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ABSTRACT
Cloud providers offer an array of storage services that repre-
sent different points along the performance, cost, and dura-
bility spectrum. If an application desires the composite ben-
efits of multiple storage tiers, then it must manage the com-
plexity of different interfaces to these storage services and
their diverse policies. We believe that it is possible to pro-
vide the benefits of customized tiered cloud storage to appli-
cations without compromising simplicity using a lightweight
middleware. In this paper, we introduce Tiera, a middleware
that enables the provision of multi-tiered cloud storage in-
stances that are easy to specify, flexible, and enable a rich
array of storage policies and desired metrics to be realized.
Tiera’s novelty lies in the first-class support for encapsu-
lated tiered cloud storage, ease of programmability of data
management policies, and support for runtime replacement
and addition of policies and tiers. Tiera enables an appli-
cation to realize a desired metric (e.g., low latency or low
cost) by selecting different storage services that constitute
a Tiera instance, and easily specifying a policy, using event
and response pairs, to manage the life cycle of data stored
in the instance. We illustrate the benefits of Tiera through
a prototype implemented on the Amazon cloud. By deploy-
ing unmodified MySQL database engine and a TPC-W Web
bookstore application on Tiera, we are able to improve their
respective throughputs by 47%−125% and 46%−69%, over
standard deployments. We further show the flexibility of
Tiera in achieving different desired application metrics with
minimal overhead.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Stor-
age hierarchies; H.3.2 [Information Storage And Re-
trieval]: Systems and Software—Performance evaluation
(efficiency and effectiveness)
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1. INTRODUCTION
Many cloud providers today offer an array of storage ser-

vices that represent different points along the performance,
cost, and durability spectrum. As an example, Amazon
provides ElastiCache (a caching service protocol compliant
to Memcached), Simple Storage Service (S3), Elastic Block
Store (EBS), and Glacier as different cloud storage options1.
A single service generally optimizes one metric trading off
others. For example, Amazon ElastiCache offers low latency,
but at high cost and low durability. Amazon S3 offers high
durability and low cost but low performance. If the appli-
cation is willing to use multiple cloud storage services, then
it can realize composite benefits. For example, an applica-
tion that requires low latency reads as well as durability,
might choose to use a combination of Amazon ElastiCache
and Amazon EBS, with most frequently accessed data be-
ing stored in ElastiCache and the rest in the EBS persistent
store.
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Figure 1: Tiera middleware enables applications to easily use
multiple tiers to realize composite benefits

Accessing multiple tiers introduces significant complexity
to the application. The application has to not only deal
with different interfaces and data models of the storage, but
at the same time, has to program policies to manage data
across the different storage services to realize the desired
metric. For example, two open source web applications that
use multiple storage services when deployed in the cloud,

1Note that we use Amazon as an illustrative example in this
paper, but similar issues also apply to other cloud providers.



WordPress [28] and Moodle [17], have 1000 − 5000 addi-
tional lines of code to manage data across different storage
tiers (WordPress across Memcached and S3, Moodle across
Memcached, Local Disk, and MongoDB). The popular open
source database, MySQL [18] has over 6000 lines of code to
support memory and S3 as storage media. Hence we see
that an application must make a choice: opt for simplicity
by using one or a small number of storage tiers and live
with the tradeoffs, or embrace complexity – be willing to
use different interfaces, decide on the appropriate capacity
for each kind of storage, and manage data placement and
other policy requirements explicitly. We believe this is a
false choice.

In this paper, we present Tiera, a middleware that en-
ables the provision of flexible and easy-to-use multi-tiered
cloud storage instances. A Tiera instance encapsulates mul-
tiple cloud storage services and enables easy specification
of a rich array of data storage policies to achieve desired
tradeoffs. The client of a Tiera instance is shielded from
the underlying complexity introduced by the multi-tiered
cloud storage services, and specifying a Tiera instance is
simple and straightforward as we will illustrate. The nov-
elty of Tiera lies in the first-class support for encapsulated
tiered storage, ease of programmability of data management
policies, and the ability to dynamically replace/add storage
policies and tiers. In the long run, we envision Tiera in-
stances that span a cloud and edge resources or multiple
clouds (public or private) or data centers. Here, we focus on
a single cloud implementation.

The key contributions of this paper are:
• We present the design and implementation of Tiera, a

lightweight middleware that enables easy specification
of multi-tiered cloud storage instances.

• We show how Tiera can support a rich array of storage
policies to realize a desired metric (e.g., low latency or
low cost) through a powerful event-response mecha-
nism.

• We demonstrate the benefit of Tiera by deploying two
unmodified applications, MySQL and the online book-
store application bundled with the TPC-W benchmark
on Tiera in the Amazon cloud, yielding an increase
in their respective throughputs by 47% − 125% and
46% − 69%, over standard deployments.

The rest of the paper is organized as follows. Section 2
provides an overview of Tiera. This section also provides
examples of Tiera instance specifications to demonstrate its
power, flexibility, and ease-of-use. Section 3 explains the
implementation details of a Tiera prototype, implemented
in the Amazon cloud. Section 4 discusses the results of our
experimental evaluation. The results demonstrate how an
application can use primitives provided by Tiera to realize
the composite benefits of multiple storage services without
changes to the application logic itself. Section 5 describes
related work. Section 6 concludes the paper and describes
possible future research directions.

2. TIERA OVERVIEW
2.1 Data Model

Tiera implements an object storage model where data is
managed as objects [16]. This model enforces an explicit
separation of data and metadata enabling unified access to
data distributed among the different storage services that
constitute a Tiera instance. An object stored using Tiera
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Figure 2: Three layers of a Tiera server

can be accessed by the application using a globally unique
identifier that acts as the key to access the corresponding
value stored (as an object). It is left to the application
to decide the keyspace from which to select this globally
unique identifier. Tiera exposes a simple PUT/GET API to the
application to store and retrieve data. An object stored into
Tiera cannot be edited, though an application can choose to
overwrite an object.

