations
with gradient

(4.8) F = diag(λ, λ, λ), ρλ3 = ρ0.

Set n0 = 0, choose W = WBTW as in (2.18), and calculate the total energy density

(4.9) E := λ3
(
μ(1− αs2) + νf(s, ρ;χ)

)
.
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Fig. 4. 3D plot of the bulk free energy (left) and its corresponding cross section at s = 0.28
(right) in the case χ = 1.0.

We consider E parametrized by ρ and calculate the critical points

(4.10)
dE
ds

= λ3
(
− 2αμs+ νfs(s, ρ;χ)

)
= 0.

We now discuss the solvability of the critical point equation as the parameter ρ varies.
In the case of multiple solutions, we choose that with the lowest energy. We summarize
the results as follows.

Proposition 4.1. Let ρ0 > 0 be prescribed. Then the homogeneous minimizers
of the energy have the following properties:

1. for χ ≥ χt, the minimizer s = s(ρ,Aa, χ) > 0 for all ρ > 0 with s(ρ,Aa, ·)
increasing and such that s(ρ,Aa, χ) → 1 as χ → ∞;

2. for 0 ≤ χ ≤ χt, there exists a function ρ = R(Aa, χ), decreasing as Aa

increases, with χ held fixed, and increasing as χ decreases, with Aa held fixed,
and such that the minimizers satisfy

s(ρ,Aa, χ) > 0 for ρ ≥ R(Aa, χ),(4.11)

s(ρ,Aa, χ) ≈ 0 for ρ < R(Aa, χ).(4.12)

Moreover, R(Aa, χ) → ∞ as χ → 0. Furthermore, s(·, Aa, χ) may be discon-
tinuous across R(·).

Comparing the liquid crystal behavior of the system under expansion with the
next simulations on extension provides additional information on network effects.

4.2.1. Isotropic-nematic phase transitions. We now carry out numerical
simulations to describe the phase transition behavior under plane strain deformation
given by

F = diag(λ, λ, 1), λ2ρ = ρ0.(4.13)

We present three types of plots: the phase diagrams (Figures 5 and 6) in the
(ρ,Aa)-plane, the equilibrium order parameter s in terms of the extension ratio λ
(Figures 7 and 8), and the stress-strain diagrams (Figure 9).

The phase diagrams are obtained by solving the equation of critical points, that is,
the analog of (4.10) and, in the case of multiple solutions, plotting that with smallest
energy. Specifically, let us define, the isotropic Eiso = E(s = 0, ρ) and the nematic
Enema = E(s �= 0, ρ) energies, respectively. The construction of the phase diagrams is
summarized as follows.
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Fig. 5. Contour lines for the bulk potential function (left) and phase space diagram (right) for
χ = 1.

1. Construct the bulk energy function f(s, ρ;χ) for the problem.
2. Define a domain B = [ρ1, ρ2]× [Aa1, Aa2] in the density-aspect-ratio space.
3. Choose a discrete subset Bh ⊂ B such that

Bh = {(ρ1 + ih1, Aa1 + jh2) | 0 < h1 < (ρ2 − ρ1), 0 < h2 < (Aa2 −Aa1)

& i, j ∈ N}.

4. Given a point (ρi, Aai) ∈ Bh compute s by solving the equilibrium equation
dE
ds = 0.

5. The point (ρi, Aai) is labeled isotropic if Eiso < Enema and nematic otherwise.
6. Finally, we plot the nematic and isotropic points in a (ρ,Aa)-diagram. We

follow the convention of assigning red to nematic points and blue to isotropic
ones.

