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Abstract—Today, many organizations need to operate on data
that is distributed around the globe. This is inevitable due to the
nature of data that is generated in different locations such as video
feeds from distributed cameras, log files from distributed servers,
and many others. Although centralized cloud platforms have
been widely used for data-intensive applications, such systems
are not suitable for processing geo-distributed data due to high
data transfer overheads. An alternative approach is to use an
Edge Cloud which reduces the network cost of transferring
data by distributing its computations globally. While the Edge
Cloud is attractive for geo-distributed data-intensive applications,
extending existing cluster computing frameworks to a wide-area
environment must account for locality. We propose Awan: a
new locality-aware resource manager for geo-distributed data-
intensive applications. Awan allows resource sharing between
multiple computing frameworks while enabling high locality
scheduling within each framework. Our experiments with the
Nebula Edge Cloud on PlanetLab show that Awan achieves up to
a 28% increase in locality scheduling which reduces the average
job turnaround time by approximately 20% compared to existing
cluster management mechanisms.
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I. INTRODUCTION

Today, many organizations deploy their applications and
services around the globe for different organizational purposes
and also rely on data generated in a geo-distributed manner. For
example, a Content Delivery Network (CDN) has a number of
servers distributed globally to deliver content to the end-clients
with a low latency, and in turn collects user and performance
logs at these locations. Such data collection can lead to many
data analytic problems, such as client-activity log analysis,
finding anomalies or interesting patterns in videos or images,
and finding errors or security threats in servers. Similar geo-
distributed data analysis is required for many applications in
other domains such as social networking, scientific computing,
and e-commerce.

Although centralized cloud platforms such as Amazon
AWS [1] and Microsoft Azure [2] are popular platforms for
data analytics, these centralized systems are not well suited
for processing geo-distributed data. Using a centralized cloud
platform for such applications requires data to be sent into a
centralized location which will incur high network cost. Thus
reducing data transfer cost in a wide area system is essential
to the overall system performance. Due to the limitations of
the centralized cloud architecture, an alternative approach is

to use an Edge Cloud [3] [4] that provides compute nodes
closer to the edge and data sources. Such Edge Clouds can
effectively exploit data locality to improve the performance of
data analytics in geo-distributed environments. Compute nodes
can be deployed closer to the location of the data, and can
reduce the amount of data to be transferred over the network
by pre-processing it in-situ.

Such Edge Cloud environments will need to support a wide
variety of computing frameworks, similar to current cluster en-
vironments. Data-intensive applications are diverse in terms of
their characteristics and requirements which require different
programming models to process the data efficiently. This has
led to the emergence of a number of distributed computing
frameworks such as Hadoop [5], Dryad [6], Pregel [7], and
others [8], [9]. Although these computing frameworks were
originally designed for processing applications in a cluster
environment, researchers have also looked at adapting and
optimizing them in a geo-distributed environment [10]–[12].
We believe that the growth of geo-distributed data and ap-
plications that operate on widely distributed data will trigger
more computing frameworks to be developed or adapted for a
geo-distributed system.

Sharing resources across multiple application frameworks
is highly desirable because users may want to run different
kinds of applications concurrently. Resource sharing provides
hardware cost benefits to users and also enables data consolida-
tion which reduces the cost of replicating data across different
locations. Resource sharing across multiple frameworks has
been studied in a centralized cluster environment, and different
resource management mechanisms have been proposed to
dynamically partition resources [13]–[15]. Unfortunately, these
existing cluster management mechanisms do not scale well
to an environment where the nodes are widely distributed,
especially for data-intensive applications. In particular, these
mechanisms lack the support for locality that is critical to
achieving good performance in geo-distributed settings.

In this paper we introduce Awan1, a new resource manager
to share resources across multiple application frameworks in an
Edge Cloud environment. The main goal of Awan is to provide
a general resource management mechanism that enables each
framework’s jobs to be scheduled with high locality, which
is crucial in a geo-distributed environment. Awan achieves
this goal by implementing a resource lease abstraction to
allocate resources to individual Framework Schedulers. This

1Awan is an Indonesian word meaning “Cloud”.



Fig. 1: Edge Cloud

lease provides a guarantee on the duration for which the re-
source will be held by the scheduler. Awan provides this lease
information to other Framework Schedulers, thus enabling
them to make better scheduling decisions by considering the
future availability of desirable local resources. In addition, we
also propose a locality-based priority scheduling algorithm for
intra-framework scheduling of jobs.