Tiera treats objects stored within it as an uninterpreted
sequence of bytes that can be of variable size and represent
any type of application data, e.g., text files, tables, images,
etc. Tiera tracks the common attributes or metadata for
each object: size, access frequency, dirty flag, location (i.e.
which tiers), and time of last access. In addition, each Tiera
object may also be assigned a set of tags. Tags are stored
as part of object metadata and provide a method to add
structure to the object name space. It enables an applica-
tion to define object classes (those that share the same tag).
The user can then easily specify policies that apply to all
objects of a particular class. Tags may also be used to pass
application “hints” to Tiera. For example, an application
could add a “tmp” tag to temporary files and a policy could
dictate that objects with “tmp” tag be stored in inexpensive
volatile storage.

2.2 Architecture
An application interacts with Tiera by specifying the dif-

ferent cloud storage tiers it desires to use and their respective
initial capacities. The application also specifies a policy that
governs the life cycle of data stored through Tiera. A tier
can be any source or sink for data with a prescribed interface.
The storage tiers along with the Tiera server, constitute a
Tiera instance. Once configured, the application interacts
with the Tiera instance to store and retrieve data. It can
also interact with the instance to alter its configuration and
the governing policy.

The Tiera server has three primary roles: (1) to interface
with applications to enable storage and retrieval of data, (2)
to interface with different storage tiers to read/write data to
them, and (3) to manage the data placement and movement
across different tiers. These roles are performed by three
layers: the application interface layer, the storage interface
layer, and the control layer respectively (Figure 2).

The application interface layer exposes a simple PUT/GET

API that allows an object to be placed/retrieved with re-



spect to the Tiera instance. The client can merely call
PUT/GET and let the Tiera server decide in which tier the
object should be placed/retrieved (e.g., in the Amazon con-
text: Memcached, S3 bucket, EBS volume, and so on) based
on the control layer. Note that it is also possible to support
the traditional POSIX file system interface to Tiera. We
have developed such an interface using Filesystem in User
Space (FUSE) [10] to run applications that require a POSIX
interface to Tiera.

The storage interface layer interfaces with the storage ser-
vices encapsulated by the Tiera instance. The Tiera server
uses service-specific APIs to interact with the different stor-
age tiers to carry out different operations such as object
storage/retrieval, moving data across tiers, and resizing the
storage tiers.

The control layer decides how data is to be placed and
managed throughout the Tiera instance lifecyle. It provides
two primary mechanisms—event and response—to manage
the data within the instance. An event is the occurrence of
some condition and a response is the action executed on the
occurrence of an event. Events can be combined such that a
particular response is initiated only when all the conditions
hold, and similarly multiple responses can be associated with
a single event. These two mechanisms together form the pri-
mary building blocks for data management policies in Tiera.
Events may be defined on individual named objects or ob-
ject classes, the latter allowing a single policy to apply to
object collections (sharing a common tag) and differential
policies to be easily specified.

Tiera LowLatencyInstance(time t) {
% two tiers specified with initial sizes
tier1: { name: Memcached, size: 5G };
tier2: { name: EBS, size: 5G };

% action event defined to always store data
% into Memcached
event(insert.into) : response {

insert.object.dirty = true;
store(what:insert.object, to:tier1);

}
% write back policy: copying data to
% persistent store on a timer event
event(time=t) : response {

copy(what: object.location == tier1 &&
object.dirty == true,

to: tier2);
}
}

Figure 3: LowLatency Tiera instance

Tiera supports three different kinds of events: (1) timer
events that occur at the end of a specified time period, (2)
threshold events that can be based on attributes of data
objects and of the tiers themselves, and occur when the
value of the attribute reaches a certain value, and (3) ac-
tion events that occur when actions such as data inser-
tion or deletion are performed. Table 1 shows some of
the responses currently supported by our Tiera implementa-
tion: store data in a tier, retrieve data from a tier, move
data between tiers, copy data from one tier to another, and
delete data in a tier. Tiera also supports advanced re-
sponses: storeOnce, grow/shrink , compress/uncompress,
and encrypt/decrypt. Tiera’s design is highly modular

Response Arguments Function
store Objects, Tiers Stores objects in the

specified tiers.
storeOnce Objects, Tiers Stores objects in the

specified tiers. An ob-
ject is stored only if its
content is unique.

retrieve Objects Retrieves objects from
an underlying tier.

copy Objects, Des-
tination Tiers,
Bandwidth
Cap

Copies objects to the
specified tiers. Trans-
fer speeds are throttled
if a bandwidth cap is
specified.

encrypt Objects, Key Encrypts objects with
the specified key.

decrypt Objects, Key Decrypts objects with
the specified key.

compress Objects Compresses the speci-
fied objects. The ZLIB
compression library is
used to perform com-
pression.

uncompress Objects Inflates the specified
objects.

delete Objects, Tiers Deletes objects from
the specified tiers.

move Objects, Des-
tination Tiers,
Bandwidth
Cap

Moves objects to the
specified tiers.

grow Tier, Percent
Increase

Expands tier capacity
by the specified per-
centage.

shrink Tier, Percent
Decrease

Reduces tier capacity
by the specified per-
centage.

Table 1: Supported responses in Tiera

making it very easy to add a new response. Other responses
will be added to Tiera in the future to support transactions,
data snapshotting, and object versioning. In the next sec-
tion (2.3) we will show how a rich array of data management
policies can be easily constructed using these event-response
mechanisms.

2.3 Defining Tiera Instances
Tiera instance configuration, including policies are spec-

ified through an instance specification file. The instance
specification provides the desired storage tiers to use, their
capacities, and the set of events along with corresponding
responses to be executed. An application realizes the trade-
offs it desires by (i) selecting different storage tiers that con-
stitute the instance, and (ii) specifying the event-response
pairs used to define the policy.

For example, consider the following specification for a
Tiera instance called LowLatencyInstance (Figure 3). This
instance uses two storage tiers and an event that specifies
that a data object is to be placed in tier1 (Memcached)
when it is inserted into this Tiera instance (with PUT). The
instance also implements a write-back policy by combining
a timer event with the copy response, to write out any dirty
data (i.e data added or modified in a tier since the last copy)
to the persistent store at regular time intervals. It is as-
sumed that the specific tier names (e.g. Memcached and
EBS) are known to Tiera.

Tiera enables rich policies that can be specified easily to



Tiera PersistentInstance() {
tier1: { name: Memcached, size: 200M };
tier2: { name: EBS, size: 1G };
tier3: { name: S3, size: 10G};

% write-through policy using action event
% and copy response
event(insert.into == tier1) : response {

copy(what: insert.object, to: tier2);
}

% simple backup policy
event(tier2.filled == 50%) : response {

copy(what: object.location == tier2,
to: tier3, bandwidth: 40KB/s);

}
}

Figure 4: Persistent Tiera Instance

% LRU Policy
event(insert.into == tier1) : response {

if (tier1.filled) {
% Evict the oldest item to another tier

move(what: tier1.oldest, to: tier2);
}
store(what: insert.object, to: tier1);

}

% MRU Policy
event(insert.into == tier1) : response {

if (tier1.filled) {
% Evict the newest item to another tier

move(what: tier1.newest, to: tier2);
}
store(what: insert.object, to: tier1);

}

Figure 5: Implementing LRU and MRU in Tiera

realize a desired tradeoff (e.g., latency vs. cost or durabil-
ity). For instance, for the LowLatencyInstance, by choosing
to read/write data from/to Memcached, low latency will be
achieved but at high monetary cost and reduced data dura-
bility. If an application desires better data durability, it
could specify a smaller time value t for data write-back.

As another example, the PersistentInstance (Figure 4)
trades performance for better data durability. This instance
uses a small Memcached tier to cache the most recently writ-
ten data. It implements a write-through policy between tier1
(Memcached) and tier2 (EBS). A write-through policy can
be specified using an action event with a copy response that
causes an object to be inserted into tier2 as soon as it is
inserted into tier1.

Tiera also allows easy specification of object placement
and caching policies through the use of object attributes
such as access frequency and time of last access. For ex-
ample, access frequency can be used for easy specification
of hot and cold objects. Similarly, time of last access can
be used to identify old and new objects, making it simple to
implement LRU or MRU eviction policies in Tiera, as shown
in Figure 5.

The event-response framework also allows for dynamic
modification to the instance configuration to respond to
changing workload. For example, consider a scenario where
an application is using the PersistentInstance (Figure 4)

Tiera GrowingInstance(time t) {
tier1: { name: Memcached, size: 200M };
tier2: { name: EBS, size: 2G };

% Placement Logic
event(insert.into) : response {

store(what: insert.object,
to: tier1);

}

% Growing with workload, add as much Memcahed
% storage as its current size everytime the tier
% tier is 75% full
event(tier1.filled == 75%) : response {

grow(what: tier1, increment: 100%);
}
}

% write-back policy
event(time=t) : response {

move(what: object.location == tier1,
to: tier2);

}
}

Figure 6: Expanding a tier

to store data, but its working set size is about to exceed
200MB. To handle this increase in working set, a threshold
event can be added to the instance specification to grow the
Memcached tier when the amount of stored data reaches a
cap. The event-response specification for doing this is illus-
trated in Figure 6.

3. TIERA IMPLEMENTATION
We now describe our implementation of a prototype Tiera

server (which is under 4000 lines of code) in the Amazon
public cloud using the following storage tiers: Memcached,
Ephemeral Storage (Amazon EC2 local volumes), Amazon
EBS, and Amazon S3. The Tiera server is deployed as a
Thrift server [4] on an EC2 instance (can be co-located with
the application on the same EC2 instance). Thrift is a re-
mote procedure call framework, that enables applications
written in different languages to communicate with each
other. The use of Thrift makes it easy to interface appli-
cations written in different languages with Tiera. When
the server starts up, it begins by reading the configuration
file that is used to indicate the different tiers (and their
capacities) that would constitute the instance, the size of
the thread pool dedicated to service client requests, the size
of thread pool dedicated to service responses and evaluate
events, and the location to persistently store metadata and
credentials for an Amazon Web Services account. All ob-
ject metadata is stored and persisted using BerkeleyDB [19].
Once the tiers to be used are established, and the two thread
pools and the metadata store are initialized, the instance is
ready to serve client requests. When the instance receives a
client request, it is serviced by a thread from the thread pool
dedicated to service user requests. The thread servicing the
PUT/GET requests takes an appropriate action, as dictated
by the policy programmed on the instance.

The prototype supports the three types of events men-
tioned previously: action, threshold, and timer. The proto-
type currently supports all the responses listed in Table 1. A
desired policy is implemented in the instance by hand-coding



the event-response pairs into the control layer. Automated
compilation and optimization of specification files will be
addressed in future work. We next describe how different
events are implemented in the prototype.

Timer events are handled by a dedicated thread in the
control layer. This thread is responsible for examining if
a timer event has occurred. Once this thread determines
that an event has indeed occurred, it signals a free thread
(part of the thread pool mentioned) to service the event by
executing the response associated with the particular timer
event. The original thread continues to check the occurrence
of other timer events. At present Tiera allows timer events
to be specified at the granularity of seconds.

