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Abstract—Modern analytics services require the analysis of
large quantities of data derived from disparate geo-distributed
sources. Further, the analytics requirements can be complex, with
many applications requiring a combination of both real-time
and historical analysis, resulting in complex tradeoffs between
cost, performance, and information quality. While the traditional
approach to analytics processing is to send all the data to a
dedicated centralized location, an alternative approach would be
to push all computing to the edge for in-situ processing. We
argue that neither approach is optimal for modern analytics
requirements. Instead, we examine complex tradeoffs driven by
a large number of factors such as application, data, and resource
characteristics. We present an empirical study using PlanetLab
experiments with beacon data from Akamai’s download analytics
service. We explore key tradeoffs and their implications for the
design of next-generation scalable wide-area analytics.

I. INTRODUCTION

Data analytics is undergoing a revolution: both the vol-
ume and diversity of analytics data are increasing at a rapid
rate. Further, across a large number of domains including
web analytics, social analytics, and energy analytics, data
is often derived from disparate sources that include users,
devices, sensors, and servers located around the globe. The
application requirements for processing the data can be equally
complex. While some application queries require a real-time
analysis of current events, others require a historical analysis
of data over longer periods of time. But commonly, many
application queries require a combination of both real-time
and historical analysis, resulting in complex tradeoffs between
cost (e.g., WAN traffic, storage, energy), performance (e.g.,
query latency, throughput), and information quality (e.g., stal-
eness, accuracy, completeness). In addition to data sources and
application requirements, the compute and storage resources
that are available for analytics processing are themselves
often widely distributed across multiple data centers across
the globe. Further, the infrastructure available for analytics
processing is often a shared resource whose availability can
vary over time.

The traditional approach to analytics processing is the
centralized cloud model where the data streams are sent to
a dedicated centralized location with the hardware, network,
and software capabilities for analytics processing. The central-
ized location might offer OLAP (online analytics processing),
DBMS, or MapReduce-like functionalities. An alternative ap-
proach is the decentralized cloud model that moves computa-
tion to the data by pushing the analytics processing completely
to the edges. In this paper, we argue that neither approach
is optimal for modern analytics requirements. Instead, there
are complex tradeoffs driven by a large number of factors
that must be taken into account to achieve the desired metrics

of cost, performance, and information quality. We present an
empirical study using PlanetLab experiments with Akamai
analytics data to illustrate some of the challenges and tradeoffs,
and offer guidelines for approaches towards optimizing wide-
area streaming analytics.

A. Requirements of modern analytics services

There are a number of domains where complex analytics
services are required. A canonical example is a web analytics
service provided by a content delivery network (CDN) [1]. A
large CDN such as Akamai serves trillions of user requests
per day for web and media content on behalf of content
providers such as CNN or Facebook. A content provider using
a CDN for delivering content to its users requires analytics and
business intelligence about its users and content; for instance,
which users are watching which content, what are the top
trends in content popularity, etc. Social network analytics for
services such as Facebook or Twitter involves data streams
from billions of users that must be analyzed for trends in
near real-time. Another example is energy analytics, which
involves voluminous data—i.e., temperature and energy usage
data—derived from sensors deployed in smart homes. The
sensor data must be analyzed for energy trends and potential
energy cost savings and presented to the homeowner without
compromising privacy requirements [2]. Another emerging
area is security analytics that monitors traffic at edge servers
of a CDN to detect DDoS attacks and security exploits. Such
a service must detect bot attacks, cross-site scripting attacks,
SQL injection and other common exploits in near real-time
using both real-time data and voluminous historical data of
users accessing the edge servers of the CDN.

To better understand the requirements of such analytics
services, consider a web analytics service provided by a CDN.
In such a service, the data about what content users are
viewing, what actions the users are performing (e.g., playing or
rewinding a video, interacting with a web page) are sent from
the users’ browsers and media players to the “nearest” edge
server of the CDN in the form of “beacons”. Thus, beacon data
is collected in over a thousand data center locations across the
globe. Further, the edge servers themselves write detailed logs
describing each user request and server response. These multi-
ple geographically diverse data sources must then be analyzed
to answer queries from content providers about their users
and content, such as what content is being watched in which
geographic location, what the trends are in content popularity,
and if their users are experiencing good performance. For some
queries such as content trends, the content provider might be
willing to tolerate a small degree of inaccuracy (i.e., lower
information quality) while insisting on (near) real-time, up-to-
the-minute results. For other queries, such as attributions for an



ad campaign that impact revenue sharing, the content provider
might insist on 100% accuracy, though the results need not be
available in real-time.

An analytics query could involve both real-time streaming
analysis as well as historical analysis. For instance, to answer
the question of whether users are currently experiencing slower
web downloads, one must compute the current download
performance in near-real-time and compare the results with
historical information for the current mix of users, web pages,
and time of day. The resource requirements of the queries
could also vary significantly. While some queries require
relatively small amounts of raw data to be transfered from
the thousands of edge locations to a centralized location
for processing, other queries require voluminous amounts of
detailed data that would be wasteful to transfer across the wide-
area network (e.g., debugging queries involving detailed server
logs).

B. Challenges in optimizing analytics services

There are a number of challenges and tradeoffs in architect-
ing an analytics service that optimizes the three key considera-
tions: performance, cost, and information quality. Ideally, such
a service should provide information of sufficient quality, and
perform in accordance with application requirements, while
minimizing the cost of operations. Some key questions and
tradeoffs are below.

Where to store and process the data? The data originates
in diverse edge locations. Should the analytics computations
be performed solely in those edge locations, with only the
final results aggregated at the central location? Alternatively,
should the data in its entirety be transmitted to the central
location with all the processing happening at that location?
There are likely no simple answers; both extremes are subop-
timal. The best solution depends on a number of factors such
as the availability of compute and storage resources, WAN
bandwidth capacity and cost, and data privacy requirements.
For some applications (such as energy analytics), there may be
significantly more computing capacity available at the center,
while for others (such as a CDN), sufficient computation and
storage would be available at the edges, though its availability
may vary over time. Significant network resources are required
to backhaul data from edge locations to a central location;
network capacity may vary across different edge locations, and
the bandwidth prices that are charged on the 95th percentile
of traffic may vary throughout the day [3]. Finally, in case of
energy analytics, transmitting detailed sensor data from each
home to a public cloud might raise serious privacy concerns,
requiring at least some computation to be performed at the
edge [2].

When to process the data? In the one extreme, the computa-
tions can be performed as soon as the data is made available. In
the other, data is processed only when a query that accesses
the data is performed. There is a continuum of possibilities
between the two extremes where some data is preprocessed
while the rest is processed “on demand” at query time. The
optimal decision depends on application requirements and the
query characteristics. For instance, queries that evaluate the
top trends in content access will need to be preprocessed as
soon as the data is available at the edge locations, whereas

a “debugging” query that investigates ongoing performance
issues will rely on detailed data archived at the edge locations
that are processed only on demand.

What information quality is sufficient? The quality of the
results provided by an analytics service is often dictated by
the specific way in which those results will be used by the
consumer of the service. One measure of information quality
is the staleness of the query results; i.e., the delay between
input data becoming available to the analytics service, and the
output results becoming available from the analytics service.
Different queries may find different values of staleness to be
acceptable. For instance, a query for the latest traffic, user, and
content trends may require results to be as fresh as possible,
while queries used for debugging purposes often work on older
“stale” data. There are natural tradeoffs between the staleness
and bandwidth costs, since requiring the data to be fresh often
means transmitting unaggregated data as soon as possible over
WAN links.

Another measure of quality is the result accuracy. It is often
not possible to compute the exact query results, especially
when there is a high freshness requirement. For instance,
computing the order statistics of a data stream “on the fly”
in real-time requires approximate solutions rather than exact
ones [4]. Further, computing the results of some queries
exactly might be infeasible due to resource or cost constraints,
requiring methods for gracefully degrading accuracy [5], [6].