We construct f as follows. Let z := detF , and define

h(s, z;χ, si,n, zi,n, ηi,n) = χWiso(s, z; si, zi, ηi) +Wnema(s, z; sn, zn, ηn)

+Wgr(s, z),(4.14)

Wiso(s, z; si, zi, ηi) = arctan
(
ηi((s− si)

2 + (z − zi)
2)
)
+ (s− si)

2

+(z − zi)
2,(4.15)

Wnema(s, z; sn, zn, ηn) = arctan
(
ηn((s− sn)

2 + (z − zn)
2)
)
,(4.16)

Wgr(s, z) = −(log(z) + log(|s− 1|(s+ 0.5)) + z2.(4.17)

The parameters si,n, zi,n represent the position of the isotropic and nematic minimum,
respectively, and ηi,n represent the width of the corresponding well. For a fixed set
of parameters {si,n, zi,n, ηi,n}, let

(4.18) f(s, ρ;χ) = h(s, z;χ, si,n, zi,n, ηi,n).

Figures 5 and 6 show phase diagrams for different values of χ and contour plots of
f(s, ρ;χ). A main feature of these diagrams is that the density at which the nematic
phase occurs increases with either lowering χ or Aa. (We hold Aa fixed, in the first
case, and χ in the latter). Moreover, in these diagrams, the isotropic phase is always
present. It would require values χ � 103 to encounter the nematic phase only. We
stipulate that imposing a steeper growth of the energy with respect to ρ, for ρ large,
would also yield purely nematic phase diagrams for χ = O(103).
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Fig. 6. Contour lines for the bulk potential function (left) and phase space diagram (right) for
χ = 1000.0.

Fig. 7. Order parameter versus density for χ = 10 (left) and χ = 3.5 (right). Nematic well:
s = 0.5, ρ = 1.5. The figure to the right presents a new nematic region at low densities due to the
large deformation applied (λ ≈ 1

ρ
).

4.2.2. Order parameter diagrams and stress-strain plots. Figures 7 and 8
represent plots of the uniaxial order parameter s with respect to the rod density ρ, for
χ = 0.5, 3.5, 10, and 80, and for values of the aspect ratio Aa ranging from 0.01 to 80.
These values represent a range of shapes, from oblate cylinders to very elongated rods.
The first graph in Figure 7 presents two density intervals with distinguished behavior,
one corresponding to well-aligned rods at high density, with a drop in the uniaxial
order parameter as the density decreases to a critical value, and a second interval of
further decrease in s as ρ continues decreasing. These graphs are in full agreement
with those obtained by Monte Carlo simulations in [6] and [14]. Moreover, the second
graph of Figure 7 and those in 8 present a third density interval of increase of the order
parameter. This is due to the rod alignment that results from larger extension ratios
(i.e., smaller densities), and it is a consequence of the elastic network connections
of the rods. Proposition 4.1 shows that this behavior is not analytically predicted
when subjecting the material to uniform expansion. It is not reported either in [14].
Another feature that emerges when comparing the two graphs on the right-hand sides
of Figures 7 and 8 is that, for larger χ, it is required to reach a lower density to
increase the rod alignment. This may indicate the additional difficulty in aligning
larger rods, in comparison with smaller ones.

We point out that the first graph in Figure 8 shows the existence of oblate phases
of rods with small aspect ratio, in the order of 10−2. This behavior is presented by
cytoskeletal networks of red blood cells [3, 9, 36, 37].

We conclude this section discussing the stress-strain Figure 9. For χ = 0.5 and
for small and medium values of the rod aspect ratio, the stress-strain curves are
monotonic and present a soft region followed by a steeper growth. However, we
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Fig. 8. Order parameter versus density for χ = 0.5 (left) and χ = 80 (right). Nematic well:
s = 0.5, ρ = 0.5.

Fig. 9. Plots of the xx-components of the first Piola–Kirchhoff stress tensor.

find that for Aa = 80, the stress-strain curves are nonmonotonic. The change of
monotonicity occurs precisely where the order parameter experiences a sharp increase
or decrease, indicating the change of volume accompanying rod order rearrangement.
However, we also found shallower nonmonotonic profiles, including those for systems
experiencing the nematic-isotropic phase transition, for aspect ratios smaller than 80.
This seems to indicate that realignment of rods with large aspect ratio affects change
of volume in a more significant way than for the smaller counterparts.