Our experiments with the Nebula Edge Cloud [3] on Plan-
etLab [16] show that Awan outperforms the existing cluster
management systems for data-intensive applications in a geo-
distributed environment by increasing the locality scheduling
that can be achieved by up to 28%. This locality improvement
results in a better performance by reducing the average task
and job turnaround time by approximately 20%. The use of the
locality-based priority scheduling algorithm further improves
the locality which results in a decrease in the average job
turnaround time by an additional 14%.

II. PROBLEM CONTEXT

We first introduce the system environment and the ap-
plication model, and define some general terms that we use
throughout this paper.

A. System Model

In this paper, we consider an Edge Cloud environment
(see Figure 1): it consists of storage and compute nodes that
are geographically distributed around the globe. The nodes in
this environment are on the edge of the network, and hence
interconnected via a wide-area network. Both the storage and
compute nodes are shared by multiple applications and users.
A node in our environment may perform as a compute node,
storage node or both, and multiple nodes may be physically
running on the same machine. Throughout this paper, we will
consider a task to be the smallest granularity of application
scheduling and a compute node as the smallest granularity of
a resource that can be assigned to a computational task.

We assume that the Edge Cloud consists of following
resource management components that are typical of many
cloud environments:

File Master: All files that are stored in the system are
managed by a File Master. The File Master is responsible for
1) maintaining file metadata, 2) handling file replication, and
3) determining which storage nodes are responsible for storing
a specific file and its replicas. We will use the term file and
data interchangeably throughout this paper.

Node Monitor: The health of each node needs to be
monitored periodically to handle failures. We refer to part
of the system that performs a health-monitoring service as
a Node Monitor. The Node Monitor is also responsible for
monitoring the network bandwidth (up-link and down-link) be-
tween nodes. This bandwidth information is used to define the
locality between nodes which will be used by the File Master
for data placement decisions and the Framework Schedulers to
schedule tasks locally. A compute node is considered local to
a storage node if they share the same machine or the network
bandwidth between them is higher than a predetermined value.

Framework Scheduler: A Framework Scheduler2 imple-
ments task scheduling logic for a specific computing frame-
work (such as Hadoop or MPI), and maintains the statistics
of each task execution. As an example, for a data-intensive
application executing on widely-distributed data, the Frame-
work Scheduler would attempt to schedule its tasks with high
locality because network bandwidth can be a dominant factor
in the running time. Locality can be achieved by scheduling a
task on a compute node that is closest3 to the data location.
We refer to this scheduling technique as locality scheduling.

Resource Manager: Since multiple users may want to run
a variety of applications belonging to different frameworks,
the system should allow its resources to be shared by multiple
Framework Schedulers. The Resource Manager is used to pro-
vide a resource sharing service among Framework Schedulers.
The Resource Manager periodically communicates with the
Node Monitor to get information about online and offline
nodes, and is also responsible for keeping track of the status
of online nodes (e.g., available or busy, i.e., executing a task).
Note that a system may not have a Resource Manager, in
which case each Framework Scheduler will be able to allocate
any resources directly. Such systems, however, introduce new
challenges in coordinating the resource sharing policies across
multiple Framework Schedulers.

B. Application Model

Our focus in this paper is on data-intensive applications
where data locality is critical to achieving reduced running
time. The applications in our environment operate on multiple
data-sets that are geographically distributed and one or more
frameworks may access the same data-sets. The application
that is submitted by a user needs to specify which computing
framework and which input data-sets are going to be used.
For example, a user may submit a Word Count application to
run on log files located on multiple servers that are distributed
across the world using a Hadoop [5] framework to find the
number of errors that have occurred in a specific time period.

An application A may consist of one or more jobs: A =
{J0, ..., Jn�1} and a job Ji can be further broken down into
multiple tasks: Ji = {Ti,0, ..., Ti,n�1} where n > 0 and i � 0.
Typically, a job is broken down into tasks based on the number
of input files used by the job. Each Framework Scheduler will
select a job from its queue based on a job’s priority and it
schedules the tasks on a per-job basis. A task is the smallest

2Throughout this paper, we will use the term scheduler and Framework
Scheduler interchangeably.

3Closeness is measured in term of the network bandwidth between two
nodes, unless explicitly specified as a geographic distance.



granularity that is assigned to a compute node by a Framework
Scheduler to run in parallel. It implements the programming
logic to be executed on an input file and its inter-dependencies
if any with other tasks. When a node receives the request, the
node will download the file, process it, and store the result to
one or more storage nodes. For example, a MapReduce [17]
application consists of a Map and a Reduce job, the inputs
of each Reduce task depend on the results of the Map tasks.
Thus a Reduce task can only be run once the Map tasks that
produce the inputs for the Reduce task are completed.

