Name:

Problem Set 1 Math 4281, Spring 2014 Due: Wednesday, January 29

Complete the following items, staple this page to the front of your work, and turn your assignment in class on Wednesday, January 29.

- 1. Carefully read the entire course website. Send an email to your instructor containing:
 - Math4281 in the subject line;
 - a review of the course website (What did you like? What would you change? List any typos you discovered, etc.); and
 - an acknowledgement that you understand the policies and procedures for this course.

Review

- 2. Negate the following sentences; in each case, indicate whether the original sentence or its negation is a true statement. Be sure to move the "not" through all the quantifiers.
 - (a) For every integer $n \ge 2$, the number $2^n 1$ is prime.
 - (b) There exists a real number M so that for all real numbers t, $|\sin t| \le M$.
 - (c) For every real number x > 0, there exists a real number y > 0 so that xy > 1.
- 3. An integer n is called *wonderful* provided that whenever n divides ab, then n divides a or n divides b. (Here, a and b must also be integers.)
 - (a) Complete this sentence: *n* is *not wonderful* if...
 - (b) Decide whether the integer 6 is wonderful. Explain carefully.
- 4. Explain your answers.
 - (a) Define a function $f \colon \mathbb{N} \to \mathbb{N}$ that is one-to-one but not onto.
 - (b) Define a function $f \colon \mathbb{N} \to \mathbb{N}$ that is onto but not one-to-one.

Preliminaries

- 5. Prove the following with mathematical induction:
 - (a) The sum of the first *n* positive integers is $\frac{n(n+1)}{2}$.
 - (b) For an integer $n \ge 1$, $n^3 n$ is divisible by 3.
 - (c) For any positive integer n, one of n, n + 1, n + 2 must be divisible by 3.

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____