
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

SQL Queries

Chapter 5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

The Structured Query Language

v Developed by IBM (system R) in the 1970s
v The most widely used language for creating,

manipulating, and querying relational DBMS.
v Need for a standard since it is used by many vendors
v Standards:

§ SQL-86
§ SQL-89 (minor revision)
§ SQL-92 (major revision)
§ SQL-99 (major extensions, current standard)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Example
Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

v We will use these
instances of the
Sailors and
Reserves relations
in our examples.

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Basic SQL Query

v relation-list A list of relation names
v target-list A list of attributes of relations in relation-list
v qualification Comparisons (Attr op const or Attr1 op

Attr2, where op is one of)
combined using AND, OR and NOT.

v DISTINCT is an optional keyword indicating that the
answer should not contain duplicates. Default is that
duplicates are not eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

< > = £ ³ ¹, , , , ,

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Conceptual Evaluation Strategy

v Semantics of an SQL query defined in terms of
the following conceptual evaluation strategy:

1. Compute the cross-product of relation-list.
2. Discard resulting tuples if they fail qualifications.
3. Delete attributes that are not in target-list.
4. If DISTINCT is specified, eliminate duplicate rows.

v This strategy is probably the least efficient way to
compute a query! An optimizer will find more
efficient strategies to compute the same answers.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid Day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Expressions and Strings

v Illustrates use of arithmetic expressions and string
pattern matching: Find triples (of ages of sailors and
two fields defined by expressions) for sailors whose names
begin and end with B and contain at least three characters.

v AS and = are two ways to name fields in result.
v LIKE is used for string matching. `_’ stands for any

one character and `%’ stands for 0 or more arbitrary
characters.

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Find sailors who’ve
reserved at least
one boat

v Would adding DISTINCT to this query make a difference?

SELECT S.name
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Find the names of sailors who have reserved a
red boat

SELECT S.name
FROM Sailors S, Reserves R, Boats B
WHERE S.sid=R.sid AND R.bid = B.bid AND B.color = ‘red’

SELECT R.sid
FROM Reserves R

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Find sid’s and names of
sailors who’ve reserved a
red or a green boat

v UNION: Can be used to
compute the union of any
two union-compatible sets of
tuples (which are
themselves the result of
SQL queries).

v If we replace OR by AND in
the first version, what do
we get?

v Also available: EXCEPT
(What do we get if we
replace UNION by EXCEPT?)

SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
UNION
SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Find sid’s and names of
sailors who’ve reserved
a red and a green boat

v INTERSECT: Can be used to
compute the intersection
of any two union-
compatible sets of tuples.

v Included in the SQL/92
standard, but some
systems don’t support it.

v Contrast symmetry of the
UNION and INTERSECT
queries with how much
the other versions differ.

SELECT S.sid, S.sname
FROM Sailors S, Boats B1, Reserves R1,
 Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
 AND S.sid=R2.sid AND R2.bid=B2.bid
 AND B1.color=‘red’ AND B2.color=‘green’

SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘green’

SELECT S.sid, S.sname
FROM Sailors S, Boats B1, Reserves
R1, Boats B2, Reserves R2
WHERE S.sid=R1.sid
AND R1.bid=B1.bid
AND S.sid=R2.sid
AND R2.bid=B2.bid
AND B1.color=‘red’
AND B2.color=‘green’

B

R

S

B

S

R

B1

R1

B2

R2

S

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Find sid’s and names of
sailors who’ve reserved red
boats but not green boats

v EXCEPT: Can be used to compute the difference of any
two union-compatible sets of tuples

v Many systems recognize the keyword MINUS instead
of EXCEPT

SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
EXCEPT
SELECT S.sid, S.sname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘green’

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Nested Queries

v A very powerful feature of SQL: a WHERE clause can
itself contain an SQL query! (Actually, so can FROM
clauses.)

v To find sailors who’ve not reserved #103, use NOT IN.
v To understand semantics of nested queries, think of a

nested loops evaluation: For each Sailors tuple, check the
qualification by computing the subquery.

Find names of sailors who’ve reserved boat #103
SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Nested Queries

Find names of sailors who’ve NOT reserved boat #103

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Nested Queries

Find names of sailors who’ve not reserved a red boat

SELECT S.sname
FROM Sailors S
WHERE S.sid NOT IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid IN (SELECT B.bid
 FROM Boats B
 WHERE B.color =‘red’
)
)

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Nested Queries
with Correlation

v EXISTS is another set comparison operator, like IN.
v If UNIQUE is used, and * is replaced by R.bid, finds

sailors with at most one reservation for boat #103.
v Illustrates why, in general, subquery must be re-

computed for each Sailors tuple.

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who’ve reserved boat #103:

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

More on Set-
Comparison
Operators

v We’ve already seen IN, EXISTS and UNIQUE. Can also
use NOT IN, NOT EXISTS and NOT UNIQUE.

v Also available: op ANY, op ALL, op IN
v Find sailors whose rating is greater than that of some

sailor called Horatio:

> < = ³ £ ¹, , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.sname=‘Horatio’)

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Rewriting INTERSECT
Queries Using IN

v Similarly, EXCEPT queries re-written using NOT IN.
v Useful if your system does not support INTERSECT

or EXCEPT

Find sid of sailors who’ve reserved both a red and a green boat:
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
 AND S.sid IN (SELECT S2.sid
 FROM Sailors S2, Boats B2, Reserves R2
 WHERE S2.sid=R2.sid AND R2.bid=B2.bid
 AND B2.color=‘green’)

v Sailor (sid, sname, rating, age)
v Reserve (sid, bid, day)
v Boat (bid, color)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Division in SQL

v Let’s do it the hard
way, without EXCEPT:

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS
 ((SELECT B.bid
 FROM Boats B)
 EXCEPT
 (SELECT R.bid
 FROM Reserves R
 WHERE R.sid=S.sid))

Find sailors who’ve reserved all boats.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Aggregate Operators
v Significant extension

of relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT COUNT (*)
FROM Sailors S

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT MAX (S.age)
FROM Sailors S

sid sname rating age
28 Bob 10 35
31 Bob 10 20
44 guppy 5 50
58 rusty 10 35

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Find name and age of the oldest sailor(s)

v The first query is illegal!
(We’ll look into the
reason a bit later, when
we discuss GROUP BY.)

v The third query is
equivalent to the second
query, and is allowed in
the SQL/92 standard,
but is not supported in
some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Motivation for Grouping
v So far, we’ve applied aggregate operators to all

(qualifying) tuples. Sometimes, we want to apply
them to each of several groups of tuples.

v Consider: Find the age of the youngest sailor for each
rating level.
§ Suppose we know that rating values go from 1 to 10;

we can write 10 queries that look like this (!):

§ In general, we don’t know how many rating levels
exist, and what the rating values for these levels are!

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Queries With GROUP BY and HAVING

v The target-list contains (i) attribute names (ii) terms
with aggregate operations (e.g., MIN (S.age)).
§ The attribute list (i) must be a subset of grouping-list.

Intuitively, each answer tuple corresponds to a group, and
these attributes must have a single value per group. (A
group is a set of tuples that have the same value for all
attributes in grouping-list.)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification

