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ABSTRACT
Many Cloud applications exploit the diversity of storage op-
tions in a data center to achieve desired cost, performance,
and durability tradeoffs. It is common to see applications
using a combination of memory, local disk, and archival stor-
age tiers within a single data center to meet their needs. For
example, hot data can be kept in memory using ElastiCache,
and colder data in cheaper, slower storage such as S3, us-
ing Amazon as an example. For user-facing applications,
a recent trend is to exploit multiple data centers for data
placement to enable better latency of access from users to
their data. The conventional wisdom is that co-location of
computation and storage within the same data center is a
key to application performance, so that applications run-
ning within a data center are often still limited to access
local data. In this paper, using experiments on Amazon,
Microsoft, and Google clouds, we show that this assumption
is false, and that accessing data in nearby data centers may
be faster than local access at different or even same points
in the storage hierarchy. This can lead to not only bet-
ter performance, but also reduced cost, simpler consistency
policies and reconsidering data locality in multiple DCs en-
vironment. This argues for an expansion of cloud storage
tiers to consider non-local storage options, and has inter-
esting implications for the design of a distributed storage
system.
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1. INTRODUCTION
Cloud providers offer multiple cloud storage services with

different characteristics, such as durability, performance, and
cost from data centers (DCs) that are distributed geograph-
ically. For example, Amazon’s Simple Storage System (S3)
provides high durability and low cost but low performance
while ElastiCache provides high performance but high cost
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Table 1: Regions of Data Centers
Region (Area) Cloud Provider

US East (Virginia) Amazon, Microsoft
US West 1 (California) Amazon, Microsoft
US West 2 (Oregon) Amazon, Google
Europe West (Ireland) Amazon, Microsoft, Google
Asia Southeast (Singapore) Amazon, Microsoft, Google
Asia East (Tokyo) Amazon, Microsoft, Google
South America (Sao Paulo) Amazon, Microsoft

and low durability through VM instance. Google, Microsoft,
and many other cloud providers also provide similar cloud
storage services. These storage services enable cloud ser-
vice providers to serve data to their users without the need
to invest in building their own DCs. Users of cloud ser-
vices are typically dispersed across the globe. To reduce
user-perceived latency, several wide-area storage systems [1,
8, 30] replicate data to multiple DCs to get data closer to
users. Applications running inside a data center are often
still limited to access local data, since the conventional wis-
dom is that locality of access within the local data center
is important. In this paper, however, we show that this as-
sumption is not necessarily true if data is stored in other
storage tiers1 besides memory, and when there are other
DCs situated within close proximity.

Previous research [3, 19] has argued that data being ac-
cessed by an application in a DC can be located on any
node within that DC without concern for data locality, due
to the improvement in network speeds. The focus of these
works is on a single DC where nodes are connected via Lo-
cal Area Network. However, the density of data centers has
been increasing in the recent past; according to datacen-
termap.com [11], for example, there are 197 DCs in Cali-
fornia as of Jan 2015. In this paper, therefore, we ask the
follow-on question: “Can data be located outside the data
center without concern for locality?” If network performance
between two DCs is not a bottleneck, data can be stored on
another DC without locality concern for better performance,
reduced cost and reliability, thus eliminating cross-data cen-
ter boundaries.

Using experiments on Amazon, Microsoft, and Google
clouds, we find that accessing data from storage tiers in a
nearby DC can prove to be faster than accessing data from
local storage tiers, and in some cases, substantially faster.

1In this paper, we use the term storage tier and storage
service interchangeably.



