
Cloud-Based, User-Centric Mobile Application Optimization

John Kolb, Prashant Chaudhary, Alexander Schillinger, Abhishek Chandra, Jon Weissman
Department of Computer Science & Engineering

University of Minnesota, Minneapolis, Minnesota 55455
Email: {kolb, prashant, schil399, chandra, jon}@cs.umn.edu

Abstract—The abundance of compute and storage resources
available in the cloud makes it well-suited to addressing the
limitations of mobile devices. We explore the use of cloud
infrastructure to optimize content-centric mobile applications,
which can have high communication and storage requirements,
based on the analysis of user activity. We present two specific
optimizations, precaching and prefetching, as well as the design
and implementation of a middleware framework that allows mo-
bile application developers to easily utilize these techniques. Our
framework is fully generalizable to any content-centric mobile
application, a large and growing class of Internet applications. A
news aggregation application is used as a case study to evaluate
our implementation. We make use of a cosine similarity scheme
to identify users with similar interests, which in turn is used
to determine what content to prefetch. Various cache algorithms,
implemented for our framework, are also considered. A workload
trace and simulation are used to measure the performance of the
application and framework. We observe a dramatic improvement
in application performance due to use of our framework with a
reasonable amount of overhead. Our system also significantly
outperforms a baseline implementation that performs the same
optimizations without taking user activity into account.

Keywords—cloud computing; middleware; mobile computing;
optimization;

I. INTRODUCTION

Mobile devices have become increasingly prevalent in recent
years. It is estimated that more than half of all adults in
the United States own a smartphone [25]. The convenience
and portability that these devices offer has made them a
primary means of interacting with the virtual world, whether
to communicate with others or to access and produce content.
Moreover, the growth in ownership of these devices has been
accompanied by an explosion of mobile applications and
software specifically designed to run on phones and tablets.
Mobile devices are becoming increasingly versatile, and many
tasks that once required a desktop or notebook computer can
today be carried out entirely on mobile systems.

However, mobile devices are not without drawbacks. First,
the processing power of these devices is necessarily less than
that of traditional computers. This is not only because of the
small size of mobile devices, but also because of the lack of
cooling for hardware components. While multi-core mobile
CPUs are becoming more common, they still cannot match
the processing power of today’s notebooks, desktops, and
servers. Additionally, mobile devices are inherently limited by
their reliance on battery power. This makes energy a precious
resource that must be used wisely in order to extend battery
life. Finally, mobile phones often must operate over cellular
networks, which are slower and less reliable than traditional
computer networks. This is further complicated by the fact that
network communication is a particularly expensive operation

in terms of energy and that many mobile users have carrier-
imposed limits on data traffic.

Although mobile systems invest significant effort to mitigate
these problems, most solutions require significant familiarity
with the platform and hardware upon which the applications
will be deployed. The cloud provides great opportunities as
it has a large number of resources and can support multiple
users through the elasticity and scalability of its resources.
Hence, it can be used for mitigating the problems seen above
by offloading the processing of content on the cloud. To exploit
the capabilities of cloud we have developed a cloud/mobile
device-based middleware framework that is able to optimize
content-centric mobile applications with minimal effort required
from their developers.

Specifically, we focus on mobile applications that access
remotely-stored content on behalf of their users. These include
a wide variety of popular applications including news readers,
video and image viewing applications, music players, as well
as other domain-specific applications that fetch content to user
devices. Our system is currently designed only for applications
in which users are consumers of content and do not produce
or share any content of their own. Remote resource retrieval
is typically an expensive proposition, as it involves both
computation and significant network communication. Resource
retrieval can also incur a substantial cost in terms of latency,
especially if additional content processing is necessary before
it can be delivered. This often results in a noticeable delay that
disrupts the user’s experience. The middleware employs two
principal strategies, based on user profiling, to reduce these
costs.

1) Precaching: When a resource is retrieved and pro-
cessed, the system caches the processed version in the
cloud. Future requests for this resource can be satisfied
by a cache lookup rather than a direct retrieval that
may also involve intermediate processing.

2) Prefetching: The system speculatively pushes a re-
source to a user’s device, where it is cached in
hopes of a future request for that resource. If such a
request occurs, it can be satisfied without any network
communication.

An important aspect of the system is its mechanism for
choosing when to prefetch specific resources for a specific user.
Prefetching too few resources means the user will see little to no
visible benefit from optimizations, while prefetching too many
resources results in the unnecessary consumption of network
bandwidth and energy. In order to make intelligent prefetching
decisions, we attempt to model and identify a user’s region
of interest – the subset of resources that they are particularly
likely to access. This requires the system to record user access

patterns and to analyze them through user profiling and data
mining techniques.

We have implemented an Android/Amazon EC2-based
middleware system and evaluated it using a real-world News
Aggregator application. A trace-driven emulation using a
workload trace derived from Twitter/Disqus feeds is used to
evaluate the performance of the application and to analyze
the effects of optimizations as carried out by the middleware.
Our results indicate that the middleware is able to significantly
reduce access latency with negligible delay introduced by its
data processing.

II. BACKGROUND & RELATED WORK

A. Mobile Offloading

Much work has been done in efforts to offload computa-
tionally expensive operations from mobile devices to back-end
servers, possibly running in the cloud [22]. This technique can
generally be viewed as a form of remote procedure call in
which the client is a mobile device. Many systems [8], [21],
dynamically choose to run code locally or at a remote location
depending on the projected cost of the operation, the potential
overhead of offloading, and the current state of the mobile
device. Other work has examined the potential for sharing
offloading computations among multiple mobile devices [17].
These systems have demonstrated improvements in performance
as well as a reduction in energy consumption for a variety of
applications, such as image processing and games. The burden
imposed on the mobile application developer by each of these
systems varies. For example, [21] requires the use of a specific
framework, [8] requires the use of code annotations, while [6]
works through static analysis and requires no changes in code.
The most recent work in mobile offloading [12] deals with
offloading computation on cloudlets, though this work does
not use any user profiling like we do.