III. AWAN: A SHARED RESOURCE MANAGER

Several resource management mechanisms have been pro-
posed for sharing resources among multiple Framework Sched-
ulers in cluster environments [13]–[15]. However, a key
challenge in an Edge Cloud environment is the wide-area
setting, and the critical need for locality in scheduling data-
intensive applications. We first begin by identifying some
of the limitations of existing cluster resource management
mechanisms in an Edge Cloud setting, and then present Awan:
a resource manager that we have designed specifically for this
environment.

A. Limitations of Existing Cluster Resource Managers

At one extreme, one possible approach for sharing re-
sources across multiple frameworks is to use a Monolithic
Scheduler: a global scheduler that performs task allocation for
every framework. Such a scheduler would implement a general
scheduling logic that can be used by a variety of frameworks.
Although a Monolithic Scheduler simplifies resource sharing,
the scheduler is difficult to extend with new framework-specific
policies and optimizations. Hence, it is difficult to support a
wide variety of application frameworks or extend its support
to new frameworks easily.

In order to have an optimized task allocation policy for each
framework, researchers have implemented multiple Framework
Schedulers, each of which is optimized for a specific comput-
ing framework. However, sharing limited resources across mul-
tiple Framework Schedulers introduces new challenges such as
resource partitioning, concurrency control issues, prioritizing
certain jobs on different frameworks, and so on. One approach
for sharing resources would be to statically partition the
resources in advance and give each scheduler a predetermined
subset of resources. A static partitioning approach, however,
leads to external fragmentation and low resource utilization.
Setting the size of each partition may also be difficult if the
workload for each framework is dynamically changing over
time. Moreover, a static partitioning approach is not suitable
for a geo-distributed system because static partitioning would
limit the locality scheduling for each Framework Scheduler.

Dynamic resource partitioning solves the external fragmen-
tation problem by enabling the size of each partition to change
dynamically depending on the workload. A two-level archi-
tecture consists of a single Resource Manager that provides
an abstraction layer between the resources and the Framework
Schedulers. Each Framework Scheduler is independent of each
other and it interfaces with the Resource Manager in order
to acquire resources. Mesos [13] is a resource management
system that uses a two-level architecture. In Mesos, all Frame-
work Schedulers acquire resources from the Resource Manager

using a resource offer mechanism. In this model, a Framework
Scheduler would request available resources from the Resource
Manager when there is a job that needs to be scheduled.
When receiving this request from the scheduler, the Resource
Manager would offer the available resources that satisfy the
constraints as closely as possible. The Framework Scheduler
may either accept or reject the offer if the offered resources
do not adequately satisfy the requirements.

The resource offer mechanism uses a pessimistic concur-
rency control, meaning that the resources that are currently
offered to one Framework Scheduler will not be offered to
another Framework Scheduler at the same time. This ensures
no conflict between schedulers in allocating resources. The
drawback of a pessimistic approach is that only one scheduler
can acquire a particular set of resources at a time. Thus, the
remaining schedulers may not be able to allocate desirable
local resources if they are already busy, or may have to
wait indefinitely for the Resource Manager to offer these
resources to them. An alternative would have the Resource
Manager perform global resource allocation for all requests
it receives from the Framework Schedulers, similar to the
approach used in YARN [14]. This, however, makes the two-
level architecture effectively monolithic since the resource
allocation is determined by a single global resource allocator.

A shared-state architecture that was introduced in Google
Omega [15] has no Resource Manager, thus each Framework
Scheduler has direct access to execute any tasks on any of
the available resources. In this architecture, the state of all
resources are shared by all the schedulers that can schedule
their tasks in parallel using an optimistic concurrency control.
This mechanism gives all of the schedulers knowledge about
all online resources and their states (available or busy). This
knowledge, however, is only used to avoid a scheduler trying
to acquire busy resources. While a shared-state architecture
is useful in a cooperative environment, using it in an Edge
Cloud with limited resources may lead to problems of fairness
and starvation since different applications or frameworks may
be competitive and/or try to hoard resources. Further, since
a shared-state architecture does not have a coordinator in
managing the resources given to the schedulers, implementing
global policies may be difficult. Every time a global policy is
added, it may require changes in every Framework Scheduler
to account for the new policy.

