
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Storage and Indexing
Storing Data: Disks and Files

Chapters 8-9

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

Cost Model for Our Analysis
We ignore CPU costs, for simplicity:

§ B: The number of data pages
§ R: Number of records per page
§ D: (Average) time to read or write disk page
§ Measuring number of page I/O’s ignores gains of

pre-fetching a sequence of pages; thus, even I/O
cost is only approximated.

§ Average-case analysis; based on several simplistic
assumptions.

§ The size of the data entry is 10%of the
corresponding record
 Good enough to show the overall trends!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

Comparing File Organizations

v Heap files (random order; insert at eof)
v Sorted files, sorted on <age, sal>
v Clustered B+ tree file, Alternative (1), search

key <age, sal>
v Heap file with unclustered B + tree index on

search key <age, sal>
v Heap file with unclustered hash index on

search key <age, sal>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 49

Operations to Compare

v Scan: Fetch all records from disk
v Equality search
v Range selection
v Insert a record
v Delete a record

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 50

Assumptions in Our Analysis
v Heap Files:

§ Equality selection on key; exactly one match.
v Sorted Files:

§ Files compacted after deletions.
v Indexes:

§ Alt (2), (3): data entry size = 10% size of record
§ Hash: No overflow buckets.

• 80% page occupancy => File size = 1.25 data size
§ Tree: 67% occupancy (this is typical).

• Implies file size = 1.5 data size

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 51

Cost of Operations
 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B D(log 2 B +
pgs with
match recs)

Search
+ BD

Search
+BD

(3)
Clustered

1.5BD Dlog F 1.5B D(log F 1.5B
+ # pgs w.
match recs)

Search
+ D

Search
+D

(4) Unclust.
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

D(log F 0.15B
+ # match
recs)

Search
+ 2D

Search
+ 2D

(5) Unclust.
Hash index

BD(R+0.125) 2D BD Search
+ 2D

Search
+ 2D

 Several assumptions underlie these (rough) estimates!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 52

Understanding the Workload

v For each query in the workload:
§ Which relations does it access?
§ Which attributes are retrieved?
§ Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?
v For each update in the workload:

§ Which attributes are involved in selection/join conditions?
How selective are these conditions likely to be?

§ The type of update (INSERT/DELETE/UPDATE), and the
attributes that are affected.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 53

Choice of Indexes
v What indexes should we create?

§ Which relations should have indexes? What field(s)
should be the search key? Should we build several
indexes?

v For each index, what kind of an index should it
be?
§ Clustered? Hash/tree?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 54

Choice of Indexes (Contd.)

v One approach: Consider the most important queries
in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.
§ Obviously, this implies that we must understand how a

DBMS evaluates queries and creates query evaluation plans!
§ For now, we discuss simple 1-table queries.

v Before creating an index, must also consider the
impact on updates in the workload!
§ Trade-off: Indexes can make queries go faster, updates

slower. Require disk space, too.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 55

Index Selection Guidelines
v Attributes in WHERE clause are candidates

for index keys.
§ Exact match condition suggests hash index.
§ Range query suggests tree index.

• Clustering is especially useful for range queries; can
also help on equality queries if there are many
duplicates.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 56

Index Selection Guidelines
v Multi-attribute search keys should be considered

when a WHERE clause contains several conditions.
§ Order of attributes is important for range queries.
§ Such indexes can sometimes enable index-only strategies

for important queries.
• For index-only strategies, clustering is not important!

v Try to choose indexes that benefit as many queries
as possible. Since only one index can be clustered
per relation, choose it based on important queries
that would benefit the most from clustering.