B. Mobile Usage Patterns

As mobile devices have become increasingly ubiquitous,
researchers have become interested in identifying the ways in
which these devices are used. Multiple studies [5], [7], [10] have
shown that smartphone usage exhibits both temporal and spatial
patterns. That is, the way in which a person uses a mobile
device is directly related to the time of day and that person’s
location. Moreover, significant work has already been done to
investigate the use of data mining techniques to elucidate these
kinds of patterns [19], [23], [24], although these techniques
are not specifically targeted to mobile device usage data.

In our past work [16], we have demonstrated the use of
region of interest abstraction to reduce the latency of data
access with the use of cloud. In this paper we demonstrate
the utilization of past work to build a scalable, configurable
and generic framework which can used by developers to build
content-centric cloud-based mobile applications. Our framework
supports a default configuration which can be used by the
developers out-of-the-box.

C. Recommender Systems

Recommender systems seek to identify the resources, such
as movies or books, that would be most useful for a particular

individual. This can be done through simple content-based
approaches or through more sophisticated analysis techniques
like collaborative filtering [9] and matrix factorization [11].
At a high level, the goal of a recommender system is to
analyze user behavior, whether in the form of explicit item
ratings or more implicit usage patterns, in order to identify
that user’s preferences and to suggest items that conform to
those preferences. While both recommender systems and our
middleware system aim to determine a user’s interests, they have
slightly different end goals. A recommender system will attempt
to bring items to a user’s attention that the user would normally
overlook if left to his or her own devices. This objective is
known as serendipity or novelty in the recommender systems
literature [13]. In our setting, the user’s consumption of a novel
item is problematic because it precludes any possibility of
anticipating and thus optimizing the retrieval of this content.

D. Prefetching

Prefetching is a well-studied practice in the web browsing
domain. Most modern browsers support or engage in prefetching
to reduce load times. Much research has also been done to
improve prefetching techniques in a web context [19], [26].
These efforts typically seek to identify relationships between
web pages, which can be in the form of explicit hyperlinks or
common access patterns exhibited by users, that may be able
to predict which web pages a user is most likely to navigate
to next. The use of prefetching to improve the mobile user
experience has also been studied extensively. The Informed
Mobile Prefetching system [14], for example, makes prefetching
decisions based on current network connectivity. Microsoft has
also investigated prefetching on its mobile devices, both to
predict which applications a user will open in the near future
[20] and to prefetch advertisements [18]. Amazon has deployed
the Silk browser [1] to offload expensive computations and to
perform prefetching for its Kindle devices. Prefetching is also
studied for various domains and applications like Spotify [27]
and mobile advertisement deliveries [15]. But the prefetching
techniques used in these systems are very specific to that
particular domain and cannot be generalized to other domains.
Here, we have developed a middleware that exploits user
interests to drive optimizations in a framework that can be
integrated with and customized for specific applications by
mobile developers with minimal effort.

III. OVERVIEW OF MIDDLEWARE FRAMEWORK

We have developed a cloud-based middleware for Android
applications. Our middleware strives to allow mobile application
developers to utilize the region of interest [16] abstraction and
the optimizations it entails, namely precaching and prefetching.
A region of interest is the subset of an application’s features or
content space that is most commonly utilized by a specific
user and therefore of most relevance to that user. Several
users may have the same region of interest or may have
overlapping regions of interest. This concept can assume a
number of different forms, depending on application domain.
In an application primarily concerned with physical location,
for example, a user’s region of interest might correspond to
a specific geographic area, while in an information retrieval
application the region of interest might be a collection of topics
or terms. This abstraction forms the core of our middleware.

We employ data mining techniques in an effort to identify each
user’s region of interest. Once this is known, we can attempt
to predict which content a user is most likely to access in the
future, allowing us to anticipate user actions and optimize for
them.

Ideally, the system should achieve meaningful improvements
in application performance even when a minimum of effort
is put forth by the application’s developer. Conversely, if
the developer wishes to invest the time to customize the
middleware’s behavior to better match his or her own use
case, then this should also be supported. This situation leads to
several important goals for the design and implementation of
the middleware, both at the user level and at the system level.

User-Centric Goals

• Present a small but flexible interface to the developer

• Allow for clean and concise code

• Require minimal changes when integrating middleware
into an existing application

• Provide a sensible default configuration while also
supporting customization

System-Centric Goals

• Use a modular design to support user customization

• Make intelligent use of cloud resources

• Incur minimal data processing overhead

• Achieve performance that is no worse than that of an
unoptimized version of the application in any situation

Our middleware presents a key-value store as its principal
interface to Android applications. Each key-value pair corre-
sponds to an atomic item of content. The key is a unique
identifier and handle for the content, such as a hash value
or URL, while the value is the content itself. This could be
text, an image, or even an application-specific data structure.
The middleware supports keys and values of arbitrary types,
thus allowing it to generalize to a wide variety of application
domains. An application then performs a get operation
in order to retrieve a resource. Note that the middleware
achieves both location and access transparency. That is, an
application has no knowledge of whether a resource has been
precached or prefetched, nor does it need this knowledge in
order to effectively use the middleware and benefit from its
optimizations.

A get operation is carried out in one of three different
ways, each of which appears identical to an Android application.
These three scenarios are depicted in Figure 1. First, in the
worst case, i.e. operations 1-6 in Figure 1, the application must
retrieve the content from its cloud server, which in turn must
synchronously fetch the content from the source and process
it before responding to the client. This procedure can involve
significant latency, as the user application blocks until the
necessary data has been retrieved, processed, and delivered. In
the second scenario, the application must again retrieve the
content from the cloud, but fortunately the item is precached by
the cloud-side server and thus can be immediately delivered to
the mobile client. We therefore effectively cut out operations 3

Mobile
App

Middleware
(Android)

Middleware
(Cloud)

Content
Source

(1) Request
Content

(2) Submit Fetch
Request

(3) Request
Content

(4) Deliver Raw
Content

(5) Deliver
Processed Content

(6) Deliver
Content

Figure 1: The Three Scenarios for Resource Retrieval

and 4. The time required to complete the operation is therefore
dominated by network round-trip time. Finally, in the ideal
situation, the user requests content that was speculatively pushed
to his or her device, in which case the relevant content is
obtained without any network communications and without any
perceivable delay — simply operations 1 and 6.

An application developer must specify how resources are
retrieved from their sources, as the middleware has no way of
inferring this. This is done through the implementation of a
simple interface. Similarly, if a developer wishes to deploy a
specific data-mining scheme in order to analyze and predict
user behavior, they must also implement a particular interface
that can then be freely plugged in to the rest of the middleware
system. This can be particularly valuable if a developer seeks
to analyze the content of user requests in addition to the
requests themselves. However, some data-mining techniques
may be content-neutral, meaning they can generalize to different
domains. In that case, a user can easily configure the middleware
to make use of implementations written by others in order
to avoid the burden of implementing this functionality for
themselves. The developer also has the freedom to implement
a cache eviction policies specific to their application domain.

IV. ARCHITECTURE & IMPLEMENTATION

Our system is made up of several components, each of
which has a specific role and specific means of interac-
tion with the other components. The ResourceManager,
as its name suggests, manages content for an application.
This includes requesting and caching content, as well as
updating the ResourceServer of user activity. When re-
quests cannot be satisfied locally, the ResourceManager
communicates with the cloud-based ResourceServer on
behalf of the mobile application. It is within the cloud
where the ResourceServer satisfies requests that could
not be made locally by either getting the requested content
from its cache, or having the ResourceFetcher fetch
it from its origin to be processed, cached, and sent to the
user. The ResourceServer also works in sync with the
PredictionEngine, feeding it content and user history, in
order to forecast user requests, and speculatively push content
to the mobile users. The complete system is diagrammed in
Figure 2.

A. ResourceManager

The ResourceManager is resident on an Android device
and is the means by which a developer’s application makes
use of the middleware system. It exposes a key-value store to

 • Request
 Resources
 • Provide User
 Data

 Forecast User
 Needs from
 Data

 Retrieve Con-
 tent from
 Origin

 • Service
 Requests
 • Speculatively
 Push Content

Figure 2: A High-Level View of the Middleware’s Structure

the application that is used to transparently retrieve content.
As such, the ResourceManager features a relatively simple
interface. This interface is further simplified by the fact that
a read-only view of the key-value store is sufficient, as the
Android application will consume content but will not produce
any content of its own. Thus, an Android application makes
use of two major features of the ResourceManager:

1) get(key) retrieves the content corresponding to the
provided key.

2) getAvailableResources() produces a collec-
tion of keys, each of which represents an item of
content that is currently available for user consump-
tion.

B. ResourceServer

The ResourceServer is deployed on cloud infrastruc-
ture and is responsible for servicing requests for content. A
single ResourceServer is intended to handle the traffic gen-
erated by a large number of ResourceManager instances act-
ing on behalf of Android applications. The ResourceServer
is expected both to retrieve content directly from its source using
an implementation of ResourceFetcher and to manage
this content on behalf of mobile application clients. This
component is also responsible for carrying out optimizations
based on input from the PredictionEngine. Therefore,
the ResourceServer may initiate retrieval and processing
of content either as a direct response to a user request or
as a precaching measure. The server will also speculatively
distribute content to mobile clients as a prefetching measure.

Client requests processed by the ResourceServer can
be broken down into four different types, each of which is
handled differently:

1) Fetch: Retrieve the content item corresponding to a
supplied key.

2) Survey: Retrieve a list containing keys for all re-
sources currently available.

3) Prefetch: Retrieve content to be cached on a mobile
device for future use.

4) Update: Alert the server about user requests that were
satisfied by prefetched content.

The update operation merits further discussion. The opera-
tion is necessary in order to maintain consistency between a
mobile client and the cloud-based server. The best-case scenario
in terms of performance and user experience occurs when
the user requests content that has been prefetched, as that
request can be satisfied immediately and without any network
communication. Thus, when the middleware is doing its job
well, there will be user requests that ordinarily never reach its
cloud components. This is a problem, as these requests are
precisely the information that must be collected and analyzed
if intelligent optimizations are to be carried out. To address this
problem, the ResourceManager will periodically contact
the ResourceServer in order to synchronize user request
history. This allows the mobile client to benefit from prefetching
while also keeping the server informed of user events for data
mining purposes.

This situation leads to an interesting trade-off between
consistency and bandwidth/energy consumption. We see this
trade-off in two situations, each mirroring the other. First, we
must decide how frequently to synchronize user request history
between mobile application instances and the server. Second,
we must decide how frequently to ping mobile applications
in order to initiate prefetching of content. If either of these
operations are performed too frequently, unreasonable amounts
of energy and bandwidth may be consumed. If either of these
operations aren’t performed frequently enough, server-side user
data becomes too stale and mobile clients end up retrieving
content from the cloud that could have been prefetched. Both
time-based variables are easily adjusted in our middleware to
achieve a desired balance

C. ResourceFetcher

This component is responsible for all interaction with
content sources. Its interface consists of two operations,
and it is essentially equivalent to the interface exposed to
Android applications by the ResourceManager. These two
operations are:

1) fetchFromOrigin(key): given a key, retrieves
the corresponding content to be processed from its
source.

2) getAvailableResources(): produces a collec-
tion of keys, each of which represents an item of
content that is currently available for user consump-
tion.

However, there are several key differences between the
ResourceFetcher and the ResourceManager. While
the get operation of the ResourceManager may trans-
parently involve the utilization of precaching or prefetch-
ing optimizations, the ResourceFetcher always re-
trieves content directly from the source. Similarly, when a
ResourceManager requests a list of available resources
from a ResourceServer, it may receive a cached version in
response. A ResourceFetcher, however, always computes
a fresh view of the available resources.

Note that an application developer is responsible for the
implementation of the ResourceFetcher. He or she must

specify how to retrieve a specific item of content from its
source as well as how to create a collection of identifying
keys for the resources that are currently available. While
this does require some effort, the middleware has no way
of inferring how to accomplish these tasks, as it generalizes
across various content domains. Furthermore, as its interface
consists of just two operations, the burden of implementing the
ResourceFetcher is as minimal as possible.

D. PredictionEngine

The PredictionEngine is responsible for suggesting
items of content that are likely to be accessed by a partic-
ular user in the near future. It is therefore where all data
analysis takes place. In order to accomplish this task, the
PredictionEngine is informed of all user activity by
the ResourceServer. The PredictionEngine is also
provided the requested content itself, although it may or
may not make use of this information. For example, in an
implementation that is intended to apply to multiple application
domains, a prediction engine would most likely process user
request metadata but choose to ignore the content of these
requests, as the structure of this content is likely to vary across
different domains.

The interface of the PredictionEngine is primarily
concerned with the exchange of information between itself and
the ResourceServer. This includes receiving user data and
content as input and producing prefetch suggestions as output.

Much like the ResourceFetcher, the
PredictionEngine is generally expected to be
implemented by the application developer. While this
is a non-trivial task, it allows the middleware to be as flexible
as possible and developers are free to use ready-made general
implementations. Furthermore, we’ve kept the interface small,
requiring the implementation of just four operations. As
mentioned above, some implementations may attempt to mine
request metadata, while others may examine the actual content
that is consumed by users in order to identify patterns and
make predictions. Additionally, some implementations may be
designed to support prediction pulling, in which predictions
are computed upon demand and delivered synchronously to
the server, while others may support prediction pushing, in
which user data is processed and predictions are produced in
the background and asynchronously delivered to the server to
be used at a later point in time.

E. Cloud and Mobile Caches

Similarly, the CloudCache and MobileCache are to
be implemented by the application developer. The cloud
cache stores preprocessed, precached content accessible by
all users. The mobile caches on the other hand store processed,
prefetched content specific to the user of the resident device.
Both cloud and mobile caches can be implemented with
unique policies to satisfy unique usage patterns, making the
middleware as general as possible. In this way, the caches can be
optimized with contextual knowledge from the mobile device,
and auxiliary information from the prediction engine. This
particular generalization is achieved without placing a burden on
the developer. The cache interfaces, which match that of Java’s
Map interface, allows developers to use a relatively simple

policy, such as LRU, simply by extending Java’s HashMap
class. Alternatively, they can tailor a more sophisticated policy
to their application’s needs, and user patterns.

F. Concurrency and Synchronization

Because the ResourceServer runs on cloud infrastruc-
ture and is expected to manage content for, and handle traffic
from many mobile clients, there is strong motivation to achieve
concurrency in its implementation. Not only do we have the
necessary processing power available to us, but concurrency is
also essential if the server is expected to scale well. To this end,
the ResourceServer has generally been written to favor
asynchrony and concurrency over synchronous and blocking
computations. To achieve this, the ResourceServer makes
use thread pools which generally need not contain more than a
handful of threads. The size of the thread pools can be specified
by the developers, which can be very useful for scaling the
system up or down depending on expected load.

V. APPLICATION CASE STUDY

A. News Aggregator Application

We have deployed a News Aggregator application that
utilizes our middleware in order to evaluate the effectiveness of
the system in a real-world setting. It is inspired by Flipboard
[3], a commercially-available mobile application that integrates
content from news providers, blogs, and social media into
a single readable interface. Our application is a more simple
news article aggregator, meaning it collects articles from various
news outlets and presents them to the user for consumption.
To begin, a user is first presented with a list of general topics.
Upon choosing a topic, he or she is presented with a list of
headlines pertaining to that topic and then must select an item
from the list in order to read the corresponding article. The
application uses an external library [4] to parse the source
webpage of a news article and discard extraneous material like
advertisements, comments, and distracting images. This allows
the application to present only the body text of the article to
the user.

This application exhibits several characteristics that make
it amenable to cloud-based optimization. First, the application
involves extensive communication due to the fact that it gathers
information from several different news sources. Also, the
application has high storage demands due to the large volume
of articles that it may process and disseminate to its users. It
is natural, therefore, to split the functionality of the application
between the cloud and a user’s mobile device. The cloud can
perform article retrieval, extraction, and storage on behalf of the
user. Because of their high resource demands, these tasks would
be costly to perform and could disrupt other user operations if
performed directly on a mobile device.

What makes the news aggregator even more suitable for
cloud-based optimization, however, is its article extraction
process. We found that the source webpage for a news article
had an average size of about 260 KB, while the body text
for that article had an average size of about 4 KB. Thus, if
we perform article extraction in the cloud, we find that we
can dramatically reduce the amount of data traffic induced
by the application, at least from the perspective of a mobile
device. However, the downside to this arrangement is that the

extraction process is computationally expensive. We’ve found
that it typically requires approximately 4 or 5 seconds of CPU
time. This arrangement provides strong motivation to attempt
to perform optimizations in order to achieve the data reduction
benefits of extraction without suffering from its computational
cost. Therefore, the fact that we’ve introduced the cloud as an
extra hop between article source and end user can be justified
by its ability to carry out such optimizations.