Table 2: Latency (ms) between DCs
Region US West US East Europe West Asia Southeast

AWS Azure AWS Azure AWS Azure GC AWS Azure
AWS - 3.84 - 1.97 - 17.58 16.33 - 1.84
Azure 3.62 - 1.99 - 18.67 - 16.02 1.98 -
GC - - - - 16.35 16.12 - - -

Table 3: Bandwidth (MB/s) between DCs
Region US West US East Europe West Asia Southeast

AWS Azure AWS Azure AWS Azure GC AWS Azure
AWS - 48.75 - 48.13 - 48.38 48.63 - 48.88
Azure 21.62 - 23.63 - 45.25 - 53.5 24.38 -
GC - - - - 32.38 40.25 - - -

That is, if local I/O performance is slow with respect to a
given tier, then better performance may be found by go-
ing to one or more tiers in nearby DCs. For example, our
result shows that if 100KB of data is on Microsoft Azure
disk and Amazon AWS memory, retrieving data from AWS
memory is 4.37 times faster for an application running on
Azure. In effect, this observation allows to expand the radius
of locality, opening up new opportunities. This fact can be
exploited by storage system developers to design a rich set
of software-defined policies to achieve better performance,
implement simpler consistency mechanisms and reduce the
total cost of storage.

The remainder of this paper is organized as follows. Sec-
tion 2 illustrate the performance advantage of non-local DC
data access through real experiments carried out on Ama-
zon AWS, Microsoft Azure and Google Cloud at several ge-
ographic regions. In Section 3, we use insights gained from
our experimental results to present possible opportunities
and use cases that can leverage our observations. Section 4
shows how opportunities can be realized using real bench-
mark deployment. Section 5 discusses the challenges in re-
alizing these opportunities. Section 6 reviews related work,
while Section 7 concludes our work.

2. EXPERIMENTAL EVIDENCE OF NON-
LOCAL DC LOCALITY

To answer the question raised in the previous section, we
conducted a series of experiments over the course of several
months from Spring to Winter 2014 and we observed consis-
tent results through the year. We used data centers hosted
by three cloud vendors, Amazon (AWS), Microsoft (Azure),
and Google Cloud (GC) for our experiments. To avoid any
confusion, we use the term ‘nearby’ to refer to a DC located
in the same geographic region (e.g., both DCs in US West-
California), and ‘remote’ to refer to a distant DC in another
region (e.g., US East-Virginia vs. US Central-Iowa).

2.1 Regions for experiments
Cloud providers’ operation policy allows us to know whether

DCs are nearby or remote as Table 1 shows, but not precise
geographic location. We estimated network performance be-
tween DCs within a region and found the four regions, US
West (California), US East (Virginia), Europe West (Ire-
land), and Asia Southeast (Singapore), where there are at
least two DCs and the network performance among them
is relatively better than other regions. Since Google does

not allow us to provision a VM on US-West, US-East, and
Asia-Southeast regions2, we will mainly show results from
AWS and Azure in this section. Table 2 and 3 show the la-
tency and bandwidth for each region. From Table 2, we can
see that latency between AWS and Azure is much smaller
than well-known average disk seek time 10 ms [16], US East
(< 2 ms), US West (< 4 ms), and Asia Southeast (< 2
ms). For Europe West region, latency between DCs (> 15
ms) is bigger than 10 ms so that network may be a bottle-
neck for latency sensitive applications. Table 3 shows that
network bandwidth is not a bottleneck if application uses
data size smaller than 20 MB. To estimate latency we used
‘tcpping’ [27] rather than ‘ping’ since Azure does not allow
users to use ICMP protocol. We used ‘Iperf’ [14] to measure
network bandwidth.

2.2 Experimental Setup
We deployed servers that serve data from both memory

and local disk in AWS, Azure, and GC at several regions,
US West (California), US East (Virginia), Europe West (Ire-
land), and Asia Southeast (Singapore), as we stated in 2.1.
We also deployed clients that estimate time to retrieve vari-
ous size of data from three tiers (disk, memory, and archival
storage) based on the following types of access:

• Process-local: Retrieving data from node’s disk through
file system.

• Machine-local: Retrieving data from the same node’s
disk and memory but through another process via socket
(as an IPC).

• DC-local: Retrieving data from another node’s disk
and memory within the same DC via socket and from
local DC’s archival storage.

• Nearby-DC: Retrieving data from nearby DC node’s
disk and memory via socket and nearby DC’s archival
storage.