B. Awan Resource Manager

To address the limitations of the existing cluster resource
managers in a geo-distributed Edge Cloud environment, we
propose a new resource manager called Awan. The goal of
Awan is to provide a scalable resource sharing mechanism in
a geo-distributed system with high locality scheduling which
is needed for data-intensive applications. Awan combines the
desirable features of a two-level architecture with those of
a shared-state architecture, while providing explicit support
for locality-aware scheduling. Figure 2 shows the two-level
architecture of Awan. Each of the Framework Schedulers is
independent of each other. We incorporate the shared-state
mechanism by sharing the states of all the resources to every
Framework Scheduler. In our system, however, the states of
the resources are shared by the Resource Manager and not
directly by the Framework Schedulers.



Fig. 2: Awan’s Two-level Architecture

The Resource Manager in Awan provides the states of
all resources instead of only the available resources to ev-
ery scheduler. A Framework Scheduler acquires available
resources using a resource lease mechanism. Every scheduler
is able to schedule and acquire resources using an optimistic
concurrency control as in Omega. However, they acquire
resources through the Resource Manager instead of directly
acquire the resources. To handle conflicting resources, the
resource will be acquired in an atomic manner. Any global
policies that need to be obeyed by the schedulers are enforced
by the Resource Manager. For example, to implement fair-
sharing between Framework Schedulers, the Resource Man-
ager may limit the number of resources that can be acquired
by a Framework Scheduler based on the number of active
frameworks. So, if a Framework Scheduler tries to acquire
resources and the number of resources exceeds the limit, the
lease will be rejected.

C. Resource Lease

In a geographically distributed environment, the resource
offer mechanism that is used by Mesos suffers from the
potential lack of locality in task scheduling. The main reason
is due to the limited knowledge of resource availability that is
provided by the Resource Manager, since a resource offer only
offers currently available resources. At a glance, offering only
the available resources seems reasonable because tasks can
only be scheduled on available resources. A busy resource,
however, may actually provide better data locality for a task
than a currently available resource when it becomes available
in the future. Mesos handles this issue by incorporating a
delay scheduling for short running tasks [18] which makes
a scheduler delay scheduling a task if the task cannot be run
locally. However, delay scheduling without any knowledge of
the future availability of the resources, esp. if most of the tasks
are long-running, may worsen the performance by introducing
unnecessary waiting time. Instead, it would be desirable for
a scheduler to wait (or not) on busy resources depending on
the expected waiting time: if the wait time is too long, the
scheduler may prefer to schedule its tasks non-locally. Thus,
sharing the future availability information of busy resources to
a scheduler can help the scheduler make a better scheduling
decision.

A lease in the resource lease mechanism has a lease time
associated with it which provides a guarantee that the resource
will be held by the scheduler no longer than the lease time
(with a possibility of some grace period). After the lease

time expiry, the Resource Manager will make the resource
available to the other schedulers. The sharing of this lease time
information enables schedulers to estimate their waiting time
for desired busy resources, leading to improved scheduling
decisions.

When a Framework Scheduler tries to acquire some avail-
able resources R0, R1, . . . , Rn�1, the scheduler sends a lease
request < L0, L1, . . . , Ln�1 > on each of the resources to
the Resource Manager. Here, Li is the lease time on resource
Ri. If the Resource Manager agrees on the request and the
resources are available, the resources will be granted to the
scheduler and the state of each of the resources will be moved
to a busy state. The request may also contain an atomic request
flag specifying all resources must be acquired atomically. If
the atomic request flag is set to false, the leases on available
resources will be granted and the scheduler will be notified if
any of the leases failed. If the flag is set to true, the request
will be granted if and only if all the leases can be satisfied.
This may happen because of the optimistic concurrency control
used in our resource management mechanism, where multiple
schedulers may try to acquire overlapping sets of available
resources at the same time. We provide such an atomic re-
quest option because some computing frameworks (e.g., MPI)
require all resources to be available to start the execution, while
others (e.g., MapReduce) can start a job partially and add more
resources later.

The Resource Manager maintains all the leases from
Framework Schedulers. This lease information is shared to
every scheduler whenever the states of the resources change.
Since each lease contains information about the future avail-
ability of a resource, a scheduler may decide whether to
schedule its tasks on the available resources or wait for the
busy resources. If a scheduler decides to wait on one or more
resources, the scheduler should be able to dynamically change
its scheduling decision over time. This is useful for a few
reasons. First, the network performance between two nodes is
constantly changing over time, especially in a system that is
connected with a wide-area network. Thus a scheduler may
change its scheduling decision if the network performance
drastically changes. This usually happens on the node that
does not provide data locality. Second, failure is common in
a distributed system, thus a scheduler should be able to adapt
its scheduling decision if the resource it wants, and is waiting
for, has failed. Third, the lease estimation that is provided by
other schedulers may not be perfectly accurate (in practice
it is unlikely to have a 100% prediction accuracy). If the
resource becomes available sooner than the estimated time,
the scheduler will be able to acquire the node right away.
We will analyze the problem of lease estimation in the next
section. Lastly, in an optimistic concurrency control, multiple
schedulers may wait for the same resource. Since only one
scheduler is able to acquire the resource, the other schedulers
should be able to reschedule the task on a different resource. In
the latter problem, a waiting list can be added to each resource
and this information can also be shared to every scheduler.