In order to apply the middleware in this context, we define
the region of interest to be the topics and news items that a user
most consistently wants to read about. For example, we may
find that one mobile user enjoys reading about specific sports
teams, while another likes to keep up with the latest political
developments. Thus, if we can develop a reliable means of
identifying these interests, we may be able to predict which
articles a user is likely to read in the near future and perform
the precaching and prefetching operations discussed earlier.

B. Prediction Engine

In order to test the middleware, a prediction engine that is
suitable for the news aggregator is required. We use a prediction
scheme that relies on the cosine similarity metric to identify
similar pairs of users. We maintain a bit vector for each user,
with one entry for each article known to the system. If the
user has read that article, the corresponding entry in their bit
vector is set to 1, otherwise it is 0. Then, given two user history
vectors u and v, we compute their similarity as follows. This
score must be between 0 and 1, and a higher score indicates a
stronger similarity between two users.

s(u, v) =
u · v
‖u‖ ‖v‖

(1)

We can then construct the region of interest from all articles
that have been read by individuals who are sufficiently similar
to a given user. This assumes that users naturally fall into
clusters based on their interests. We can define a similarity
threshold T and assume that all individuals whose similarity
to a given user does not exceed T are irrelevant to that user.
Let H(x) be the user history vector of user x and let U(x) be
the set of users who are sufficiently similar to x to be deemed
relevant. Thus:

U(x) = {y | s(H(x), H(y)) ≥ T} (2)

Let R(x) be the set of articles read by user x. We can then
compute a user’s region of interest as follows:

RoI(x) =
⋃

y ∈U(x)

R(y) (3)

This logic comes into play each time a user reads an article, as
we then prefetch that article for all users who are considered
sufficiently similar to the original user.

Our current implementation does not allow the
PredictionEngine to suggest that an article be precached
rather than prefetched, although enabling this behavior would
only require a minor change to the PredictionEngine
interface. Instead, the server will retain a copy of an article
in its cache after prefetching or retrieving that article, which
means that precaching currently occurs only as a side-effect of
prefetching and unoptimized retrieval.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We used a trace-driven emulation of mobile client requests
in order to test the performance of the news aggregator
combined with our middleware system. We used data from
Twitter and Disqus to construct a workload trace for the news
aggregator. Specifically, we collected all Tweets that were issued
by CNN between early February and early April of 2014. CNN
will emit Tweets to announce the posting of a new article to
its website. We interpret this as a publish event, i.e. the article
that was announced by the Tweet is now available for user
consumption. Additionally, we used an API provided by Disqus
[2] to collect all user comments on these articles. We interpret
these as consumption events. That is, when a user comments
on an article, we assume that they have read this article and
treat this event as such in our workload trace.

In order to evaluate the effectiveness of the middleware,
we emulated the interactions of 40 users, corresponding to the
most prolific commenters from our dataset. More specifically,
we deployed the ResourceServer, PredictionEngine,
and ResourceFetcher components of the middleware on a
c1.xlarge instance in Amazon’s EC2 (Elastic Cloud Compute)
infrastructure and then emulated the activities of 40 mobile
clients corresponding to each of these users by emitting a
sequence of requests that directly correspond to the sequence
of comments in the dataset, thus replaying the original sequence
of events. Due to the need to emulate such a large number of
clients, we emulate client requests using a desktop PC. As we
are primarily interested in latency and cloud-side processing,
this does not significantly affect our results. However, to
accurately capture the application performance on mobile
devices, we submitted requests to the cloud-based server from
an HTC One X phone running Android 4.1.1 and measured
the average latency for prefetching. This value was used for
the prefetching cost in our emulated experiments. In these
experiments, we accelerated the rate at which requests were
submitted to the server in order to reduce experimental run
time.

B. Implementation Comparison

We ran the workload trace for several different server
implementations in order to judge the effectiveness of the
optimizations we propose as well as the user similarity analysis
scheme. We tested the following implementations.

1) No Precaching is a version of the middleware’s server
component with neither precaching nor prefetching,
i.e., all requests are served by the source.

2) No Prefetching is a server that precaches article
content but does no prefetching. In this case, the
server will serve requests from the cloud cache if
articles are stored there, otherwise they’ll be served
from the source.

3) Random is a server that does both precaching and
prefetching, however it makes no use of user profiling.
It chooses whether or not to prefetch an article for a
particular user with a 50/50 probability.

4) User Similarity is a server that also does both
precaching and prefetching, but it incorporates our user
similarity scheme to identify articles for prefetching.

It uses a default user similarity threshold of T = 0.40.
Thus, when a user reads an article, that article will be
prefetched for all other users with a similarity score
above 0.40.

Unless noted otherwise, all experiments were run with a cloud
cache size of 200 and mobile cache size of 10, both using an
LRU eviction policy. For each of these implementations, we
computed the following metrics:

1) Latency: We measure the time that elapses between a
client issuing a request and the delivery of a response
back to the user. This time can include network
latency of going to the cloud/source as well as the
computational cost of extracting article text, unless the
article is prefetched, in which case it will correspond
to the local access time.

2) Data Transfer: This is the average amount of data
exchanged between the client and server for each user.
Prefetching can increase the amount of network traffic
between a mobile device and the server due to content
that is prefetched but never consumed.

3) Recall: This is the average fraction of requests for
each user that were satisfied using prefetched content
when possible. The higher the recall, the more articles
would be accessed locally from the mobile device,
thus reducing the latency of access.

4) Precision: This is the average fraction of prefetched
articles for each user that were subsequently read by
that user. Higher precision values correspond to fewer
false positives in terms of prefetched articles, thus
leading to smaller wasted network bandwidth.