Since the performance of Machine-local is similar to Process-
local and DC-local, we omit results for it for space reasons.
We chose VM instances based on the price, m1.medium
($0.095/hr) for AWS and Basic A2 ($0.094/hr) for Azure
which have 1 ∼ 2 core(s) and 3.75 GB memory. The prices
are based on the US West (California) region. Note that,

2Google only allows users to spawn VM instances on US
Central, Asia East, and Europe West as of Jan 2015.
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Figure 1: Elapsed time to retrieve 100KB data from all regions.

we could see similar result patterns regardless of VM in-
stance size except micro instance of which performance can
be throttled significantly. This is because these experiments
are not influenced much by CPU performance or memory
size as a client retrieves files one by one from each server
with single process and thread. To limit influence of cache
for disk access, we restricted size of available memory dur-
ing the experiments and cleared instances’ buffer cache after
reading data from disk. All experimental results are an av-
erage of 10 runs, plotted with 95% confidence intervals.

2.3 Local vs. Nearby DC
Figure 1 shows the elapsed time for clients on US West,

US East, Asia Southeast and Europe West to retrieve 100KB
data from different tiers across different servers. Except Eu-
rope West region where the latency between DCs is higher
than other regions, clients can retrieve data in nearby DC’s
memory 1.61 ∼ 4.37 times faster than local DC’s disk and
3.8 ∼ 7.4 times faster than local DC’s archival storage. Lo-
cal memory in local DC not surprisingly always provides the
best performance. Thus, non-local data access can be faster
than local access to slower tiers.

Interestingly, the results also indicate that a nearby DC
may offer better performance even from the same tier. That
is, clients running on Azure on US West, US East, and Asia
Southeast can retrieve data in AWS disk stroage 1.17 ∼ 1.41
times faster than local Azure disk. To verify these results,
we estimated the disk performance for each cloud service
provider. Figure 2 shows that AWS disk provides better
performance, lower seek time (ms) and higher bandwidth
(MiB/s), than Azure disk from all regions. We also observed
similar disk performance patterns regardless of VM instance
size (cost).

For archival storage, we see opposite results. That is,
clients running on AWS on US East and Asia Southeast
can retrieve data in Azure archival storage 1.1 ∼ 1.23 times
faster than local AWS archival storage. In US West region,
the client on AWS retrieves data slightly slower but within
the margin of error from Azure archival storage than lo-
cal AWS archival storage. Such performance difference may
come from different implementation of disk (archival) stor-
age services as we will discuss later on section 5. Though
these results cannot be generalized to all multiple DCs envi-
ronment, they show the opportunity that we can find better
performance even from the same storage tier. Lastly, the
results do show the limits of using non-local DC’s storage.
That is, retrieving data located from a ‘nearby’ DC is not
always better than a local DC as Figure 1(d) shows. Thus,
determining the boundary between ‘nearby’ and ‘remote’ is
an open question.

2.4 Varying Data size
Another important consideration is the data size. Figure

3 shows the performance trend for access times from local
(intra-DC) disk vs. nearby (non-local DC) memory for dif-
ferent data sizes when a client is running on AWS US East:
1KB, 10KB, 50KB, 100KB, 1MB, 5MB and 10MB. If the
data size is less than 1MB, we see considerable performance
improvement, 3.05 times for 1KB, 2.71 times for 10KB, 1.62
for 50KB, 1.64 times for 100KB, 1.18 times for 1MB respec-
tively. When a client is running on Azure, we see much more
performance improvement because Azure disk performance
is worse than AWS as we shown in Figure 2. However, we
omit the result because there is too much performance vari-
ance in Azure disk to be generalized. The data size bound-
ary, in this experiment 1MB, can be increased, when we de-
ploy the server on bigger VM instance e.g., from Basic A2
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Figure 2: Disk seek time and bandwidth of VMs on each region.
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Figure 3: Elapsed time to retrieve data of different
sizes from Local (AWS US East) Disk and Nearby
(Azure US East) Memory.