Threshold events can be specified as background or fore-
ground (default is foreground). Background events are eval-
uated by threads when actions effecting a variable on which
the threshold is defined occur. For example, consider a
threshold event being defined on the amount of data stored
in a tier. Two actions effect this variable directly, (1) storing
new data in the tier, and (2) deleting data stored in the tier.
Both actions trigger the threshold event to be evaluated and
check if the defined threshold has been reached. Background
events are evaluated asynchronous to the actions mentioned
and must be explicitly declared as such. Foreground events
are evaluated synchronously and are presumed to be the de-
fault.

Action events are generally foreground events and are eval-
uated in the context of the thread servicing a client request.
Responses associated are required to be fast since they effect
latency of data access. If a slow response needs to be asso-
ciated with an action event then it should be specified as a
background event. The occurrence of the event will cause a
thread to be signalled, which would wake up and service any
response associated with the the action event.

4. EXPERIMENTAL EVALUATION
We evaluated the Tiera prototype in the Amazon cloud.

The Tiera instance containers and the clients were hosted on
EC2 instances. For our experiments we used EC2 t1.micro
instances–1 ECU, 615 MB of RAM, and 8GB of EBS stor-
age, and EC2 m3.medium instances–3 ECU, 3.75 GB of
RAM, and 8GB of EBS storage to host the Tiera instances.
The client workloads were generated using a combination
of benchmarking tools: sysbench [23], TPC-W [24], Yahoo
Cloud Serving Benchmark [7] (YCSB), fio [9], and our own
benchmarks. These benchmark tools were themselves run on
an EC2 t1.mirco, or m3.medium instances and all measure-
ments were made from these clients running in the Amazon
cloud (i.e., no wide-area latency). Our experiments illus-
trate: (1) how easy it is to run unmodified applications on
Tiera, and provide them the composite benefits of multiple
storage tiers, (2) how Tiera enables an application to opti-
mize for a particular metric, and (3) the minimal overhead
introduced by Tiera.

4.1 Case Study: MySQL and TPC-W On Tiera
In this section we present our experience running two

applications on Tiera–(1) MySQL – a popular opensource
database management system (DBMS), and (2) an online
bookstore application (bundled with the TPC-W benchmark).
We were able to run both applications on Tiera without any
modifications to the applications themselves. Running these
applications on Tiera, we are able to offer them composite

benefits of using multiple tiers.

4.1.1 MySQL On Tiera
MySQL [18] is a popular open source DBMS used by many

applications. Within the Amazon cloud, MySQL is typi-
cally deployed on an EBS volume (persistent block store)
attached to an EC2 instance. This deployment performs
reasonably well when the amount of data accessed isn’t very
large or when there aren’t many concurrent requests, and
so requests can be served from the local instance’s buffer
cache or MySQL’s built-in caches. However, the through-
put drops significantly and the response latency increases
when data requested by the client can no longer be served
from these caches. Hence, many techniques have been ex-
plored to maintain the throughput level and keep the re-
sponse latency bounded. One such technique is to store
the database completely in memory. MySQL has a special
storage engine called Memory Engine that stores databases
completely in memory. However this technique only works
for non-transactional workload and when the database can
completely fit in the node’s memory. Also storing the entire
database in a single node’s memory makes the deployment
vulnerable to failure2.

Another common technique is to modify the end applica-
tion such that it caches the results of a database access in a
memory storage system like Memcached [15]. When the ap-
plication uses other storage services like Memcached to store
database results, it has to deal with additional complexities
such as being able to scale up and scale down the storage
service with a change in the workload.

Apart from the limitations mentioned above, we see that
either MySQL needs to be modified heavily (the Memory
Engine implementation is 4000 lines of code) or the end ap-
plication needs to be modified to optimize for performance.
Here, we explore the possibility of running unmodified
MySQL on Tiera to overcome the limitations mentioned
above. Using Tiera also enables a MySQL deployment to
easily optimize other metrics such as cost or reliability. The
benefits of the optimizations could be passed to the end ap-
plications, without the applications having to manage mul-
tiple storage services and deal with the associated complex-
ities.
Performance Optimization:
For this experiment, we used the unmodified MySQL Com-
munity Edition [18] version 5.7. We hosted MySQL on an
m3.medium EC2 instance. We generated OLTP workload
using sysbench. We hosted the benchmark tool itself on a
separate t1.micro instance. The OLTP workload followed
the special distribution, that is a certain percentage of the
data is requested 80% of the time. We varied this percent-
age of data requested from 1% to 30%. We also varied the
concurrency of the workload. We first ran MySQL on a non-
root EBS volume attached to the m3.medium EC2 instance,
which is a standard way to deploy MySQL in the cloud. We
then deployed MySQL on two different Tiera instances (de-
scribed below) and subjected them to the same workloads.
And last, we subjected the MySQL Memory Engine to sim-
ilar workloads.