The comparison results between the different server implemen-
tations are given in Figure 3.

1) Latency: Figure 3a gives a CDF of request latency
for each server implementation (Note: x-axis is log-scale).
When neither precaching nor prefetching is used, the request
latency for all requests is on the order of several seconds. This
improves dramatically once precaching is enabled, leading to
a latency of about 165 milliseconds for approximately 85%
of the requests. The effectiveness of precaching justifies our
use of the cloud as an intermediary between content sources
and mobile devices. The latency improves even further when
prefetching is enabled. Looking at the left extreme of the
figure, we observe that even a random prefetching scheme is
able to reduce the latency of about 20% of requests to a few
milliseconds, while our more intelligent strategy based on user
profiling achieves this reduced latency for approximately 40% of
requests, thus significantly outperforming the random baseline
algorithm. Focusing our attention to user similarity strategy
unoptimized requests (no precaching/no prefetching) require
an average of 5 seconds, which consists of both a network
delay and data processing time. Requests for precached content
require an average of 164 milliseconds, mainly due to network
round trip time. Finally, prefetched requests require an average
of 5 milliseconds, justifying any overhead the middleware may
incur.

2) Data Transfer: Neither of the first two implementations
engage in any prefetching, so they transfer only as much data as
necessary to mobile clients. Prefetching increases the amount of
network traffic between the server and the clients, since some of

the prefetched articles may not actually be accessed by the users.
Interestingly, the random and user similarity implementations
incur roughly the same amount of network traffic, but we see
that the user similarity scheme makes much more effective
use of this data. From the first two graphs of Figure 3, we
see that there is a direct trade-off between latency and data
traffic. There may be some situations where high data traffic
is tolerated for the sake of minimizing latency, while in other
situations higher latency is tolerated to limit data traffic. As we
show later, we can achieve the desired trade-off by changing
the user similarity threshold T for our user similarity-based
server.

3) Recall: When prefetching does not occur, the recall
is necessarily 0 because no user requests can be satisfied
with prefetched content. As our random prefetching scheme
prefetches each article with probability 0.5, we would expect the
theoretical upper limit of its recall to be around this number. In
reality, the recall for the random implementation is much lower
because it prefetches without any notion of user preferences.
The user-similarity scheme, on the other hand, achieves a recall
that is more than double that of the random scheme, clearly
demonstrating the benefits of intelligent prefetching through
user profiling.

4) Precision: This metric is only applicable to imple-
mentations that actually perform prefetching. We see that
approximately one in ten articles prefetched in the random
implementation end up being consumed by the user, while
more than one in five articles prefetched by the user similarity
scheme are consumed. Thus, our user similarity scheme not
only achieves much better recall than a random implementation,
but it also achieves much better precision. Furthermore, it
accomplishes this with roughly the same amount of network
overhead.

C. Overhead

We carried out some basic microbenchmarking in order
to evaluate the overhead incurred by the middleware’s data
processing efforts. That is, we sought to evaluate the extent to
which the additional bookkeeping and data collection carried
out by the middleware hinders the processing of a user request.
In particular, we are interested in breaking down request latency
into two pieces:

1) Unavoidable Latency occurs due to the article re-
trieval and extraction process.

2) Avoidable Latency is incurred by additional opera-
tions that are not strictly necessary to process a user’s
request but are required for the functionality of the
middleware.

Because of the middleware’s need to maintain user history
vectors and to perform similarity computations, user requests
will take longer to process than they normally would. We
analyzed all unoptimized requests in the workload trace and
found that average server response time was 4,864 milliseconds,
while the average amount of time spent retrieving and extracting
an article was 4,860 milliseconds. This means that, on average,
only approximately 4 milliseconds of latency was caused by
bookkeeping and other data processing operations. Hence,
we see that, despite some of the extra work done by the

No Precache
No Prefetch
Random

User Similarity

(a) Latency CDF (x-axis is log scale) (b) Data Transfer (c) Precision/Recall

Figure 3: Server and Prediction Engine Comparison

middleware, latency is strongly dominated by the unavoidable
cost of retrieving and extracting article content.

We also explored the possibility that load placed on the
server by background threads performing prefetching and
data processing hindered the ability of the remaining threads
to process user requests in a timely fashion. If a server’s
CPU is occupied by prefetching efforts, then incoming user
requests may take longer to be serviced. To evaluate this, we
compared the average response time of the non-prefetching
server featured in Section VI-B to that of the user similarity-
based implementation. We found that, when the two servers
are deployed on multi-core virtual machines with identical
specifications, there was no significant difference in response
time. Background prefetching does degrade response time when
deployed on a single-core machine, but we assume that the
middleware will be deployed in a multi-core environment, as
multi-core virtual machines are widely available from cloud
providers and relatively affordable.

D. Parameter Analysis

Our middleware, as well as the prediction engine described
in Section V-B, feature several parameters that can affect system
behavior and performance. We examine three parameters here:
the similarity threshold, server/mobile cache sizes, and cache
policies.

1) Impact of Similarity Threshold: The user similarity-based
prediction engine uses a similarity threshold value T that
determines which users are deemed relevant when constructing
a region of interest. We evaluated the performance of three
prediction engines – with T values of 0.30, 0.40, and 0.50
– using the same experimental procedure as in Section VI-B.
The full results are given in Figure 4. As T increases, the
system becomes more selective in its prefetching. Therefore,
higher T values yield a smaller reduction in latency because
fewer prefetches occur, but they also reduce the number of
false positives, leading to lower values of data transfer and
higher precision values. Lower T values produce a better
average latency but also lead to more false positives. In short,
the prediction engine’s T value can be tuned to influence
its precision and recall. In situations where low latency is
important, the T value can be decreased to induce more
aggressive prefetching, whereas in situations where reducing

network traffic is critical, the T value can be increased to force
more conservative prefetching.

