

Relational Algebra

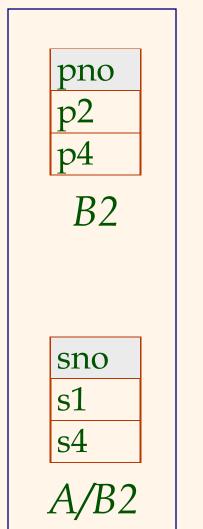
Chapter 4

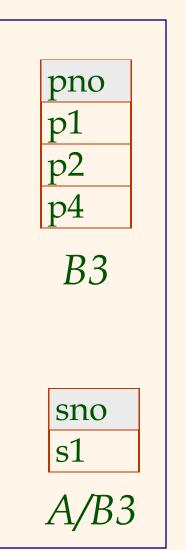

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats.

- \diamond Let *A* have 2 fields, *x* and *y*; *B* have only field *y*:
 - $A/B = \{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$
 - i.e., *A/B* contains all *x* tuples (sailors) such that for *every y* tuple (boat) in *B*, there is an *xy* tuple in *A*.
 - *Or*: If the set of *y* values (boats) associated with an *x* value (sailor) in *A* contains all *y* values in *B*, the *x* value is in *A/B*.
- * In general, x and y can be any lists of fields; y is the list of fields in B, and $x \cup y$ is the list of fields of A.




Examples of Division A/B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

 \boldsymbol{A}

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- ❖ *Idea*: For *A/B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
 - *x* value is *disqualified* if by attaching *y* value from *B*, we obtain an *xy* tuple that is not in *A*.

Disqualified
$$x$$
 values: $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$
 A/B : $\pi_{\chi}(A)$ – all disqualified tuples

Find names of sailors who've reserved boat #103

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Boats

<u>bid</u>	Color
101	Red
103	Green

Solution 1

$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Solution 2

$$\pi_{sname}((\sigma_{bid=103}^{Reserves}) \bowtie Sailors)$$

Find names of sailors who've reserved boat #103

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

<u>bid</u>	Color
101	Red
103	Green

* Solution 3:
$$\rho$$
 (Templ, $\sigma_{bid=103}$ Reserves)

$$\rho$$
 (Temp2, Temp1 \bowtie Sailors)

$$\pi_{sname}$$
 (Temp2)

Find names of sailors who've reserved a red boat

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Boats

<u>bid</u>	Color
101	Red
103	Green

Solution 1

 $\pi_{sname}(\sigma_{color='red'}(Boats \bowtie Reserves \bowtie Sailors))$

Solution 2

 $\pi_{\mathit{sname}}((\sigma_{\mathit{color} = '\mathit{red}'}, \mathit{Boats}) \bowtie \mathsf{Reserves} \bowtie \mathit{Sailors})$

Find names of sailors who've reserved a red boat

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Boats

<u>bid</u>	Color
101	Red
103	Green

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Reserve)\bowtie Sailors)$$

A query optimizer can find this!

Find names of sailors who've reserved a red OR a

green boat

Sailors

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

<u>bid</u>	Color
101	Red
103	Green

$$\pi_{sname}((\sigma_{col = 'red' \lor col = 'green'} Boats) \bowtie Reserves \bowtie Sailors)$$

Find names of sailors who've reserved a red OR a green boat

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

Boats

<u>bid</u>	Color
101	Red
103	Green

Using Union:

$$\rho(Tempred, \pi_{sname}((\sigma_{col='red'}Boats) \bowtie Reserves \bowtie Sailors)))$$

 $\rho(Tempgreen, \pi_{sname}((\sigma_{col='green}^{Boats}) \bowtie Reserves \bowtie Sailors)))$

Tempred ∪ *Tempgreen*

$$\rho(\textit{Tempred}, \pi_{\textit{sid}}((\sigma_{\textit{color} = '\textit{red'}} \textit{Boats}) \bowtie \mathsf{Reserves}))$$

$$\rho(Tempgreen, \pi_{sid}((\sigma_{color='green'}Boats)) \bowtie Reserves))$$

 π_{sname} ((Tempred \cup Tempgreen) \bowtie Sailors)

Find names of sailors who've reserved a red AND

a green boat Sailors

<u>sid</u>	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

<u>bid</u>	Color
101	Red
103	Green

$$\rho(Tempred, \pi_{sid}((\sigma_{color='red'}Boats) \bowtie Reserves))$$

$$\rho(Tempgreen, \pi_{sid}((\sigma_{color='green'}Boats) \bowtie Reserves))$$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Find the names of sailors who've reserved all boats

Sailors

sname

dustin

lubber

rusty

rating

10

sid

22

58

	_
age	
45.0	
55.5	
35.0	

Reserves

sid	<u>bid</u>	day
22	101	10/10/96
58	103	11/12/96

Boats

<u>bid</u>	Color
101	Red
103	Green

 Uses division; schemas of the input relations to / must be carefully chosen:

$$\rho(Tempsids,(\pi_{sid,bid} Reserves)/(\pi_{bid} Boats))$$

$$\pi_{sname}$$
 (Tempsids \bowtie Sailors)

Find the names of sailors who've reserved all Green

boats

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Reserves

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

<u>bid</u>	Color
101	Red
103	Green

$$\rho(Tempsids,(\pi_{sid,bid} Reserves)/(\pi_{bid}(\sigma_{Color='Green'} Boats)))$$

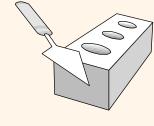
$$\pi_{sname}$$
 (Tempsids \bowtie Sailors)

- Example * Employee (ID, person_name, street, city)
 - Works (<u>ID</u>, <u>company_name</u>, salary)
 - Company (company_name, city)
- Find the names of employees who live in Miami

$$\Pi_{person_name} (\sigma_{city} = "Miami" (employee))$$

Find the names of employees whose salary is more than \$100K

$$\prod_{person_name} (\sigma_{salary > 100K} (employee \bowtie_{ID} works))$$


- Example * Employee (ID, person_name, street, city)
 - Works (<u>ID</u>, <u>company_name</u>, salary)
 - Company (company_name, city)
- Find the names of employees who live in Miami and whose salary is more than \$100K

 $\prod_{person_name} (\sigma_{city} = "Miami" AND salary > 100K (employee \bowtie_{ID} works))$

- Example * Employee (ID, person_name, street, city)
 - Works (<u>ID</u>, <u>company_name</u>, salary)
 - Company (company_name, city)
- Find the ID and name of each employee who does not work for BigBank

$$\Pi_{ID,person_name}$$
 (employee) - $\Pi_{ID,person_name}$ (employee \bowtie_{ID} ($\sigma_{company_name} = "_{BigBank}$ (works)))

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- ❖ Several ways of expressing a given query; a query optimizer should choose the most efficient version.