II. EMPIRICAL EVALUATION OF TRADEOFFS

The questions posed in Section I are challenging to an-
swer in a wide-area setting. In this section, we illustrate
the challenges by studying an important class of analytics
queries called grouped aggregation. Grouped aggregation is
used to combine and summarize large quantities of data from
one or more data streams. As a result, it is provided as a
key operator in most data analytics frameworks, such as the
Reduce operation in MapReduce, GroupBy in SQL and LINQ,
etc. Here, we consider windowed grouped aggregation in the
streaming analytics context, where queries are performed on
data produced with finite specified time window, say the past
minute or the past hour.

Grouped aggregation involves constructing data cubes [7]
that are then used to compute the aggregate query results.
A data cube groups data by dimensions and aggregates the
set of measures within each group. In our evaluation, we
consider the question of how frequently the edges should
transmit their local aggregate results to the center. We define
the interval between these transmissions as the aggregation
interval. Concretely, to implement an aggregation interval of
t seconds, an edge computes aggregates locally for t seconds,
then asynchronously transmits results to the center while
beginning aggregating for the next t seconds, and so on. We
study the impact of the chosen edge aggregation interval on
two metrics: staleness, which is a key measure of information
quality, and WAN traffic, which is a key measure of cost.
Staleness is defined as the time interval δ such that the
aggregate results for the window from time t0 to time t1 first
become available at the center at time t1+δ. The WAN traffic
is measured in terms of the number of aggregate records that
are sent over the WAN.
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Fig. 1. When the edge aggregation interval increases, more data is aggregated
on the edge, reducing the volume of data sent to the center. Note the vertical
axis uses a logarithmic scale.

A. Experimental Methodology

To simulate the tradeoffs in a typical analytics service, we
collected the beacon logs from Akamai’s download analytics
service over the month of December, 2010. The beacons con-
tain information reported by Akamai’s download manager that
runs on the users’ desktop or mobile devices. The download
manager is widely used by users around the globe for down-
loading software, games, and music. Each download results in
one or more beacons, each containing information pertaining
to the download, being sent to an edge server. The beacons
contain anonymized information about users downloading con-
tent from edge servers. In particular, the beacons contain time
of access, information about the accessed content such as
url, size, number of bytes downloaded, information about the
user including ip, network, and geography, and information
about the edge server including its network and geography.
We replay these beacon logs from a set of PlanetLab machines
to simulate the data collection and processing aspects of the
download analytics service. We use four nodes at Texas A&M
for edge computation, and each is responsible for replaying
a geographic partition of the input data. The final centralized
computation is performed at one node in Princeton. At the
time we ran our tests, the bandwidth from each of these edge
nodes at Texas to the central node at Princeton averaged 21.4
Mbps.

B. Impact of query characteristics

The characteristics of the query dictate the cube size; that
is, the number of distinct combinations of values possible for
the set of grouping dimensions. We study three queries that
we call small, medium, and large. The small query
requires a cube of two dimensions: the content provider id
and the user’s last mile bandwidth classified into four buckets.
The medium query requires a cube of three dimensions: the
content provider id, user’s last mile bandwidth, and the user’s
country code. The large query consists of three dimensions:
the content provider id, the user’s country code, and the
url accessed. Note that the last dimension—url—can take on
hundreds of thousands of distinct values, resulting in a very
large cube size. Figures 1 and 2 show the impact on network
traffic and staleness respectively for these three queries as the
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Fig. 2. When the edge aggregation interval increases, a larger burst of records
must be sent to the center at the very end of the window, and the resulting
transmission delay causes higher staleness.

edge aggregation interval is increased. Increasing the edge ag-
gregation interval leads to more data records being aggregated
at the edge. Thus, it reduces the amount of data that must be
sent from the edge to the central location, in turn reducing
the WAN traffic. However, increasing the edge aggregation
interval also leads to a larger batch of records due for network
transmission at the very end of the window, resulting in higher
network transmission delays and in turn higher staleness. We
find that the extent of the tradeoff is markedly different in
the three cases: an edge aggregation interval of 16 seconds
reduces WAN traffic—relative to a baseline with no edge
aggregation—by more than 99% for query small, but only
by 70% for query large. At the same time, the staleness for
query small increases by 37% while the staleness for query
large increases by 4.0x. This is because, for query large,
as we increase the edge aggregation interval, we are sacrificing
communication-computation pipelining without gaining much
in terms of actual data reduction. On the other hand, for query
small, deferring communication provides ample opportunity
for reducing data volumes at the edge.