2) Impact of Cache Size: We next examine the impact of the
cloud-side server cache size (used for precaching) on system
performance. The server may prefer to maintain a cache size
that could fit in memory to provide fast accesses; therefore,
smaller cache sizes may be desirable to reduce cost in the cloud.
We varied the maximum number of resources that could be
stored in the cloud-side cache and used an LRU replacement
algorithm when this maximum was exceeded.

Figure 5a plots the number of unoptimized requests, i.e.
those that had to be sent to the source, for each cache size
(mobile cache size is fixed at 5 items). As expected, a smaller
cache size leads to more unoptimized requests, so that there is
a clear trade-off between server-side memory consumption and
latency. This is because a smaller cache forces the server to
discard resources that will be requested by users at a later time,
causing it to miss opportunities for precaching and retrieve
content directly from the source. Surprisingly, we see that
a relatively small cache size still yields significant benefits.
A server with a maximum cache size of roughly 50 entries
performs comparably to servers with maximum sizes of 100
and 200 entries. This implies that it is possible to achieve
good system performance even with a modestly-sized cache,
which likely could be small enough to be stored in server
memory to minimize access time. We also see an interesting
trend in which decreasing the cache size below 50 very quickly
degrades system performance, as evidenced by the results for
a server with a maximum cache sizes of 25, 15 and 0 entries.
These results suggest that a “optimal” cache sizes could be
empirically determined to achieve a desirable trade-off between
cost and latency.

We also ran a trace using data collected on all users, rather
than the top 40 most prolific, with the same configuration as
the preceding bar, i.e. cloud cache size of 200, mobile cache
size of 5, and our user similarity prediction engine. The results
of this test, seen as the last bars in Figure 5a demonstrate how
even users who use the app infrequently are still able to benefit
from its optimizations. This is a result of the content domain’s
strong temporal locality and high reuse of content among users.

3) Impact of Cache Policy: Different content domains
require different cache eviction policies. Figures 5b and 5c

Pr
ob
ab
ili
ty

Similarity Threshold Similarity ThresholdSimilarity Threshold
0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5

Av
er
ag
e L
ate
nc
y (
m
s)

Av
er
ag
e D
ata
 T
ra
ns
fe
r (
By
tes
)

(a) Average Latency (ms) (b) Data Transfer (Bytes) (c) Precision/Recall

Figure 4: Effects of T Value on System Performance

Pr
ob
ab
ili
ty

Pr
ob
ab
ili
ty

0 15 25 50 100 200 200
 (all users)

Random FIFO LRU Random FIFO LRU Priority

Pr
ob
ab
ili
ty

(a) Cloud Cache Size (b) Cloud Cache Policy (c) Mobile Cache Policy

Figure 5: Cache Size and Eviction Policy Comparison

show the efficacy of various policies with respect to our news
aggregator. Figure 5b compares policies used by the cloud
cache restricted to a size of 15. We use a small cache size
in order to demonstrate the efficacy of different policies, as
larger cache sizes become insensitive to the cache eviction
policy. This insensitivity indicates a small working set that
fits within the cache. For this reason, the cloud’s policy for
this domain is arguably insignificant. Nevertheless, the figure
reveals that an LRU policy for the cloud cache results in the
fewest unoptimized requests, albeit narrowly. FIFO performs
nearly as well as LRU as, in general, this domain exhibits
read-once behavior. Eventually, content grows stale and falls
out of use. The LRU policy is responsive to staleness and
trending content, i.e. a popular article will stay popular and
therefore avoid eviction.

Figure 5c is concerned with the policy used by the mobile
cache with a fixed size of 5. The Priority policy evicts the
article with the lowest score, set by the prediction engine upon
prefetching, from the mobile cache. Additionally, the policy
decays the score of an article while it is stored in the mobile
cache and whenever it is accessed. This more sophisticated
policy does not outperform others, as highly scored content
can stick in memory. As evidenced by our results, the policy
used for the mobile cache, much like that for the cloud cache,
has little weight on the performance of our middleware. Given
the accuracy of our prediction engine, we should expect that

each element has a high probability of being accessed by the
user. Therefore, the element we choose to evict tends to be
irrelevant, so long as old content is eventually evicted. For this
reason, a random eviction policy is comparable to LRU and
Priority. This quality is advantageous for the developer as it
allows he or she to implement a relatively simple policy. Even
so, we leave the implementation to the developers who have
greater insights into the requirements of the domain for which
they are implementing our middleware framework.

VII. CONCLUSION

We have explored the application of user profiling tech-
niques to the optimization of mobile software using cloud-based
resources and infrastructure. Specifically, we examine content-
centric applications and the use of two optimization techniques,
precaching and prefetching, as a means of improving per-
formance. We implemented a middleware system to address
the system-level challenges of precaching and prefetching.
Such challenges include issues of data collection, management,
analysis, and propagation. Our system makes extensive use of
asynchrony and concurrency to allow data analysis to occur
in parallel with the servicing of user requests. This leaves
just two primary tasks to a developer who wishes to integrate
his or her application with this framework: implementing a
means of interaction with content sources and implementing
a mechanism to generate predictions of future user behavior
from past history.

To assess the middleware, we implemented a news aggre-
gation application and a corresponding prediction engine that
performs user similarity analysis in an attempt to construct
regions of interest using clusters of users with common interests.
We used Twitter and Disqus data to construct a workload
trace and used this as the basis of an emulation intended to
evaluate the potential benefits of prefetching and precaching
as enabled by the middleware. We found that many user
requests in the emulation benefited from either precaching
or prefetching, causing a reduction in the latency normally
induced by intermediate content processing performed at the
cloud. We also saw very limited overhead due to the additional
tasks performed by the middleware during the processing of a
user request. Moreover, our similarity-based implementation
outperforms a baseline random algorithm in terms of both
precision and recall.