For the following experiment we defined two Tiera in-
stances – MemcachedReplicated and MemcachedEBS.
The MemcachedReplicated instance consists of two Mem-

2For better fault tolerance it is required to run MySQL in a
special cluster mode which implies additional costs.
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Figure 7: Throughput and 95 Percentile Response Latency For Read-Only Workload With 8 Threads
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Figure 8: Throughput and 95 Percentile Response Latency For Read-Write Workload With 8 Threads

cached tiers: one Memcached tier in the same availability
zone as the client and the other in a separate availability
zone in AWS3. We defined a simple data management policy
for this instance: on a PUT to the instance the data is written
to both tiers before being acknowledged. This replication of
data provides better fault tolerance than having just one
copy in memory as in the Memory Engine. The GET request
is served from the Memcached tier in the same availability
zone as the client. The MemcachedEBS instance consists of
two tiers as well: a Memcached tier and an EBS tier. The
data management policy for this instance involved writing
data to both the Memcached and EBS tier on PUT and serv-
ing data from Memcached for GET. The instance specification
files for both these instances are under 15 lines each (in con-
trast to nearly 4000 additional lines of code needed to sup-
port MySQL directly over memory). Both these instances
had Memcached tiers large enough to fit the entire database
in memory. The MemcachedEBS instance has a lower cost of
storage per GB compared to the MemcachedReplicated in-
stance, since it has a lesser amount of Memcached storage.
Since we need to provide a POSIX interface to MySQL, we
used the FUSE filesystem interface we developed to inter-
face MySQL with the Tiera instances. The FUSE filesystem
we developed splits the database files into 4 KB objects (OS
page size) and stores them in Tiera.

In Figures 7 and 8, we plot the throughput in terms of
transactions per second and the 95 percentile response la-
tency for read-only and read-write workloads with 8 threads.
We see that for both read-only and read-write workloads
the MemcachedReplicated instance performs the best, sup-
porting the highest throughput and providing the lowest

3Availability zones are isolated locations (i.e independent
fault domains) connected via low latency links in the same
geographic area.

response latencies. The MySQL deployment on the Tiera
MemcachedReplicated instance provides a 125% increase in
throughput compared to the standard MySQL deployment
on EBS for read-write workloads, and an increase in through-
put of 47% for read-only workload. The increase in through-
put is less for read-only workload due to the caching of data
in the buffer cache of the EC2 instance. The MemcachedEBS

instance provides similar performance levels as the
MemcachedReplicated instance for read-only workloads, at
a fraction of the cost. Note that even in a purely read-only
transactional workload MySQL performs writes to its jour-
nal, which have to be persisted on to EBS in the MemcachedEBS
instance (these writes have to be performed on both Mem-
cached tiers in case of the MemcachedReplicated Tiera in-
stance). These writes to EBS result in a lower performance
for the MemcachedEBS instance compared to the
MemcachedReplicated instance. We see that for a read-write
workload the performance of the MemcachedEBS instance re-
sembles that of MySQL running over EBS, due to writes to
EBS (acting as a performance bottleneck). The MySQL de-
ployment on Tiera MemcachedEBS instance provides a 29%
increase in throughput over the standard MySQL deploy-
ment on EBS for the read-only workload, but their through-
puts are nearly equal for the read-write workload.

The experiment with MySQL Memory Engine yielded a
throughput of ≈ 0.15 TPS for the different workloads. This
is because the MySQL Memory Engine doesn’t support trans-
actions and only supports table level locks. Apart from offer-
ing poor performance the fault tolerance of this deployment
is also poor since data is stored in a single node’s memory.
For better fault tolerance MySQL would have to be deployed
in replicated cluster mode. This would imply a significant
increase in the cost of deployment.
Cost Optimization:
To show the flexibility of Tiera in supporting cost opti-
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mization, we next deployed MySQL on a Tiera instance,
MemcachedS3 that uses Memcached and S3 tiers. In contrast
to the two Tiera instances described previously, the goal of
this instance is to reduce the cost of deployment. The Mem-
cached tier in this instance wasn’t large enough to store the
entire database. Portions of the database are cached in the
Memcached tier using an LRU policy to manage the tier. We
subjected this instance to read-only and read-write transac-
tional workload with 10% of the data requested 80% of the
time with 8 threads. In Figure 9, we compare the through-
put and also the total cost of storage4 for using MySQL on
EBS against using unmodified MySQL on the MemcachedS3

Tiera instance. We see that the deployment on the Tiera
instance costs a fraction of the cost of deployment on EBS,
and still provides comparable performance for a read-only
workload, while sacrificing performance for the read-write
workload. We note that the application can choose an ap-
propriate tradeoff between cost and performance by easily
varying the size of the Memcached tier in the Tiera instance.

4.1.2 TPC-W On Tiera
We next explore running an unmodified web application

(end-to-end) on Tiera. For our experiment, we use an on-
line bookstore application that comes bundled with an im-
plementation of the TPC-W [12] benchmark. The online
bookstore application uses MySQL on its backend and serves
dynamic and static content through Apache Tomcat web
server. In a typical deployment both the database files and
the static HTML files and images would be stored in a EBS
volume attached to an EC2 instance. This, as mentioned
previously, provides poor throughput when data requested
by the clients cannot be served from the local caches on an
EC2 instance.

4Source: https://aws.amazon.com/ec2/pricing/

We deployed the online bookstore application on EBS and
on the MemcachedEBS Tiera instance. Running the appli-
cation on the Tiera instance involved storing the database
records as well as the HTML pages and images served by the
web server on the instance. The objective was to see if this
could help improve the performance of the online bookstore
application without having to change the application logic
in any way.

We measured the performance of the two deployments us-
ing the TPC-W benchmark. The TPC-W benchmark is de-
signed to exercise the web server and transaction processing
system of the online bookstore application. The primary
metric the benchmark measures is the throughput in terms
of web interactions per second (WIPS). Web interactions
performed by the benchmark range from simple requests for
static content to interactions which require significant server
side processing. These interactions are performed by emu-
lated browsers. There are three different mixes of interac-
tions that the benchmark supports, with different percent-
ages of reads and writes. We used the shopping mix that is
read dominant and also emulates typical shopping scenarios.