($0.094/hr) to Standard A2 ($0.12/hr) on Azure. This is
because cloud providers throttle the network and storage
performance based on VM instance size. Fortunately, for
many cloud applications, e.g., Web servers, small data size
is often the case. Much existing work [4, 15, 17] has shown
that many Web servers, Blog servers, and file systems han-
dle data less than 1MB in size. Thus, if median size of data
handled by the cloud application is below 1MB, considering
nearby DC storage tiers may be highly attractive.

We summarize the key observations from our experiments
below:

• Accessing data in main memory, in a nearby DC is
faster than accessing data from either disk or archival
store in the local DC.

• Accessing data from disk (archival) storage in a nearby
DC can be as fast as accessing data from disk (archival)
in local DC.

• These trends hold for data sizes up to about 1MB (can
be increased), which encompasses many common ap-
plications.

These observations suggest the need to revisit storage poli-
cies such as those for consistency and replication. For ex-
ample, the first point suggests that fewer geographically-
dispersed replicas serving data requests can be maintained
as long as they are kept in a faster tier such as memory -
this can reduce the overhead of consistency protocols to keep
a large number of replicas synchronized. The second point
suggests that backup copies of a data file can be stored in

the same tier of non-local DCs for a cheaper price or even
for better performance without having to worry about data
locality.

3. USE CASES AND OPPORTUNITIES
Having provided experimental evidence that shows non-

local data access (from a nearby DC) may be better than
local access, we next present possible opportunities and use
cases derived from our observations. One obvious question
could be: why not simply store all data in a huge memory
tier in a single DC? The reason is that data replication can-
not be avoided for reasons such as fault tolerance, improved
durability, and end-user locality. We present a set of use
cases which highlight the need for replicating data across
multiple DCs and where our approach may provide addi-
tional optimization. Note that all use cases assume that DCs
in the same region are close to each other unless otherwise
stated; previous work [30] suggests that this is a reasonable
assumption.

Simpler Consistency Policy
In a distributed storage system, one of the biggest challenges
is dealing with data consistency among replicas. With in-
creased number of distributed replicas, weaker consistency
models like eventual consistency need to be employed for
scalability. This is because of the high overhead of the
number of messages that need to be exchanged to impose
stronger consistency models between replicas to make all
replicas consistent. Based on our observation of the wider
locality envelope, we can relieve this constraint by replicat-
ing data to the memory tiers of fewer DCs serving more
clients across fewer replicas. If we were to replicate across
K DCs and require strong consistency, an update in one DC
would need to be propagated to all K DCs. Instead, given
the locality envelope, data can perhaps be replicated to L
DCs (L < K) with minimal impact on the latency expe-
rienced by clients in this region. Lowering the number of
replicas reduces the network traffic needed for data consis-
tency.

Hot and Cold Data
Data can be replicated to multiple DCs for several reasons
such as reduced latency, increased durability, and increased
fault tolerance. Suppose there are two replicas in the same
region at DC A and B. Now suppose that data in a given
DC is placed in memory if it is hot (recently accessed) or a



Table 4: Time to spawn a VM on US East region
measured from when the request was initiated to
successful login to the VM and memory size

Micro Small Medium Large

AWS
37 secs 57 secs 38 secs 40 secs
- 615MB - 1.7GB - 3.75GB - 7.5GB

Azure
121 secs 108 secs 125 secs 98 secs
- 750MB - 1.75GB - 3.5GB - 7GB

GC
33 secs 49 secs 49 secs 34 secs
- 600MB - 1.7GB - 3.75GB - 7.5GB

slow tier (if it is cold) to reduce cost, as is fairly common.
At a given point in time, a particular data object O may be
hot in DC A and cold in DC B based on client access. If an
application running in DC B tries to access O in DC B then
it will pay the price of access to a slow tier. Instead, the
system can more efficiently retrieve O from DC A since it is
located in the faster memory tier. To achieve this benefit,
metadata indicating the location of the data in the remote
DC needs to be kept up to date and the system must ensure
that the replica at DC A does not get overloaded.

