
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Storage and Indexing
Storing Data: Disks and Files

Chapters 8-9

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Indexes
v An index on a file speeds up selections on the

search key fields for the index.
§ Any subset of the fields of a relation can be the

search key for an index on the relation.
§ Search key is not the same as key (minimal set of

fields that uniquely identify a record in a relation).
v An index contains a collection of data entries,

and supports efficient retrieval of all data
entries k* with a given key value k.
§ Given data entry k*, we can find record with key k

in at most one disk I/O.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

B+ Tree Indexes

v Leaf pages contain data entries, and are chained (prev & next)
v Non-leaf pages have index entries; only used to direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages

Pages
(Sorted by search key)

Leaf

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Example B+ Tree

v Find 28*? 29*? All > 15* and < 30*
v Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
§ And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries <= 17 Entries > 17

Note how data entries
in leaf level are sorted

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

B+ Tree: Most Widely Used Index
v Insert/delete at log F N cost; keep tree height-

balanced. (F = fanout, N = # leaf pages)
v Minimum 50% occupancy (except for root). Each

node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

v Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

B+ Trees in Practice

v Typical order: 100. Typical fill-factor: 67%.
§ average fanout = 133

v Typical capacities:
§ Height 4: 1334 = 312,900,700 records
§ Height 3: 1333 = 2,352,637 records

v Can often hold top levels in buffer pool:
§ Level 1 = 1 page = 8 Kbytes
§ Level 2 = 133 pages = 1 Mbyte
§ Level 3 = 17,689 pages = 133 MBytes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Inserting a Data Entry into a B+ Tree
v Find correct leaf L.
v Put data entry onto L.

§ If L has enough space, done!
§ Else, must split L (into L and a new node L2)

• Redistribute entries evenly, copy up middle key.
• Insert index entry pointing to L2 into parent of L.

v This can happen recursively
§ To split index node, redistribute entries evenly, but

push up middle key. (Contrast with leaf splits.)
v Splits “grow” tree; root split increases height.

§ Tree growth: gets wider or one level taller at top.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Inserting 8* into Example B+ Tree

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

Deleting a Data Entry from a B+ Tree

v Start at root, find leaf L where entry belongs.
v Remove the entry.

§ If L is at least half-full, done!
§ If L has only d-1 entries,

• Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

• If re-distribution fails, merge L and sibling.
v If merge occurred, must delete entry (pointing to L

or sibling) from parent of L.
v Merge could propagate to root, decreasing height.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Deleting 19* ,20* into Example B+ Tree

2* 3*

Root
17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Deleting 24* into Example B+ Tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Hash-Based Indexes

v Good for equality selections.
v Index is a collection of buckets.

§ Bucket = primary page plus zero or more overflow
pages.

§ Buckets contain data entries.
v Hashing function h: h(r) = bucket in which

(data entry for) record r belongs. h looks at the
search key fields of r.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Static Hashing
v # primary pages fixed, allocated sequentially,

never de-allocated; overflow pages if needed.
v h(k) mod M = bucket to which data entry with

key k belongs. (M = # of buckets)

h(key) mod M

h
key

Primary bucket pages Overflow pages

2
0

M-1

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

Static Hashing (Contd.)

v Buckets contain data entries.
v Hash fn works on search key field of record r. Must

distribute values over range 0 ... M-1.
§ h(key) = (a * key + b) usually works well.
§ a and b are constants; lots known about how to tune h.

v Long overflow chains can develop and degrade
performance.
§ Extendible and Linear Hashing: Dynamic techniques to fix

this problem.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

Alternatives for Data Entries

v Three main alternatives
§ Alternative 1: a data entry k* is an actual data

record (with search key value k)
§ Alternative 2: a data entry is a (k, rid) pair
§ Alternative 3: (k, rid-list)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

Alternatives for Data Entries (Contd.)

v Alternative 1:
§ If this is used, index structure is a file organization for

data records (instead of a Heap file or sorted file).
§ At most one index on a given collection of data records

can use Alternative 1. (Otherwise, data records are
duplicated, leading to redundant storage and potential
inconsistency.)

§ If data records are very large, # of pages containing
data entries is high. Implies size of auxiliary
information in the index is also large, typically.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

Alternatives for Data Entries (Contd.)

v Alternatives 2 and 3:
§ Data entries typically much smaller than data

records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search,
which depends on size of data entries, is much
smaller than with Alternative 1.)

§ Alternative 3 more compact than Alternative 2, but
leads to variable sized data entries even if search
keys are of fixed length.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

Index Classification
v Primary vs. secondary: If search key contains

primary key, then called primary index.
§ Unique index: Search key contains a candidate key.

v Clustered vs. unclustered: If order of data records
is the same as, or `close to’, order of data entries,
then called clustered index.
§ Alternative 1 implies clustered; in practice, clustered

also implies Alternative 1 (since sorted files are rare).
§ A file can be clustered on at most one search key.
§ Cost of retrieving data records through index varies

greatly based on whether index is clustered or not!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

Clustered vs. Unclustered Index
v Suppose that Alternative 2 is used for data entries,

and that the data records are stored in a Heap file.
§ To build clustered index, first sort the Heap file (with some

free space on each page for future inserts).
§ Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but not identical to, the sort order.)

Index entries

Data entries

direct search for

(Index File)
(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

