
Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1

Crash Recovery

Chapter 18

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 2

Review: The ACID properties

v A tomicity: All actions in the Xact happen, or none happen.

v C onsistency: If each Xact is consistent, and the DB starts
consistent, it ends up consistent.

v I solation: Execution of one Xact is isolated from that of
other Xacts.

v D urability: If a Xact commits, its effects persist.

v The Recovery Manager guarantees Atomicity & Durability.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 3

Motivation

v Atomicity:
§ Transactions may abort (“Rollback”).

v Durability:
§ What if DBMS stops running? (Causes?)

crash!
 Desired Behavior after

system restarts:
– T1, T2 & T3 should be

durable.
– T4 & T5 should be

aborted (effects not seen).

T1
T2
T3
T4
T5

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 4

Handling the Buffer Pool

v Force every write to disk?
§ Poor response time.
§ But provides durability.

v Steal buffer-pool frames
from uncommited Xacts?
§ If not, poor throughput.
§ If so, how can we ensure

atomicity?

Force

No Force

No Steal Steal

Trivial

Desired

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 5

More on Steal and Force

v STEAL (why enforcing Atomicity is hard)
§ To steal frame F: Current page in F (say P) is

written to disk; some Xact holds lock on P.
• What if the Xact with the lock on P aborts?
• Must remember the old value of P at steal time

(to support UNDOing the write to page P).

v NO FORCE (why enforcing Durability is hard)
§ What if system crashes before a modified page is

written to disk?
§ Write as little as possible, in a convenient place, at

commit time,to support REDOing modifications.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 6

Basic Idea: Logging

v Record REDO and UNDO information, for
every update, in a log.
§ Sequential writes to log (put it on a separate disk).
§ Minimal info (diff) written to log, so multiple

updates fit in a single log page.
v Log: An ordered list of REDO/UNDO actions

§ Log record contains:

<XID, pageID, offset, length, old data, new
data>

§ and additional control info (which we’ll see soon).

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 7

Write-Ahead Logging (WAL)

v The Write-Ahead Logging Protocol:
1. Must force the log record for an update before the

corresponding data page gets to disk.
2. Must force all log records for a Xact before commit.

v #1 guarantees Atomicity.
v #2 guarantees Durability.

v Exactly how is logging (and recovery!) done?
§ We’ll study the ARIES algorithms.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 8

WAL &
the Log

v Each log record has a unique Log Sequence
Number (LSN).
§ LSNs always increasing.

v Each data page contains a pageLSN.
§ The LSN of the most recent log record

for an update to that page.
v System keeps track of flushedLSN.

§ The max LSN flushed so far.
v WAL: Before a page is written,

§ pageLSN £ flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
 in RAM

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 9

Log Records

Possible log record types:
v Update
v Commit
v Abort
v End (signifies end of

commit or abort)
v Compensation Log

Records (CLRs)
§ for UNDO actions

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 10

Normal Execution of an Xact

v Series of reads & writes, followed by commit or
abort.
§ We will assume that write is atomic on disk.

• In practice, additional details to deal with non-
atomic writes.

v Strict 2PL.
v STEAL, NO-FORCE buffer management, with

Write-Ahead Logging.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 11

Other Log-Related State

v Transaction Table:
§ One entry per active Xact.
§ Contains XID, status (running/commited/aborted),

and lastLSN (The LSN of the most recent log record).
v Dirty Page Table:

§ One entry per dirty page in buffer pool.
§ Contains recLSN -- the LSN of the log record which
first caused the page to be dirty.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 12

Checkpointing
v Periodically, the DBMS creates a checkpoint, in

order to minimize the time taken to recover in the
event of a system crash. Write to log:
§ begin_checkpoint record: Indicates when chkpt began.
§ end_checkpoint record: Contains current Xact table and

dirty page table. This is a `fuzzy checkpoint’:
• Other Xacts continue to run; so these tables accurate

only as of the time of the begin_checkpoint record.
• No attempt to force dirty pages to disk; effectiveness

of checkpoint limited by oldest unwritten change to a
dirty page. (So it’s a good idea to periodically flush
dirty pages to disk!)

§ Store LSN of chkpt record in a safe place (master record).

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 13

The Big Picture:
What’s Stored Where

DB

Data pages
 each
 with a
 pageLSN

Xact Table
 lastLSN
 status

Dirty Page Table
 recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 14

Simple Transaction Abort

v For now, consider an explicit abort of a Xact.
§ No crash involved.

v We want to “play back” the log in reverse
order, UNDOing updates.
§ Before starting UNDO, write an Abort log record.

• For recovering from crash during UNDO!
§ Get lastLSN of Xact from Xact table.
§ Can follow chain of log records backward via the

prevLSN field.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 15

Abort, cont.

v To perform UNDO, must have a lock on data!
v Before restoring old value of a page, write a CLR:

§ You continue logging while you UNDO!!
§ CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of
the record we’re currently undoing).

§ CLRs never Undone (but they might be Redone when
repeating history: guarantees Atomicity!)

v At end of UNDO, write an “end” log record.

Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 16

Transaction Commit

v Write commit record to log.
v All log records up to Xact’s lastLSN are

flushed.
§ Guarantees that flushedLSN ³ lastLSN.
§ Note that log flushes are sequential, synchronous

writes to disk.
§ Many log records per log page.

v Commit() returns.
v Write end record to log.