For our experiment we hosted the online bookstore on an
m3.medium EC2 instance. The web and database servers
were co-located on the EC2 instance. We reduced the amount
of available memory on the EC2 instance to 1 GB by setting
a boot time flag. This was done to ensure both MySQL and
the web server performed sufficient IO and didn’t serve all
requests from the instance’s buffer cache. The database was
populated with information for 10, 000 items and 100, 000
customers. The emulated browsers were hosted on a sepa-
rate m3.medium EC2 instance. The benchmark was run for
600 seconds, with 100 seconds each for ramp-up and ramp-
down, for different number of emulated browsers. We varied
the numbers of emulated browser from 5 to 25 (in steps of 5)
and noted the WIPS over a period of 400 (t = 100 to t = 500)
seconds. In Figure 10 we compare the average WIPS for
when the online bookstore was run on EBS against when
the bookstore was run on the MemcachedEBS Tiera instance.
From the figure, we observe that we were able to scale up
the performance for different levels of browser concurrency.
The increase in throughput ranged from a minimum of 46%
with 5 emulated browsers to a maximum of 69% for 15 em-
ulated browsers. A similar scale up in performance could
also be achieved by using Memcached to cache the HTML,
image, and database files, but would require changes to the
application and MySQL. We were able to provide a scale up
in performance without any change in the application logic
whatsoever.

4.2 Realizing Desired Metrics
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Figure 11: Average latencies for instances and their respective total cost of storage per GB of Data
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Instance Configuration
TI:1 50% Memcached, 30% EBS, 20% S3
TI:2 60% Memcached, 20% EBS, 20% S3
TI:3 70% Memcached, 10% EBS, 20% S3

Table 2: Tiera instances used to evaluate performance-cost trade-
off

Our next set of experiments demonstrate how Tiera can be
used to easily achieve different desired application metrics.

4.2.1 Optimizing For Performance And Cost
In this section we show two ways by which an application

can configure an instance for performance: (1) using larger
capacity of a fast tier, and (2) effectively using a limited
amount of a fast tier to cache the working set.

The simplest way for an application to realize good perfor-
mance is by specifying a larger capacity for a faster tier. This
will typically imply that the application will have a higher
total cost of storage. To illustrate this strategy, we define
three instances, with increasing amounts of Memcached tier.
The instances, in addition to Memcached, also use EBS, and
S3 (Table 2). Memcached tier is used to store the most re-
cently accessed data, EBS is used to hold objects evicted
from the Memcached tier, and similarly S3 holds objects
evicted from EBS. The data is stored in an exclusive man-
ner across the tiers (i.e., no copies of a data object reside in
multiple tiers at the same time). These instances can eas-
ily be created using the PersistentInstance as a template
(Figure 4), and replacing the event-response pairs in it with

3 event-response pairs (one pair per tier) to implement LRU
(Figure 5). To measure the read latencies, we use a bench-
mark that generates two kinds of workloads: Uniform and
Zipfian (with default θ = 0.99). Both workload generators
are derived from YCSB, with no changes. The benchmark
simulated read requests from 14 clients, each requesting 4KB
of data per request from the Tiera instance. We also esti-
mated the cost per month for each Tiera instance. We do
not show the additional cost due to data access requests to
S3 since it is the same across all instances.

In Figure 11 we plot the average latency (averaged across
5 runs) observed by the clients, and the approximate cost of
the various configurations. We see a clear trend in the re-
sults, each configuration successively trading lower read la-
tency for higher usage cost, indicating that a Tiera instance
with desired performance-cost tradeoff can be constructed
using the corresponding specification.

Next we show how an application using Tiera can effec-
tively utilize the existing capacity of a fast tier rather than
expanding its capacity (at higher cost). This is achieved by
reducing the size of the application’s working set. Such a
reduction allows for more data to be placed in a faster tier,
maximizing its utilization and as a result ensuring a low av-
erage latency. One way to do this is to eliminate any redun-
dant data. The application can use the storeOnce primitive
to do just this. This primitive stores data in a tier only if
it’s content is unique. This resulting policy will now enable
an application to realize the benefits of data de-duplication.

For this experiment, we modified the popular open source
cloud backed file system S3FS [22] to use a Tiera instance
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Figure 13: Average latencies and total cost of storage per GB of data

as the backend. S3FS is a user space file system that can be
mounted on a desktop or EC2 instance to read/write data
from/to an S3 bucket. In our case we modified S3FS to
read/write data from/to a Tiera instance using the storeOnce
response in its policy. The instance was configured to use S3
as the persistent store and Memcached tier to cache recently
accessed data (20% Memcached and 80% S3). This instance
can be constructed using the GrowingInstance(Figure 6) as
a template, replacing the EBS tier with S3 tier and replacing
the event-response pair in it with two event-response pairs.
One event-response pair to manage Memcached as an LRU
cache and another event-response pair to invoke storeOnce

on a PUT.
We populate the Tiera instance with data having a varying

percentage of redundancy (i.e from 0 to 75%). We use fio to
generate read requests following a Zipfian distribution (with
default θ = 1.2) on data stored in the Tiera instance. In
Figure 12 we plot the latency of access and also the total
number of requests to S3. We see that with a decreasing
percentage of unique data, more data can be cached in the
same amount of Memcached tier resulting in better read
latencies. The read latencies observed here are much higher
than those observed in the previous experiment due to the
size of the Memcached tier being significantly smaller and
the absence of the EBS tier. Hence this instance would
cost less than the ones described in the last experiment.
This instance has the added benefit of reducing the total
cost of storage by not only reducing total space consumed
in Memcached and S3, but also by reducing the number of
PUT/GET requests made to S3 which are also charged.