5. Conclusions. We have presented and analyzed models of anisotropic elastic-
ity based on the theory of liquid crystal elastomers, and applied them to modeling
order phase transitions in actin networks. We followed a strategy to show existence
of minimizers based on the theory of isotropic nonlinear elasticity. This required as-
suming that the energy density function is polyconvex with respect to the anisotropic

deformation tensor G = L− 1
2∇ϕL

1
2
0 . This tensor is at the core of the works on liquid

crystal elastomers by Warner and Terentjev.
The assumption that the bulk liquid crystal energy f is a singular potential in Q

is an essential ingredient in most of our analysis. Another one is the assumption of
a constitutive equation relating the shape of the polymer represented by the tensor
L with the order tensor Q of the liquid crystal rigid units. The linear constitutive
relation between L and Q guarantees that both tensors become singular at the same
asymptotic limit in the order parameter space.

However, the linear relation implicitly involves the constraint of the trace of L
being constant and, therefore, it restricts the value of the sum of the principle axis
of the ellipsoid associated with L. In future works, we will explore how to avoid this
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restriction by assuming nonlinear relations between the two tensors, depending on the
availability of experimental data.

In forthcoming work, we aim at constructing bulk free energy functions based on
the Onsager rigid rod theory, allowing us to to include a variety of molecular sym-
metries. However, the need to forgo some of the classical approximating expansions
that lead to well-known polynomial forms, appears to complicate the task at hand. In
thermotropic liquid crystals, the construction of the singular potential (2.26) follow-
ing the Maier–Saupe theory has been carried out ([5] and also recent work by these
authors).

In future work, we will also address the behavior of the system under shearing,
consider the case of periodic crosslinking, and include more general forms of the energy
capable of describing smetic and lamellar phases, also present in some actin networks.

6. Appendix: Auxiliary results. We present a direct derivation of the results,
some of which may have also been independently developed by other researchers.

Proposition 6.1. Let L ∈ S
3
+. Then for any matrix F ∈ M3

(6.1) tr(FTLF ) ≥ lmin(L)|F |2,
where lmin(L) > 0 is the smallest eigenvalue of L.

Proof. Let us consider the spectral decomposition of L = STDS, where S is an
orthogonal matrix and D = diag(d1, d2, d3) with 0 < d1 ≤ d2 ≤ d3. Let us denote
A = SF (SF )T and calculate

tr(FTLF ) = tr(FTSTDSF ) = tr(AD) =

3∑
i=1

diAii

≥ d1
∑
i

Aii = d1tr(FFT ) = lmin(L)|F |2,

where we have used the fact that Aii ≥ 0, for i = 1, 2, 3.
Proposition 6.2. Assume L ∈ S3+, then we have

(6.2)
det(L)

|L| ≥ 1√
3
l2min(L).

Proof. Denoting the eigenvalues of L, 0 < l1 ≤ l2 ≤ l3, we have

|L| =
√
tr(LTL)

=
√
l21 + l22 + l23.

Hence

det(L)

|L| =
l1l2l3√

l21 + l22 + l23
≥ l1l2l3√

3l3

=
1√
3
l1l2 ≥ 1√

3
l21 =

1√
3
l2min(L).

Lemma 6.3. For given L,L0 ∈ S3+, let G be as in (2.2). Then the following
inequalities hold:

|G| ≥ C1|F |, and(6.3)

| adjG| ≥ C2| adjF |,(6.4)

where C1 =
√

lmin(L0)
lmax(L) and C2 = 1

3C
2
1 .
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Proof. We have

(6.5) |G|2 = tr
(
L0F

TL−1F
)
.

Since L0 ∈ S3+, we let K0 =
√
L0. Applying Proposition 6.1, we estimate

|G|2 = tr
(
KT

0 F
TL−1FK0

)
≥ lmin(L

−1)|FK0|2 = lmin(L
−1)tr(FL0F

T )

≥ lmin(L
−1)lmin(L0)|F |2 =

lmin(L0)

lmax(L)
|F |2.

This yields

(6.6) |G| ≥

√
lmin(L0)

lmax(L)
|F |.

To prove 6.4, we calculate

adj(G) = det(G)G−1

= det
(
L−1/2FL

1/2
0

)
L
−1/2
0 F−1L1/2

= det
(
L−1/2

)
det
(
L
1/2
0

)
L
−1/2
0 adj(F )L1/2.