Higher Availability
Since downtime implies revenue loss, applications need to
be able to survive failures. Replicating within a DC still
leaves data vulnerable to DC-level outages as noted in [2,
5]. Thus, replicating data across independent fault domains
and DCs may be desired to achieve high availability. For
instance when an application cannot access data from DC
A because of an outage, the application can continue normal
operation by retrieving data from DC B. By using a faster
storage tier at the nearby DC, it is possible to minimize the
performance penalty.

Expanding the Memory Tier
In the cloud, it is difficult to estimate beforehand the ap-
propriate number of VMs required to support application
workload. For example, if an application running in the
cloud needs to expand the capacity of the memory tier (like
Memcached), it will have to spawn VMs on-the-fly. How-
ever, as can be seen from Table 4, this may be expensive,
particularly for Azure. Moreover spawning a new VM for
memory also can be failed not because of DC’s failure but
cloud providers’ capacity for each VM instance. For exam-
ple, we could see that Amazon EC2 rejects to create a new
VM instance with an error message “Error: InsufficientIn-
stanceCapacity” [13]. In either case, the application can
more quickly acquire memory storage resources in a nearby
DC, that has a faster VM spawn time and available instance
capacity.

Competitive Pricing
Cloud providers offer different storage services and VM in-
stance types which have different storage capacities at dif-
ferent prices. Thus, if a user is near to multiple DCs, one
has more options to choose different storage service or VM
instance from different cloud provider. For example, the
user can choose 13 different VM instance (4 from AWS, 5
from Azure, and 4 from GC) with various storage capaci-
ties (memory and disk) at the price less than $0.1 per hour.
Besides, some VM types allow users to choose small size of
SSD instead of huge size of disk as a main storage and thus

users have even more options based on their requirements.
For different workloads, cloud providers also offer optimized
instances for them. For example, Amazon, Microsoft, and
Google offer VM instances for memory-intensive workloads,
Optimized compute D13 (8 cores, 56GB memory, $617 per
month) from Azure, r3.2xlarge (8 cores, 61GB memory, $521
per month) from AWS, and n1-highmem-8 (8 cores, 52GB,
$309 ∼ $440 per month based on average usage) respectively.
Thus, one can choose to use a VM in a nearby DC if it is
cheaper than a local VM and the network is not a bottleneck.
For example, if an application on Microsoft’s DC A needs
about 50 GB memory, it can use an r3.2xlarge on Amazon’s
DC B or n1-highmem8 on Google’s DC C rather than an
A7 VM on DC A for a cost reduction of $96 per month
(a saving of 15.5%) or $177 ∼ $307 per month (a saving of
28.7% ∼ 50% based on usage) while retaining similar perfor-
mance. Of course, the amount of network traffics between
DCs should be considered to get maximized cost-benefit as
cloud providers charge for it.

4. WEB APPLICATION CASE STUDY
In this section, we will show how some of the opportu-

nities outlined in the previous section can be realized for
a Web application, using a popular open-source benchmark
RUBiS [25]. RUBiS is a multi-component web application
that implements functions of an auction site EBay.com, sell-
ing, buying, bidding, commenting and so on. We use Apache
and PHP for front-end web server and MySQL for back-end
database. It may not fully capture the complexities of to-
day’s web application as previous work [7] pointed out, but
it is sufficient to show benefits from using non-local DC’s
resource.