4.2.2 Optimizing For Durability
In this section we present three experiments that illustrate

different ways by which an application can achieve desired
durability. In the first experiment, Tiera is configured to
use a storage tier that provides a durability guarantee itself
(but at the expense of another metric like performance). In
the second and third experiments, we show how to construct
policies that replicate data across multiple tiers to achieve
desired durability, while minimizing the penalty on other
metrics.

In Table 3 we illustrate two instances with different kinds
of storage and policies that achieve a different trade-off be-
tween durability and performance/cost. Each of these in-
stances can be realized by making simple modifications to
the specification illustrated in Figure 3. They each try to
maintain a low read latency but each chooses a different

Instance Configuration Policy
High Durability 100MB Mem-

cached, 100MB
EBS, 100MB S3

Immediately
backup data to
EBS, and push to
S3 every 2 mins

Low Durability 100MB Mem-
cached, 100MB
S3

Backup data in
Memcached to S3
every 2 mins

Table 3: Tiera instances used to evaluate performance-durability
trade-off
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point along the durability and cost axes. Using YCSB we
ran a mixed workload, with equal proportions of reads and
writes of 4KB sizes. We measure the latencies for the con-
figurations described, for a Uniform workload. Figure 13 il-
lustrates the average latencies for reads and writes and also
the estimated monetary cost for each configuration. The
High Durability instance tries to minimize read latency by
keeping the data in Memcached, but also achieves high dura-
bility by immediately backing up to an EBS volume, thus
incurring higher monetary cost (and also higher write la-
tency). It further periodically pushes data to S3, which is a
more durable store. The Low Durability instance trades-
off durability and cost for better write latency by writing
data only to Memcached and backing up to S3 with lower
frequency. This reduced frequency lowers the durability -
in the worst case, an application can lose the most recent 2
minute window of data updates.

Another common way to achieve durability is by replica-
tion. However, background replication impacts the read/write
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latency that an application experiences. We illustrate this
with a simple experiment. We construct an instance that
consists of two separate EBS volumes. One could imagine a
scenario where an application wants to maintain two copies
of data in separate volumes for better data durability. The
application can choose an eventual consistency model and
write data to just one volume and configure the Tiera in-
stance to copy the data to the second EBS volume after some
time period or after certain amount of new data has been
written into the first volume. We configured our instance to
implement the later policy, i.e copy data from one volume to
the other after 50 MB of new data had been written to the
first volume. We observed that the read/write latencies in-
creased (by ≈ 50%) during the periods data was being copied
from one volume to the other. This increase in latency
is due to the contention between client requests and back-
ground replication for disk bandwidth. By putting a cap on
the bandwidth allotted to this background replication to 40
KB/s (passed as a parameter to the copy response) we ob-
served we were able to reduce the impact of the background
replication process (Figure 14) on the foreground IO re-
quests. Note that this improvement in performance doesn’t
come for free, limiting the bandwidth for background repli-
cation reduces data durability as it takes longer to backup
data. However, throttling replication ensures that an ap-
plication experiences uniform latencies throughout, and not
latency values with high variation during replication.

The time interval at which data in a fast tier (e.g. Mem-
cached) is backed to a persistent store (e.g EBS) provides
another method to achieve a desired tradeoff between data

durability and performance. Consider the instance described
in Figure 3. We show how changing the value of the time
interval provided to the timer event can result in improved
client perceived write latencies. We measure the write laten-
cies, while running a write-only workload using YCSB, for
increasing values of the time interval that triggers a backup
of data in Memcached to EBS. The Memcached tier be-
haves as a write-through cache when this time interval is
zero (client pays the latency of synchronous writes to the
persistent block store in this case), and write-back cache
when this time interval is set to a large value. From Fig-
ure 15 we see that the write latencies decrease as the value
of this time interval increases. Further, we note that as the
time interval to trigger data persistence increases, the dura-
bility reduces. A desired policy on this continuum can be
defined based on preferences for performance and durability.

4.2.3 Dynamic Instance and Policy Change
An important aspect of Tiera’s novelty lies in the ability to

dynamically modify, add, or replace policies while running.
Dynamic policies are useful when a Tiera instance needs to
be externally reconfigured due to unanticipated events, e.g.
unforeseen access patterns or demand, failures, availability
of new resources, to name a few.
Adapting to Changing Workload Pattern:
In this experiment, we illustrate how a Tiera instance can
adapt to the workload. The policy implemented by this in-
stance is illustrated in Figure 6. The instance is subjected to
a write heavy workload inserting 4KB objects for a period
of 14 minutes. The instance expands the Memcached tier
to accommodate a possibly growing working set to ensure
that the client perceived average read latency is bounded
(bound = 6ms) value. In Figure 16 we plot the amount of
storage consumed and the capacity of the tier within the
Tiera instance as a function of time and also the read and
write latencies during that time period. In this experiment
at time t = 6 mins, the space consumed in the Memcached
tier reaches the threshold set in the policy i.e 150 MB. At
this time a new EC2 instance was spawned, which took ap-
proximately 1 minute to complete. We see that at time t =
7 mins the read latency goes up and remains high until t =
10 mins. This spike in latency is due to a high number of
cache misses. The latency finally settles down to its original
value once the cache is warmed up.
Adapting to Failures:
In the next experiment we illustrate this ability by enabling
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Figure 17: Throughput over a 10 minute window, during which
EBS failure is simulated

an application to cope with an unexpected storage service
failure. We are aware of at least two separate incidents [2, 1]
where an Amazon storage service failed for multiple hours.