So

(6.7) L
1/2
0 adj(G)L−1/2 = det

(
L−1/2

)
det
(
L
1/2
0

)
adj(F ).

By the matrix property |AB| ≤ |A||B|, we have

(6.8) |L1/2
0 | · |adj(G)| · |L−1/2| ≥ det

(
L−1/2

)
det
(
L
1/2
0

)
|adj(F )|.

Using Proposition 6.2, we have

|adj(G)| ≥ 1√
3
l2min(L

−1/2)
1√
3
l2min(L

1/2
0 )|adj(F )|

=
1

3

lmin(L0)

lmax(L)
|adj(F )|.
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[7] T.J. Byers and D. Branton, Visualization of the protein associations in the erythrocyte
membrane skeleton, Proc. Nat. Acad. Sci. USA, 82 (1985), pp. 6153–6157.

[8] C. Liu and M.C. Calderer, Liquid crystal flow: Dynamic and static configurations, SIAM J.
Appl. Math., 60 (2000), pp. 1925–1949.

[9] S. Cao, G. Wei, and J.Z.Y. Chen, Transformation of an oblate-shaped vesicle induced by an
adhering spherical particle, Phys. Rev. E (3), 84 (2011), 050901.

[10] P. Cesana and A. DeSimone, Strain-order coupling in nematic elastomers: Equilibrium con-
figurations, Math. Models Methods Appl. Sci, 19 (2009), pp. 601–630.

[11] P. Cesana and A. DeSimone, Quasiconvex envelopes of energies for nematic elastomers in
the small strain regime and applications, J. Mech. Phys. Solids, 59 (2011), pp. 787–803.

[12] P.G. Ciarlet, Mathematical Elasticity, Vol. 1, North-Holland, Amsterdam, 1987.
[13] S. Conti, A. DeSimone, and G. Dolzmann, Soft elastic response of stretched sheets of nematic

elastomers: A numerical study, J. Mech. Phys. Solids, 50 (2002), pp. 1431–1451.
[14] P. Dalhaimer, D.E. Discher, and T.C. Lubensky, Crosslinked actin networks show liq-

uid crystal elastomer behaviour, including soft-mode elasticity, Nature Phys., 3 (2007),
pp. 354–360.

[15] A. DeSimone and G. Dolzmann, Material instabilities in nematic elastomers, Phys. D, 136
(2000), pp. 175–191.

[16] A. DeSimone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation
of a class of SO(3)-invariant energies, Arch. Ration. Mech. Anal., 161 (2002), pp. 181–204.

[17] A. DeSimone and L. Teresi, Elastic energies for nematic elastomers, European Phys. J. E
Soft Matter Biol. Phys., 29 (2009), pp. 191–204.

[18] J.L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal.,
113 (1991), pp. 97–120.

[19] G. Forest, Q. Wang, and R. Zhou, A kinetic theory for solutions of nonhomogeneous nematic
liquid crystalline polymers with density variations, J. Fluid Eng., 126 (2004), pp. 180–188.

[20] E. Fried and S. Sellers, Free-energy density functions for nematic elastomers, J. Mech.
Phys. Solids, 52 (1999), pp. 1671–1689.

[21] E. Fried and S. Sellers, Soft elasticity is not necessary for striping in nematic elastomers,
J. Appl. Phys., 100 (2006), 043521.

[22] G. Friesecke, D.D. James, and S. Muller, A theorem on geometric rigidity and the deriva-
tion of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math,
55 (2002), pp. 1461–1506.

[23] F. Gamez, S. Lago, B. Garzon, P. Merklin, and C. Vega, Vapour-liquid equilibrium of
fluids composed by oblate molecules, Mol. Phys., 106 (2008), pp. 1331–1339.

[24] M. Gardel, J.H. Shin, L. Mahadevan, F.C. MacKintosh, P. Matsudaira, and D.A. Weitz,
Elastic behavior of cross-linked and bundled actin networks, Science, 304 (2004), pp. 1301–
1305.