For this experiment, we deployed Apache and MySQL on
each cloud provider’s DC at each region. Then, we config-
ured RUBiS to use MySQL running on 1) Local DC with
disk, 2) Local DC with memory, and 3) Nearby DC with
memory. For the first deployment, MySQL uses local disk
like standard MySQL deployment. For the second and third
deployments, we created ramdisk and configured MySQL to
use it. Like our previous experiments, we restricted available
memory of VM instance where MySQL is running on to limit
influence of buffer cache for disk access. All static contents
requested through web server are stored on memory to avoid
any disk access for web contents. The primary metric mea-
sured by the benchmark is throughput (requests/second).
The database we used was populated with 1,000,000 items
and 1,000,000 users and its size is around 2GB. We ran
client-browser emulator which simulates 300 users on sepa-
rate instance on the DC where Apache is running. We chose
the cheapest VM instances which have 2 CPU cores and
at least 3.5GB memory from each cloud providers for both
RUBiS and browser emulator, t2.medium ($0.056/hr) for
AWS, Standard A2 ($0.12/hr)3 for Azure, and n1-standard-
2 ($0.106/hr) for GC. The prices are based on the Europe
West region. We used MySQL v.5.5.40 (Ubuntu), Apache2
v2.4.7 (Ubuntu) and PHP module v.5.5.9-1. The bench-
mark was run 300 seconds, with 120 seconds for ramp-up,
60 seconds for ramp-down.

From our previous experiment, we did not see performance
benefit from Europe West region because of higher network

3We chose this instance instead of cheaper one Basic A2
($0.102/hr) because of CPU performance.
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Figure 4: Throughput from various MySQL
database storage locations in Europe West region.

latency than other regions. Yet, Figure 4 shows that MySQL
running on non-local DC with memory can provide much
better throughput than MySQL running on local DC with
local disk in Europe West region. The result shows that
offloading I/O access to nearby DC’s memory even with
somewhat expensive network cost can provide much bet-
ter performance when an application requires fully random
data access to a local slow tier. Of course, we also observed
the same pattern of results from all other regions where the
network performance is better than this region.

Surprisingly, the result shows nearby DC’s memory can
be better than local’s memory. That is, MySQL on AWS
with memory results in the best throughput regardless of
web server location. This is because throughput is affected
by not only data location but also CPU performance in this
case. From the CPU performance benchmark, we see that
AWS (t2.medium) provides the best performance. GC (n1-
standard-2) provides similar but slightly worse than AWS
but better than Azure (Standard A2). Unlike a single DC
environment where RDMA (Remote Direct Memory Access)
can be used for improving performance to access non-local
memory, there is no such option in multiple DCs environ-
ment. Thus, CPU performance also needs to be considered
to get the most benefits of performance from non-local mem-
ory. One interesting and important finding in this experi-
ment is that we can use VM instances in nearby DCs which
have better CPU performance with similar memory size even
with much cheaper price. In this experiment, for example,
applications running on Azure and GC in Europe West can
consider to use AWS’ resource for both better performance
and reduced cost (53% and 47% cheaper than Azure and
GC respectively).

5. CHALLENGES
Having shown the potential of increasing the locality en-

velope, we now present some research challenges to realizing
a practical deployment that can take advantage of the above
opportunities. We note that the benefits described above do
not come for free. Using multiple DC resources introduces
many complexities in terms of performance variation, data
consistency, data durability, and cost concerns, including
wide-area network characteristics as well as network perfor-
mance variation. We address some of these issues here.

Infrastructure Dynamics
As numerous papers [21, 26] mention, cloud storage services
do not provide consistent performance over time. Benson et
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al [6] found that this is also true for network bandwidth be-
tween DCs. We also have confirmed this from experiments.
Figure 5 shows the elapsed time for a client on Amazon in
N. Virginia to retrieve 100KB data from local and nearby
DC memory storage through the course of a single day. In-
terestingly, the client can experience performance variations
even within local DC memory, though the network variation
has larger peaks. We also observe that network performance
variance can result in high worst case fetch times at different
times of the day (e.g., between 00:00 AM and 10:00 AM in
Figure 5). Thus, a storage system which utilizes nearby DC
resources should be made aware of the potential for such
variations in storage and network performance. A possi-
ble solution is to build a model, using historical data, that
can predict performance at a given time of day. Based on
the model, the storage system can avoid the use of nearby
memory at certain times (in this case, between 00:00 AM
and 10:00 AM).