For this experiment we start of with a simple instance
consisting of two tiers, Memcached and EBS. The instance
implements a write-through policy, that is data is written to
both Memcached and EBS. We simulate a failure to EBS
and reconfigure the instance to use Ephemeral Storage and
S3. Ephemeral Storage provides performance comparable to
EBS (i.e read and write latencies similar to EBS), but data
stored in Ephemeral Storage is not durable5 and hence needs
to be backed to a durable store like S3. We also deployed
an external monitoring application that detects a storage
failure and will reconfigure the instance if this occurs. The
monitoring application writes data to the Tiera instance on
a 2 minute schedule. It assumes a storage service has failed
if the attempt to write data (after successive retries) fails.
The instance is reconfigured with two new tiers (Ephemeral
Storage and S3) and two new event-response pairs. One
event-response pair enables data to be stored in Ephemeral
Storage and the other enables data backup from Ephemeral
Storage to S3 every 2 mins. To show the benefit of this fea-
ture, we subject the instance to a write only workload using
YCSB, and measure the IO throughput during a 10 minute
window. At the start of the experiment, the instance writes
data to both Memcached and EBS before acknowledging
the request. We simulate a failure in EBS (similar to [1])
by timing out writes around t = 4 mins. The monitoring
application discovers the failure at around t = 6 mins and
requests instance reconfiguration as just described. In Fig-
ure 17 we plot the operations per second for this 10 minute
window. We see that throughput drops to zero between t
= 4 mins to t = 6 mins. The throughput is subsequently
restored back to its original value by t = 7 mins.

4.3 Characterizing Overhead
In the last experiment we measure the overhead added by

the Tiera control layer. The Tiera instance in this experi-
ment implements the write-through policy described in Fig-
ure 4. We used the YCSB workload generator to generate a
Zipfian workload inserting 4KB objects, making on average
200 requests per second to the instance. We compared two
setups for this experiment, one with the Tiera control layer
enabled, and one without (where the application directly ac-
cessed each of the storage tiers). We measured the latencies

5Data stored in Ephemeral Storage is lost if the EC2 in-
stance to which it is attached reboots.

from the time the PUT/GET request was received to the time
the request was acknowledged. The overhead introduced by
the control layer corresponds to evaluating and executing
the action event to determine the tiers to place data. We
begin by simulating requests from one client and gradually
increase the number of clients, this has the effect of causing
the event to fire multiple times. In Figure 18 we plot the
read and write latencies as the number of clients increases,
thus increasing the frequency of event firings. We see that
the performance overhead introduced by Tiera is very low
(under 2%).

5. RELATED WORK
Multi-tiered storage systems are an area of active research

[13, 26, 11]. The storage tiers in these systems exhibit device
heterogeneity (e.g., SSDs vs. HDDs) with different perfor-
mance characteristics and costs. We believe our work is
complementary to this research, as Tiera could model each
distinct storage device as a separate tier. This would allow
Tiera to optimize device-based metrics such as energy. For
instance, one can imagine a green Tiera instance that favors
low energy consumption and selects an SSD tier.

Our work is similar in spirit to the FleCS containers [29],
but Tiera treats multiple tiers as first class objects and there-
fore enables a richer set of tradeoffs and composite benefits.
It is possible that FleCS containers could be realized us-
ing Tiera instances. The policy architecture for distributed
storage systems (PADS) [5], proposes an architecture similar
to Tiera. Tiera differs from PADS and FleCS containers in
its support for dynamically modifying policies at runtime.
Tiera also supports the addition/removal of tiers at run-
time. Overall, our work differs from others as we allow dy-
namic policies (e.g. the adapting to failures example 4.2.3)
by adding new events and responses at runtime, and expose
storage primitives like data de-duplication, compression, en-
cryption etc for applications to use.

Object storage systems [16] store data as objects, and
store data and metadata separately. Introduced in the late
1990’s, object storage architecture has gained popularity re-
cently and is implemented in most cloud storage systems
such as Amazon S3 [3], Windows Azure Store [27], and
OpenStack SWIFT [20]. This architecture provides unified
access to data that is potentially distributed across many
nodes, similar to how Tiera provides unified access to data
stored in different storage tiers (potentially even edge stor-
age). The architecture allows more intelligent management
of data through policies defined at either the object level
or container level. Tiera enables such capability as it can
be used to define policies in terms of either thresholds or
actions, on either individual objects or object classes.

There have been a few projects/products [25, 21] that
integrate cloud storage like Amazon S3 with edge storage
(on a proxy server or on the desktop). They have primarily
explored techniques to reduce the client latency and cost
of storage. These systems adopt a particular storage policy
instead of providing applications the ability to pick and tune
the policy to suit the tradeoffs it is willing to make.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented Tiera, a middleware that en-

ables the specification of multi-tiered cloud storage instances
that are flexible and easy-to-use. We showed how Tiera can
enable a rich array of storage policies and desired metrics to
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be realized through a powerful event-response mechanism
and support for runtime replacement of Tiera policies. We
illustrated how benefits of using multiple storage services
can be provided to applications using Tiera without modifi-
cations to the application’s logic. The experimental results
also showed how complex policies can be easily expressed in
Tiera allowing the user to make reasoned choices regarding
tradeoffs. Lastly, we provided evidence that Tiera overhead
is modest.

In the future we plan to explore techniques for generating
appropriate instance configuration and data management
policies using abstract application requirements and work-
load characteristics, e.g. 99 percentile read latency < 10
ms with read requests following a uniform distribution. We
also plan to employ horizontal scaling to scale Tiera con-
trol layer to be able to store very large number of objects.
There are many large-scale distributed storage systems [8,
6, 14] that employ horizontal scaling for scalability, and
we plan to leverage similar techniques. A distributed con-
trol layer architecture also provides metadata management
scalability and better fault tolerance. Another possible fu-
ture direction would be exploring multi cloud deployments.
This use case poses many interesting challenges for Tiera
in terms of rethinking abstractions, system scalability, en-
suring data and metadata consistency, predictive data and
migration/prefetching.
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