
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Query Evaluation

Chapter 12

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview of Query Evaluation

v Query Plan:
§ Tree of relational algebra operators
§ with choice of algorithm for each operator.

SELECT S.name
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

v Example: What are the names of sailors who
have reserved boat 103
§ What are the operators

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Overview of Query Evaluation
v Two main issues in query optimization:

§ For a given query, what plans are considered?
• Algorithm to search plan space for cheapest (estimated) plan.

§ How is the cost of a plan estimated?

v Ideally: Want to find best plan.
§ Practically: Avoid worst plans!

v Each operator is typically implemented using a
`pull’ interface: when an operator is `pulled’ for the
next output tuples, it `pulls’ on its inputs and
computes them.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Relational Operations
v We will consider how to implement:

§ Selection () Selects a subset of rows from relation.
§ Projection () Deletes unwanted columns from relation.
§ Join () Allows us to combine two relations.
§ Set-difference () Tuples in reln. 1, but not in reln. 2.
§ Union () Tuples in reln. 1 and in reln. 2.
§ Aggregation (SUM, MIN, etc.) and GROUP BY

v Since each op returns a relation, ops can be composed!
After we cover the operations, we will discuss how to
optimize queries formed by composing them.

s
p

-

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Some Common Techniques
v Algorithms for evaluating relational operators

use some simple ideas extensively:
§ Indexing: Can use WHERE conditions to retrieve

small set of tuples (selections, joins)

§ Iteration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)

§ Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Statistics and Catalogs

v Need information about the relations and indexes
involved. Catalogs typically contain at least:

§ # tuples (NTuples) and # pages (NPages) for each relation.

§ # distinct key values (NKeys) and NPages for each index.

§ Index height, low/high key values (Low/High) for each
tree index.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Statistics and Catalogs

v Catalogs are updated periodically.
§ Updating whenever data changes is too expensive;

lots of approximation anyway, so slight
inconsistency ok.

v More detailed information (e.g., histograms of
the values in some field) are sometimes stored.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

A Note on Complex Selections

v Selection conditions are first converted to conjunctive
normal form (CNF):

 (day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)

v We only discuss case with no ORs; see text if you are
curious about the general case.

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Access Paths
v An access path is a method of retrieving tuples:

§ File scan, or index that matches a selection (in the query)
v A tree index matches (a conjunction of) terms that

involve only attributes in a prefix of the search key.
§ E.g., Tree index on <a, b, c> matches the selection a=5
AND b=3, and a=5 AND b>6, but not b=3.

v A hash index matches (a conjunction of) terms that
has a term attribute = value for every attribute in the
search key of the index.
§ E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND

c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

The Selection Operator

v Most selective access path: An index or file scan that we
estimate will require the fewest page I/Os.

v Find the most selective access path, retrieve tuples using
it, and apply any remaining terms that don’t match
the index:
§ Terms that match this index reduce the number of tuples

retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.

§ Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

General Selections (CNF Form)
v First approach: Find the most selective access path, retrieve

tuples using it, and apply any remaining terms that don’t
match the index:
§ Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree index on

day can be used; then, bid=5 and sid=3 must be checked for each
retrieved tuple. Similarly, a hash index on <bid, sid> could be
used; day<8/9/94 must then be checked.

v Second approach Get sets of rids of data records using each
matching index.
§ Then intersect these sets of rids
§ Retrieve the records and apply any remaining terms.
§ Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree

index on day and an index on sid, we can retrieve rids of records
satisfying day<8/9/94 using the first, rids of recs satisfying sid=3
using the second, intersect, retrieve records and check bid=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

The Selection Operator: Reduction factor
v Reduction factor. The fraction of tuples in a table

that satisfy a given conjunct
§ When there are several primary conjuncts, the total

reduction factor is the product of all reduction factors
(approximately)

v If there is no available information about the
reduction factor, we can assume either uniform
distribution, or simply reduction factor is set to a
default value (0.1)
§ More sophisticated techniques use histograms

v Based on the reduction factor, we may decide upon
several index choices

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Using an Index for Selections
v Cost depends on #qualifying tuples, and

clustering.
§ Cost of finding qualifying data entries (typically small)

plus cost of retrieving records (could be large w/o
clustering).

§ In example, assuming uniform distribution of names,
about 10% of tuples qualify (100 pages, 10000 tuples).
With a clustered index, cost is little more than 100 I/Os;
if unclustered, up to 10000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

The Selection Operation

v No Index, Unsorted Data
§ Most selective access path is “file scan”. Cost is O(M) where

M is the file size in pages
v No Index, Sorted Data

§ Most selective access path is “binary search”. Cost is
O(log2M) + number of pages that contains qualifying tuples

v Clustered B+-tree
§ Using the clustered index would be best in case of range

search. Cost is 2-3 I/Os to identify the start record +
number of pages that contain qualifying tuples

§ Good for equality search in case hash index is not available.
Cost is 2 -3 I/Os

SELECT R.rating
FROM Reserves R
WHERE R.attr op value

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

The Selection Operation
v Unclustered B+-tree

§ Works for equality search for keys in case hash index is
not available. Cost is 2 -3 I/Os A worst case scenario is
that every single qualified tuple results in one page I/O

§ A refinement for the unclustered index
1. Find qualifying data entries.
2. Sort the rid’s of the data entire based on the page identifiers.
3. Fetch rids in order.

v Clustered Hash Index
§ Best for equality search. Cost is 1-2 I/Os + Number of

pages with qualifying tuples
v Unclustered Hash Index

§ Used for equality search. Cost is 1-2 I/Os + Number of
qualifying tuples

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Projection

v Projection is: (1) Dropping unwanted columns,
and (2) Removing duplicates

v The expensive part is removing duplicates.
§ SQL systems don’t remove duplicates unless the

keyword DISTINCT is specified in a query.
v If no duplicate elimination is needed, an

iteration is performed either on the table or an
index whose key contains all the projection
fields

SELECT DISTINCT R.sid, R.bid
FROM Reserves R

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Projection with duplicate elimination

v Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping
unwanted information while sorting.)

v Hashing Approach: Hash on <sid, bid> to create
partitions. Load partitions into memory one at a
time, build in-memory hash structure, and
eliminate duplicates.

v If there is an index with both R.sid and R.bid in the
search key, may be cheaper to sort data entries!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Discussion of Projection

v Sort-based approach is the standard; better handling
of skew and result is sorted.

v If an index on the relation contains all wanted
attributes in its search key, can do index-only scan.
§ Apply projection techniques to data entries (much smaller!)

v If an ordered (i.e., tree) index contains all wanted
attributes as prefix of search key, can do even better:
§ Retrieve data entries in order (index-only scan), discard

unwanted fields, compare adjacent tuples to check for
duplicates.