Application Dynamics
As we have shown, the performance benefit depends on the
size of data. The size of accessed data can change dynami-
cally and storage systems need to be able to adapt to these
changes in access sizes [20]. In our case, if application data
size becomes larger than 1MB (can be increased based on
VM instance), the experiments show that the latency to ac-
cess data from a faster tier in a nearby DC tends to converge
to the latency to access data from a local slower storage tier
(Figure 3). Moreover, if the data size is too big, memory is
not a good choice because it is much more expensive than
any other storage tiers. For dynamically changing work-
loads, the following questions arise: “What is the anticipated
workload and how can we detect whether it is temporary or
persistent?”, and “When should data be replicated vs ac-
cessed remotely?”.

Simple Storage Abstraction for Applications
Even within a single DC, each storage service has a differ-

ent interface and price policy based on its characteristics. As
an example, Amazon offers ElastiCache which provides high
performance but less durability and high cost, and it offers
Simple Storage Service (S3) which provides high durability
and low cost but low performance. Thus, the application
should handle such complexities to get composite benefits
of each storage service. For this reason, two open source
web applications that use multiple storage services, Word-
Press [29] and Moodle [18], have 1000-5000 lines of code only
to manage data across different storage services. The situ-
ation will be even more complicated if the storage system
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runs across multiple DCs provided by different cloud ven-
dors. In this case, we can expect even more diverse storage
interfaces, pricing policies, and performance variation. It is,
therefore, necessary to provide higher level storage abstrac-
tions to application developers. The abstractions should
hide the above complexities and yet are expressive enough
to capture user requirements (e.g., desired read and write
latencies, total cost budget, required durability, consistency
level, etc.). Our previous work, Tiera [23], provides such
storage abstractions for a single DC and extending them to
the multiple DCs environment is an interesting area of fu-
ture work.

Discovering nearby DCs
From the period for our experiments, we saw that the num-
ber of DCs have increased very quickly in all regions. For
example, the number of DCs on California was 171 on Sep
2014, but now it becomes 197 on Jan 2015. Thus, one can
have denser DCs on a region as many DCs have been be-
ing built on the region. However, it may be difficult to
find nearby DCs within the region if cloud provider’s pol-
icy does not allow users to know its DCs location precisely
for their services (like Google). Moreover, though one dis-
covers that there are many DCs in a specific region within
a short physical distance, one may not conclude that those
DCs are nearby in terms of network performance because
network performance is not determined by only physical dis-
tance but also several facts such as peering relation among
DCs, aspects of the network access-link delays and route
policy as previous work [9] pointed out. For example, even
if there are two DC A and B on the same region (X) and
one DC (C) is on another region (Y), A may find C as a
nearby DC from region (Y) while A regards B as a remote
DC because of network peering relation or different routes
policy between DCs. The storage systems using multiple
DCs should consider many aspects not just distance to dis-
cover nearby DCs. One simple solution can be estimating
network latency and bandwidth to find nearby DCs as we
have shown from Table 2 and 3, though it is expensive in
multiple DCs environment (as mentioned, there are 197 DCs
only in California).

Cloud Providers’ Implementations and Policies
Even if one is able to locate a nearby DC to which a high
speed network connection exists, performance benefits might
not be realized if the DC provides storage that are them-

selves slow. That is, same points of storage of cloud providers
may provide different performance. For example, our ex-
periments show that AWS’ disk provides much better per-
formance than Azure’s. This can be because of different
implementation of each cloud provider for their own ser-
vices or because of dynamics of DC as we mentioned at
beginning of this section. For neither cases, one cannot get
the performance benefit from a nearby DC. Thus, it is re-
quired to know the baseline performance of each storage
tier and keep monitoring the performance to get benefits.
Besides, each cloud provider throttles network and storage
bandwidth based on VM instance size as Figure 6 shows. In
addition, Table 3 shows network bandwidth throttling (<
22MB/s) in Azure while the network latency is relatively
low. Lastly, while we conducted experiments from Jan to
Dec 2014, we see that each cloud provider changes (luckily
deducts) their price for the services and introduce many new
VM instance types. This fact also imposes complexities to
storage system developers to choose appropriate size of VM
and make them keep monitoring and understanding each
cloud providers’ policies which are important facts to get
maximized performance benefits from using multiple DCs’
resources with reduced cost.