These results have several implications. First of all, con-
trary to conventional wisdom, aggregation at the edge may
not always be beneficial. In some cases, it may be better
to simply send all data to the center. At the same time, the
optimal decision of where and when to aggregate can be
made if the system is aware of or can “learn” the query
characteristics. Second, achieving the desired quality of infor-
mation (staleness) may be much more costly for certain query
types than others. In particular, this can result in interesting
optimization opportunities in the presence of multiple queries,
e.g., allocating fewer resources to certain queries against others
depending on where each of them lies on the cost-quality
curve.

C. Impact of data source characteristics

The data sources can be characterized along several axes
such as key distribution, data volume, and skew of data across
different locations. The latter is particularly likely to occur
in geographically distributed settings. As an example, most
website visits or keyword searches are influenced by location
of the user (e.g., most users in Japan may access Japanese
news sites). In Figures 3 and 4, we plot the WAN traffic
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Fig. 3. Geographic skew inherent in the dimension values results in greater
edge aggregation, resulting in less data being sent over the wide-area network.
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Fig. 4. Geographic skew inherent in the dimension values results in greater
aggregation and data reduction. The data reduction leads to smaller compute
and communication delays, resulting in less stale results.

and staleness respectively both with and without location-
dependent data skew. The plots corresponding to data skew are
based on the actual data skew inherent in the original Akamai
beacon data. The unskewed results correspond to removing
the location-dependent skew from the data by randomizing the
source location of each record (while still keeping the relative
data volumes the same as before).

The figures show that both the WAN traffic as well as the
staleness become worse without this skew. This phenomenon
can be attributed to the fact that location-dependent skew leads
to higher concentration of data with a given set of dimension
values in each edge location, providing more opportunities for
aggregation at the edge. This leads to lower WAN utilization
as the greater aggregation reduces the data that needs to be
transmitted from the edge to the center. Further, more data
reduction due to greater aggregation also reduces the compu-
tation and communication time, leading to smaller delays and
fresher (i.e., less stale) query results.

D. Impact of the characteristics of the analytics infrastructure

The compute and storage resources available for analytics
processing also influence the choice of the edge query aggre-
gation interval and cost-quality tradeoffs. Infrastructure char-
acteristics include network, compute, and storage capacities
at the edge and center locations. Intuitively, higher resource
capacity (e.g., higher compute capacity or network bandwidth)
implies higher quality (low staleness) at lower cost (low WAN
traffic). We illustrate this tradeoff empirically by comparing
different network capacities between the edges and the center.
We ran two experiments that are identical in all respects except
the location of the center node. First, the three queries (small.
medium, and large) are run across a WAN with the center at
a PlanetLab node in Princeton, NJ and the edges at a PlanetLab
nodes in Texas. To emulate more plentiful network resources,
we repeat the same experiment with both the center and the
edge nodes running at Texas A&M, and communicating over
the local area network (LAN).

Figure 5 shows results for both experiments. It can be seen
that information quality is improved (i.e., staleness is reduced)
when network resources are more plentiful. The reason is that
the edge-to-center communication is faster when there is more
bandwidth from the edges to the center.
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Fig. 5. For a given query, staleness is reduced when network resources are
more plentiful.

III. RELATED WORK

A. Streaming systems

Numerous streaming systems have been developed both
in academia and in industry [8], [9], [10], [11], [12], [13],
[14]. While each focuses on its own unique engineering re-
quirements and research challenges, these systems share many
useful and time-tested ideas upon which any new streaming
analytics system should build. They do not, however, address
all of the challenges that we’ve described here, such as
determining the appropriate placement of computation, or how
to effectively trade off between cost and quality.