There are several areas of potential future interest raised
by this work. First, we intend to demonstrate and evaluate the
middleware’s ability to generalize to various content domains.
Another interesting possibility is the idea of prioritizing some
predictions for user behavior over others. This would most
likely be based on prediction confidence, i.e. the estimated
likelihood that a prediction will turn out to be true. In our
system, this could be tied to the similarity score between two
users. This may allow the middleware to dynamically adapt
the aggressiveness of its prefetching to different conditions.
Finally, user location could serve as an additional source of
data that may allow the middleware to make more intelligent
optimization decisions.

ACKNOWLEDGMENT

This work was supported by NSF Grant CSR-1162405.

REFERENCES

[1] Amazon Silk. http://amazonsilk.wordpress.com. Accessed: 3-11-2014.
[2] API – Disqus. https://disqus.com/api/docs. Accessed 5-22-2014.
[3] Flipboard. https://flipboard.com/. Accessed 5-1-2014.
[4] GravityLabs/goose – GitHub. https://github.com/GravityLabs/goose.

Accessed 4-21-2014.
[5] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer. Falling

Asleep with Angry Birds, Facebook and Kindle: A Large Scale Study
on Mobile Application Usage. In Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile Devices and
Services, MobileHCI ’11, pages 47–56, New York, NY, USA, 2011.
ACM.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud:
Elastic Execution Between Mobile Device and Cloud. In Proceedings of
the Sixth Conference on Computer Systems, EuroSys ’11, pages 301–314,
New York, NY, USA, 2011. ACM.

[7] K. Church and N. Oliver. Understanding Mobile Web and Mobile Search
Use in Today’s Dynamic Mobile Landscape. In Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile
Devices and Services, MobileHCI ’11, pages 67–76, New York, NY,
USA, 2011. ACM.

[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: Making Smartphones Last Longer with
Code Offload. In Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, pages 49–62,
New York, NY, USA, 2010. ACM.

[9] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative Filtering
Recommender Systems. Foundations and Trends in Human–Computer
Interaction, 4(2):81–173, 2011.

[10] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan,
and D. Estrin. Diversity in Smartphone Usage. In Proceedings of the 8th
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’10, pages 179–194, New York, NY, USA, 2010. ACM.

[11] S. Funk. Netflix Update: Try This at Home. http://sifter.org/∼simon/
journal/20061211.html, December 2006. Accessed: 3-10-2014.

[12] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan.
Towards wearable cognitive assistance. In Proceedings of the 12th
Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’14, pages 68–81, New York, NY, USA, 2014. ACM.

[13] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating
collaborative filtering recommender systems. ACM Transactions on
Information Systems, 22:5–53, 2004.

[14] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson.
Informed Mobile Prefetching. In Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys
’12, pages 155–168, New York, NY, USA, 2012. ACM.

[15] A. J. Khan, K. Jayarajah, D. Han, A. Misra, R. Balan, and S. Seshan.
Cameo: A middleware for mobile advertisement delivery. In Proceeding
of the 11th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’13, pages 125–138, New York,
NY, USA, 2013. ACM.

[16] J. Kolb, W. Myott, T. Nguyen, A. Chandra, and J. Weissman. Exploiting
User Interest in Data-Driven, Cloud-Based Mobile Optimization. In
Proceedings of the Second IEEE International Conference on Mobile
Cloud Computing, Services, and Engineeering, 2014.

[17] C. Mei, D. Taylor, C. Wang, A. Chandra, and J. Weissman. Sharing-
Aware Cloud-Based Mobile Outsourcing. In 5th IEEE International
Conference on Cloud Computing, IEEE Cloud 2012, pages 408–415,
June 2012.

[18] P. Mohan, S. Nath, and O. Riva. Prefetching Mobile Ads: Can
Advertising Systems Afford It? In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 267–280, New
York, NY, USA, 2013. ACM.

[19] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data mining
algorithm for generalized Web prefetching. IEEE Transactions on
Knowledge and Data Engineering, 15(5):1155–1169, Sept 2003.

[20] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin. Practical
Prediction and Prefetch for Faster Access to Applications on Mobile
Phones. In Proceedings of the 2013 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, UbiComp ’13, pages 275–284,
New York, NY, USA, 2013. ACM.

[21] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan. Odessa: Enabling Interactive Perception Applications on Mobile
Devices. In Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, MobiSys ’11, pages 43–56, New
York, NY, USA, 2011. ACM.

[22] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing,
8(4):14–23, Oct 2009.

[23] M. Seno and G. Karypis. LPMiner: an algorithm for finding frequent
itemsets using length-decreasing support constraint. In Proceedings of
the IEEE International Conference on Data Mining, pages 505–512,
2001.

[24] M. Seno and G. Karypis. SLPMiner: an algorithm for finding frequent
sequential patterns using length-decreasing support constraint. In
Proceedings of the IEEE International Conference on Data Mining,
pages 418–425, 2002.

[25] A. Smith. Smartphone Ownership – 2013 Update.
http://www.pewinternet.org/files/oldmedia/Files/Reports/2013/PIP
Smartphone adoption 2013 PDF.pdf, June 2013. Accessed: 2-27-2014.

[26] W.-G. Teng, C.-Y. Chang, and M.-S. Chen. Integrating Web caching and
Web prefetching in client-side proxies. IEEE Transactions on Parallel
and Distributed Systems, 16(5):444–455, May 2005.

[27] B. Zhang, G. Kreitz, M. Isaksson, J. Ubillos, G. Urdaneta, J. A. Pouwelse,
and D. H. J. Epema. Understanding user behavior in spotify. In
INFOCOM, pages 220–224. IEEE, 2013.