6. RELATED WORK
Data Locality
Recent research work has shown that data locality within
a DC is irrelevant, given the bandwidth of current DC net-
works. Ananthanarayanan et al. [3] illustrate how for even
large sequential workloads, limited disk bandwidths become
a bottleneck. They also show that accessing data from a re-
mote node’s memory can provide better performance than
reading data from local disk. Nightingale et al. [19] argue
that data locality optimizations are unnecessary with the
advent of full bisection bandwidth networks, and that these
optimizations can prevent efficient use of resources. We show
that data locality may also be irrelevant in multiple DCs en-
vironment, and accessing data over the network from same
or faster storage resource in a nearby DC can be faster than
using a slower local storage tier.

In Memory Storage
Many previous works utilize memory to improve performance.
Cooperative Caching [10] tries to use idle remote node’s
memory to improve file system performance. Many recent
storage systems, like Redis [24] and RAMCloud [22] aggre-
gate memory resources from many nodes and present it as a
common storage pool to applications. But these approaches
utilize memory within a single DC, unlike our proposal in
this paper. All the above systems assume that network is
not a bottleneck. We have shown that this assumption also
can be true for multiple DCs environment.

Wide Area Storage
Many storage systems utilize multiple DCs. Volley [1] per-
forms automated data placement across distributed DCs us-
ing diurnal and weekly users’ data access patterns to re-
duce user perceived-latency and to minimize costs associ-
ated with inter-DC traffic. Google introduced Spanner [8]
which focuses on data distribution across distributed DCs
while maintaining externally-consistent distributed transac-
tions for their internal applications. Unlike these storage
systems using a single cloud provider’s DCs, SPANStore [30]



tries to utilize multiple providers’ DCs rather than a single
provider’s to get higher DC density to deliver data closer to
users with reduced cost, much like a content delivery net-
work. Our work shows that additional benefits to latency,
cost, and consistency can be obtained by simple DC selection
by considering the performance of the storage tier hierarchy
across DCs. It should also be noted that unlike other previ-
ous works, we are looking at latencies from the perspective
of an application within the cloud and not only from users
outside a DC.

Multi-Tiered Storage
Many previous works [12, 28] try to utilize multiple tiers
(e.g., HDDs vs. SSDs and local vs. cloud storage) for getting
composite benefits of multiple storage tiers. In our previous
work Tiera [23], we explored building a storage framework
that helps applications build a tiered storage system consist-
ing of local DC’s memory resources, for better performance,
and persistent storage service like S3 or EBS. While Tiera fo-
cused on a single DC, in this paper, however, we consider to
use storage tiers on multiple cloud providers to get benefits
like better fault tolerance, simpler consistency, less locality
concerns and reduced cost.

7. CONCLUSION
Using multiple storage services is quite common for ap-

plications deployed in the cloud. In addition, by replicating
data closer to users, clouds can provide low latency while
achieving high data durability and fault tolerance. In this
paper, we go further and show that we can exploit differ-
ences in the storage hierarchy across DCs to expand the
locality envelope, thus eliminating cross-data center bound-
aries. We have conducted experiments on Amazon AWS,
Microsoft Azure, and Google Cloud which show that access-
ing faster storage tiers in nearby DCs can give better per-
formance than accessing slower tiers within the local DC.
We showed the limits of this benefit based on data size and
inter-DC latency. We then presented numerous scenarios
that can directly benefit from our observations, resulting in
a rich set of software-defined policies to achieve better per-
formance, simpler consistency and reduced cost of storage.
We also described the challenges, such as infrastructure and
application dynamics, that must be overcome to fully realize
this potential.
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