Overview of Query Evaluation

Chapter 12

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Join:

SELECT S.sid, S.name, R.bid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

+ Join is the most common and most expensive
query operator

<+ Joins are widely studied and systems support
several join algorithms

% A straightforward way for the join is an
exhaustive nested loop

For each tuple r in R do
For each tuple sin S
if rsid == ssid do
add <r, s> to result
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real¥f
Reserves (sid: integer, bid: integer, day: dates, rname: string)

+ Sailors:
= No. of tuples: 40,000
= No. of pages N: 500 | s | R
= No. of tuples/page ps: 80 Pages N=500 M-=1,000
2 Reserves: Tuples/page ps=80 pr=100
= No. of tuple: 100,000
= No. of pages M: 1,000
= No. of tuples/page pr: 100

+ Retrieving a page through hashing costs 1.2 /0
% Cost metric: # of I/Os. We will ignore output costs.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Simple Nested Loops Join

For each tuplerin R do
for each tuple s in S do
if ri == sj then add <r, s> to result

% For each tuple in the outer relation R, we scan the
entire inner relation S.

= Cost: M+ pr*M*N = 1000 + 100*1000*500 I/Os.
= 50,001,000 I/Os.

| s | R
Pages N=500 M=1,000
Database Management Systems 3ed, R. Ramakrishnan and J. Gehr Tuples / page ps= 80 Pr= 100

Page-Oriented Nested Loops Join

foreach tuple r in R do
foreach tuple s in S do
if ri == sj then add <r, s> to result
% For each page of R, get each page of S, and write out
matching pairs of tuples <r, s>, where r is in R-page
and S is in S-page.
= Cost: M + M*N = 1000 + 1000*500 = 501,000

<+ If smaller relation (S) is outer:
= Cost: N+ M*N =500 + 1000*500 = 500,500

| s | R __

Pages N=500 M=1,000
Database Management Systems 3ed, R. Ramakrishnan and J. Gehr Tuples / page ps= 80 Pr= 100

Block Nested Loops Join

+ Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold “block™ of outer R.

= For each matching tuple r in R-block, s in S-page, add
<r, s> to result. Then read next R-block, scan S, etc.

R &S Join Result
Block of R

\4

b. A

7

Input buffer for S Output buffer

N
>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Cost of Block Nested Loops

% Cost: Scan of outer + #outer blocks * scan of inner®
« #outer blocks = |_# of pages of outer / blocksize_|

+ With Reserves (R) as outer
= Block size 100 = 1,000 + (1,000/100) * 500 = 6,000
= Block size 90 =» 1,000 + Ceil(1,000/90) * 500 =7,000
< With 100-page block of Sailors as outer:
= Block size 100: =» 500 + (500/100) * 1,000 = 5,500
= Block size 90: =» 500 + (500/90) * 1,000 = 6,500

<« With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and S.
| s | R __
Pages N=500 M=1,000
Database Management Systems 3ed, R. Ramakrishnan and J. Gehr Tuples/page ps=80 pgr=100

Index Nested Loops

<+ If there is an index on the join column of one
relation (say S), can make it the inner and exploit
the index.

+ For each R tuple, cost of probing S index is about
1.2 for hash index, 2-4 for B+ tree. Cost of then
finding S tuples (assuming Alt. (2) or (3) for data
entries) depends on clustering.

= Clustered index: 11/0 (typical), unclustered: upto 1
I/O per matching S tuple.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Cost of Index Nested Loops

+ Reserve is outer, Hash-index (Alt. 2) on sid of Sailors
(as inner):
= Scan Reserves: 1000 page I/Os.

= For each Reserves tuple (100*1000 tuples): 1.2 I/Os to get

data entry in index, plus 1 I/O to get (the exactly one)
matching Sailors tuple.

= Cost: 1000 + 100,000 * 2.2 = 221,000 I/Os.