[25] E.F. Gramsbergen, L. Longa, and W.H. de Jeu, Landau theory of nematic isotropic phase
transitions, Phys. Rep., 135 (1986), pp. 197–257.

[26] J. Han, W. Wang, and P. Zhang, From microscopic Theory to Macroscopic Theory: A
Systematic Study on Static Modeling for Liquid Crystals, preprint, arXiv:1305.4889, 2013.

[27] D. Henao and C. Mora-Corral, Fracture Surfaces and the Regularity of Inverses for bv
Deformations, Arch. Ration. Mech. Anal., 201 (2011), pp. 575–629.

[28] M.C. Holley and J.F. Ashmore, A cytoskeletal spring in cochlear outer hair cells, Nature,
335 (1988), pp. 635–637.

[29] R. Jerry, A. Popel, and W. Brownell, Outer hair cell length changes in an external elec-
tric field. i. The role of intracellular electro-osmotically generated pressure gradients, J.
Accoust. Soc. Amer., 98 (1995), pp. 2000–2010.

[30] J. Xu and P. Zhang, From Microscopic Theory to Macroscopic Theory: Symmetries and
Order Parameters of Rigid Molecules, preprint, arXiv:1305.4726, 2013.

[31] N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under weak velocity
gradient derived from a molecular kinetic equation. I, J. Phys. Soc. Japan, 52 (1983),
pp. 3486–3494.

[32] N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under weak velocity
gradient derived from a molecular kinetic equation. II, J. Phys. Soc. Japan, 53 (1984),
pp. 1031–1040.

[33] C. Luo, Modeling, Analysis and Numerical Simulations of Liquid Crystal Elastomers, Ph.D.
dissertation, University of Minnesota, Minneapolis, MN, 2010.

[34] A. Majumdar and A. Zarnescu, Landau–De Gennes theory of nematic liquid crystals: The
Oseen–Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), pp. 227–280.

[35] M.C. Calderer and C. Luo, Numerical study of liquid crystal elastomers by a mixed finite
element method, European J. Appl. Math, 23 (2012), pp. 121–154.

D
ow

nl
oa

de
d 

12
/0

5/
16

 to
 1

28
.1

01
.1

52
.2

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIQUID CRYSTAL ELASTOMERS 675

[36] C. Mohrdieck, F. Dalmas, E. Arzt, R. Tharmann, M.M.A.E. Claessens, A.R. Bausch,

A. Roth, E. Sackmann, C.H.J. Schmitz, J. Curtis, W. Roos, K. Schulz, S. Uhrig, and

J.P. Spatz, Biomimetic models of the actin cytoskeleton, Small, 3 (2007), pp. 1015–1022.
[37] C. Pozrikidis, The axisymmetric deformation of a red blood cell in uniaxial straining Stokes

flow, J. Fluid Mech., 216 (1990), pp. 231–254.
[38] A.D. Rey, Liquid crystal models of biological materials and processes, Soft Matter, 6 (2010),

pp. 3402–3429.
[39] G.V. Richieri and S.P. Akeson, Measurement of biophysical properties of red blood cells by

resistive pulse spectroscopy: Volume, shape, surface area, and deformability, J. Biochem.
Biophys. Methods, 11 (1985), pp. 117–131.

[40] B. Wagner, R. Tharmann, I. Haase, M. Fischer, and A.R. Bausch, Cytoskeletal poly-
mer networks: The molecule structure of cross-linkers determines macroscopic properties.
Cochlear outer hair-cells, Proc. Natl. Acad. Sci. USA, 103 (2006), pp. 13974–13978.

[41] M. Warner and E.M. Terentjev, Liquid Crystal Elastomers, Oxford University Press, Ox-
ford, 2007.

[42] B. Wincure and A.D. Rey, Growth regimes in phase ordering transformations, Discrete Con-
tin. Dynam. Systems B, 8 (2007), pp. 623–648.

D
ow

nl
oa

de
d 

12
/0

5/
16

 to
 1

28
.1

01
.1

52
.2

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


