
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Query Evaluation

Chapter 12

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Join:

v Join is the most common and most expensive
query operator

v Joins are widely studied and systems support
several join algorithms

v A straightforward way for the join is an
exhaustive nested loop

For each tuple r in R do
 For each tuple s in S
 if r.sid == s.sid do
 add <r, s> to result

SELECT S.sid, S.name, R.bid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Schema for Examples

v Sailors:
§ No. of tuples: 40,000
§ No. of pages N: 500
§ No. of tuples/page pS : 80

v Reserves:
§ No. of tuple: 100,000
§ No. of pages M: 1,000
§ No. of tuples/page pR : 100

v Retrieving a page through hashing costs 1.2 I/O
v Cost metric: # of I/Os. We will ignore output costs.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

S R
Pages N=500 M=1,000

Tuples/page pS = 80 pR = 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Simple Nested Loops Join

v For each tuple in the outer relation R, we scan the
entire inner relation S.
§ Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os.

 = 50,001,000 I/Os.

For each tuple r in R do
 for each tuple s in S do
 if ri == sj then add <r, s> to result

S R
Pages N=500 M=1,000

Tuples/page pS = 80 pR = 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Page-Oriented Nested Loops Join

v For each page of R, get each page of S, and write out
matching pairs of tuples <r, s>, where r is in R-page
and S is in S-page.
§ Cost: M + M*N = 1000 + 1000*500 = 501,000

v If smaller relation (S) is outer:
§ Cost: N + M*N = 500 + 1000*500 = 500,500

foreach tuple r in R do
 foreach tuple s in S do
 if ri == sj then add <r, s> to result

S R
Pages N=500 M=1,000

Tuples/page pS = 80 pR = 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Block Nested Loops Join
v Use one page as an input buffer for scanning the

inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
§ For each matching tuple r in R-block, s in S-page, add

<r, s> to result. Then read next R-block, scan S, etc.

. . .
. . .

R & S
Block of R

Input buffer for S Output buffer

. . .

Join Result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Cost of Block Nested Loops
v Cost: Scan of outer + #outer blocks * scan of inner

§ #outer blocks =
v With Reserves (R) as outer

§ Block size 100 è 1,000 + (1,000/100) * 500 = 6,000
§ Block size 90 è 1,000 + Ceil(1,000/90) * 500 =7,000

v With 100-page block of Sailors as outer:
§ Block size 100: è 500 + (500/100) * 1,000 = 5,500
§ Block size 90: è 500 + (500/90) * 1,000 = 6,500

v With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and S.

é ù# /of pages of outer blocksize

S R
Pages N=500 M=1,000

Tuples/page pS = 80 pR = 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Index Nested Loops
v If there is an index on the join column of one

relation (say S), can make it the inner and exploit
the index.

v For each R tuple, cost of probing S index is about
1.2 for hash index, 2-4 for B+ tree. Cost of then
finding S tuples (assuming Alt. (2) or (3) for data
entries) depends on clustering.
§ Clustered index: 1 I/O (typical), unclustered: upto 1

I/O per matching S tuple.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Cost of Index Nested Loops

v Reserve is outer, Hash-index (Alt. 2) on sid of Sailors
(as inner):
§ Scan Reserves: 1000 page I/Os.
§ For each Reserves tuple (100*1000 tuples): 1.2 I/Os to get

data entry in index, plus 1 I/O to get (the exactly one)
matching Sailors tuple.

§ Cost: 1000 + 100,000 * 2.2 = 221,000 I/Os.

v Does it matter if the index is clustered or not?

S R
Pages N=500 M=1,000

Tuples/page pS = 80 pR = 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Cost of Index Nested Loops
v Sailors is outer, Hash-index (Alt. 2) on sid of

Reserves (as inner):
§ Scan Sailors: 500 page I/Os
§ For each Sailors tuple (80*500 tuples): 1.2 I/Os to

find index page with data entries, plus cost of
retrieving matching Reserves tuples.

§ Assuming uniform distribution, 2.5 reservations per
sailor (100,000 / 40,000).

§ Cost of retrieving them is 1 or 2.5 I/Os depending
on whether the index is clustered.

§ Clustered Index è 50 + 40,000 * 2.2 = 88,500
§ Unclustered Index è 500 + 40,000 * 3.7 = 148,500

S R
Pages N=500 M=1,000

Tuples/page pS = 80 pR = 100

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Sort-Merge Join (R S)
v Sort R and S on the join column, then scan them to do

a ``merge’’ (on join col.), and output result tuples.
§ Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

§ At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

§ Then resume scanning R and S.
v R is scanned once; each S group is scanned once per

matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

i=j

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Join: Sort-Merge (R S)

v Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.

i=j

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Cost of Sort-Merge Join
v If sorting takes two passes, for each pass, we need

to scan (read and write) each data record:
§ Cost for sorting Reserves: 2 * 2 * 1000 = 4000
§ Cost for sorting Sailors: 2 * 2 * 500 = 2000

v Merging needs only one global pass over the two
tables with read only
§ Merging cost = 1000+500 = 1500

v Total cost = 4000 + 2000 + 1500 = 7500

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Hash-Join
v Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

v Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hashfunction
h B-1

Partitions

1

2

B-1

. . .

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Cost of Hash-Join

v In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

v In our running example, this is a total of 4500 I/Os.
v Sort-Merge Join vs. Hash Join:

§ Hash Join superior if relation sizes differ greatly. Also,
Hash Join shown to be highly parallelizable.

§ Sort-Merge less sensitive to data skew; result is sorted.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

General Join Conditions
v Equalities over several attributes (e.g., R.sid=S.sid

AND R.rname=S.sname):
§ For Index NL, build index on <sid, sname> (if S is inner); or

use existing indexes on sid or sname.
§ For Sort-Merge and Hash Join, sort/partition on

combination of the two join columns.
v Inequality conditions (e.g., R.rname < S.sname):

§ For Index NL, need (clustered!) B+ tree index.
• Range probes on inner; # matches likely to be much higher than for

equality joins.

§ Hash Join, Sort Merge Join not applicable.
§ Block NL quite likely to be the best join method here.