<+ Does it matter if the index is clustered or not?

| s | R __
Pages N=500 M=1,000
Database Management Systems 3ed, R. Ramakrishnan and J. Gehr Tuples / page ps= 80 Pr= 100

Cost of Index Nested Loops

+ Sailors is outer, Hash-index (Alt. 2) on sid of

Reserves (as inner):

Scan Sailors: 500 page 1/0Os

For each Sailors tuple (80*500 tuples): 1.21/0Os to
find index page with data entries, plus cost of
retrieving matching Reserves tuples.

Assuming uniform distribution, 2.5 reservations per
sailor (100,000 / 40,000).

Cost of retrieving them is 1 or 2.5 I/Os depending
on whether the index is clustered.

Clustered Index =» 50 + 40,000 * 2.2 = 88,500
Unclustered Index =» 500 + 40,000 * 3.7 = 148,500

| s | R __

Pages N=500 M=1,000

Database Management Systems 3ed, R. Ramakrishnan and J. Gehr Tuples / page ps= 80 Pr= 100

Sort-Merge Join (Rl?jle)

% Sort R and S on the join column, then scan them to do
a “merge”’ (on join col.), and output result tuples.

= Advance scan of R until current R-tuple >= current S tuple,
then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

= At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

= Then resume scanning R and S.

% R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in butfer.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Join: Sort-Merge (R l?=<]1 S)

% Sort R and S on the join column, then scan them to do
a “merge”’ (on join col.), and output result tuples.

sid 'bid day rname
sid |sname |rating |age |25 103 [12/4/96 | guppy
22 |dustin | 7 450 ||28 103 [11/3/96 | yuppy
28 |yuppy 0 350 |[31 101 |10/10/96 | dustin
44 |guppy | 5 135.0 |[31 |101 |10/11/96 | lubber
58 |rusty 10 (35.0 [|58 103 |11/12/96 | dustin

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

29

Cost of Sort-Merge Join

% If sorting takes two passes, for each pass, we need
to scan (read and write) each data record:
= Cost for sorting Reserves: 2 * 2 * 1000 = 4000
= Cost for sorting Sailors: 2 * 2 * 500 = 2000

% Merging needs only one global pass over the two
tables with read only

* Merging cost = 1000+500 = 1500

< Total cost = 4000 + 2000 + 1500 = 7500

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Original

. Relation OUTPUT
Hash-Join —— ;
oy o 1
: Part1.t10n bojch NPUT .
relations using hash hash 2
. > unction o0
fn h: R tuples in R h o XK
partition i will only B-1
. N~ —
match S tuples 1mn Disk B main memory buffers Disk
partition1. 00 oo
Partitions .
of R&S Join Result
. ., Hash table for partition
% Read in a partition [,.4 | Ri(k<B-1 pages) e
of R, hash it using {1112 . L]
h2 (<> h!). Scan ’ Z L]
matching partition o 7" m XX
of S, search for hpllinie: @l []
or Si buffer
matches. — _ —
Disk B main memory buffers Disk

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Cost of Hash-Join

» In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

% In our running example, this is a total of 4500 I/Os.

% Sort-Merge Join vs. Hash Join:

= Hash Join superior if relation sizes differ greatly. Also,
Hash Join shown to be highly parallelizable.

= Sort-Merge less sensitive to data skew; result is sorted.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

General Join Conditions

% Equalities over several attributes (e.g., R.sid=S.sid
AND R.rname=S.sname):

= For Index NL, build index on <sid, sname> (if S is inner); or
use existing indexes on sid or sname.

= For Sort-Merge and Hash Join, sort/partition on
combination of the two join columns.
% Inequality conditions (e.g., R.rname < S.sname):
= For Index NL, need (clustered!) B+ tree index.

* Range probes on inner; # matches likely to be much higher than for
equality joins.

= Hash Join, Sort Merge Join not applicable.
= Block NL quite likely to be the best join method here.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