B. Grouped aggregation

Grouped aggregation has broad applicability in many an-
alytics applications. For example, the MapReduce [15] pro-
gramming model is essentially grouped aggregation composed



with an initial map transformation. Muppet [16] extends this
model into the streaming context. A Data Cube [7] represents
the set of aggregations over all possible groups of dimen-
sions in a dataset; the Roll-Up operation corresponds directly
to aggregation over groups. This pattern of computation,
though seemingly restrictive at first, has surprisingly broad
applicability. For example, Twitter has developed systems
and libraries aimed at streaming aggregation. In particular,
Summingbird [17] provides a higher-level programming API
for writing aggregate computation to run on Storm or Hadoop,
and the Algebird [18] library generalizes over data types that
have the algebraic structure of monoids or semigroups, and
can therefore be easily aggregated.

C. When to compute

LazyBase [19] allows users to trade off between query
latency and result freshness by extracting results from various
stages of a processing pipeline. This essentially answers the
question of when to return results, but it does not directly
address the question of when to compute them. Several systems
such CIEL [20], and Spark [21] use lazy evaluation, deferring
computation until results are requested. At the other extreme,
Twitter’s Rainbird [22] takes a fully eager approach, updating
the counts for all impacted groups when a data item arrives. In
a streaming context where wide-area bandwidth is expensive
or constrained, and staleness needs to be bounded, neither of
these extreme approaches is always the right answer.

The question of whether to compute results eagerly when
new data items arrive, or lazily when queries are issued, is well
known in database settings as the view selection problem, and
approximate solutions have been the focus of a large body of
research. In the setting of data cubes in particular, research
has focused on both offline techniques [23], which often make
too many simplifying assumptions to be directly implemented
in real systems, as well as dynamic approaches [24], [25] that
make selection decisions based on runtime conditions.

D. Where to compute

Little work on streaming computation has focused on wide-
area deployments, or the associated questions such as where to
place computation. Pietzuch et al. [26] optimize operator place-
ment in geo-distributed settings to balance between system-
level bandwidth usage and latency. Hwang et al. [27] rely
on replication across the wide area in order to achieve fault
tolerance and reduce straggler effects. JetStream [5] focuses
on wide-area deployments, but attempts to place as much
computation as possible at the edge, which our experiments
have shown is not always an appropriate policy.

E. What quality level

The OVIS(θ) algorithm [28] trades off between perfor-
mance and freshness in selecting which dynamic web content
to materialize and cache. This extends the previous literature
on the view selection problem by beginning to incorporate
quality of results as an important objective. More recently,
systems such as BlinkDB [6] and JetStream [5] have provided
mechanisms to trade off between accuracy and response time,
and between accuracy and bandwidth utilization, respectively.
We aim to build on these contributions by exploring additional

tradeoffs such as that between staleness and traffic as we have
described in this paper. Keeton et al. [29] provide a concise
discussion of several important research challenges in the area
of information quality.

IV. CONCLUSION

In this paper, we examined the problem of optimizing
modern analytics services that process large quantities of geo-
distributed data. We presented empirical results with grouped,
windowed aggregation on PlanetLab using Akamai log data,
and highlighted the complexity of tradeoffs that we show are
driven by several factors such as query, data, and resource
characteristics. Further, we see that neither a purely centralized
nor a purely decentralized approach to computation is optimal
in general. The insights gained from our results suggest several
interesting research directions. One area of interest is the
automatic placement of data and computation based on an
understanding of query, data, and resource characteristics.
Another area of interest is to identify the right set of compute
operators to place at the edge vs. at the center. While operators
such as filtering are obvious candidates for edge placement,
we have shown that aggregation at the edge is not always
beneficial. Further, these operators need to be combined with
approximation techniques such as sampling and sketching to
achieve desired cost-quality tradeoffs. Finally, the issue of
efficiently supporting multiple concurrent queries is important,
given the potential conflicts as well as sharing opportunities.
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