In addition, we use a two-level architecture instead of the
single-level shared-state architecture to allow global policies
to be applied to every scheduler easily. These policies will be
enforced by the Resource Manager. Some policy examples that
are incorporated in our implementation are: 1) the capability of



rejecting a lease request that takes too long and 2) terminating
a process that takes longer than the time specified in the lease.
If fairness between frameworks or users is the main priority,
fair sharing may be applied by limiting the number of resources
that can be leased using max-min fair sharing.

D. Lease Estimation and Enforcement

When a scheduler tries to select a node for a task, it needs
to estimate the time needed to complete the task on the node.
The main challenge is to have a highly accurate estimation for
the lease. The lease time in our implementation is estimated by
combining the network cost and the statistical history of similar
tasks’ running time. Since the network bandwidth between
nodes is periodically monitored by the Node Monitor and
this information is shared to all Framework Schedulers, a
scheduler can use this information to estimate the network cost
of transferring data between storage and compute nodes. Per-
node compute performance is maintained by each Framework
Scheduler based on the performance history of similar tasks.
Combining these two pieces of information, a scheduler can
estimate the time a node may take to complete the task.

Having perfect accuracy on the lease time estimation is
not possible for many reasons. A wide area network that is
shared publicly causes fluctuations in network bandwidth, and
networking problems such as packet loss may also influence
the data transfer time. Furthermore, workload sharing on the
node may also change the computing time. Thus, a small
slack factor, �, is added to the estimation to avoid an overly
optimistic prediction. In general, the lease time of a compute
node, La, is estimated as follow:

La =
datasize

Bb,a
+ C̄k + � (1)

La is the estimated time needed to complete a task using
a compute node a. Bb,a is the current bandwidth that can be
utilized between a storage node b and a compute node a. This
bandwidth information is periodically updated and monitored
by the system. C̄k is the average compute time of the newest
k

th records for processing similar tasks using a compute node
a. The maximum number of records, k, is used to avoid
including obsolete records into the calculation. For simplicity,
we consider the size of a file that is processed by a task for a
framework to be the same. Thus, a large file will be partitioned
into multiple files. The similarity of the task can be categorized
based on the computing framework, the application of the task,
and the data size. However, since we limit the maximum data
size of a task (bigger data size will result in multiple tasks) and
the task is not compute-intensive, we can consider the task to
have running time similar to its historic value. If there are no
similar tasks in the history of the compute node a, the C̄k will
be estimated from the performance of running a similar task on
a different node. If none of the nodes have ever computed the
task, the scheduler will lease the node for a predefined amount
of time. This might cause a large inaccuracy in running a task
for the first time.

Both underestimation and overestimation of lease time can
lead to problems. If the lease time is underestimated, meaning
that the time needed to complete a task is longer than the
lease time, the task would not be completed before the lease

expiration time. If the Resource Manager kills the task running
on the expired node, this will result in wasted resources and
increase the turnaround time for the task’s parent job. The
overall system utilization and performance will deteriorate
significantly with a high number of lease underestimations. On
the other hand, if the lease time for a node is overestimated,
fewer schedulers may wait for this node to become available,
and may instead schedule their tasks on less desirable non-
local nodes. With a high number of lease overestimations, most
schedulers will ignore the busy nodes and schedule their tasks
on the available nodes, effectively reducing to a resource offer-
based mechanism. This might result in non-local execution of
tasks, thus decreasing the overall system performance.

The Resource Manager can also use different policies to
handle expired leases. The simplest approach is to terminate
the running task upon lease expiry and set the node to be
available to other schedulers. However, terminating a process
that has not finished on an expired lease requires the task to
be rescheduled on a different node, and will result in wasted
resources if the task is almost finished. A better approach is to
give some grace period for the node to clean up or finish. If
the task is a long-running task and the progress of the process
is far from completion, the state of the task could be saved
and any temporary results should be stored to a storage node
such that the task can be continued by another node instead
of restarting the whole task. The Resource Manager should
carefully determine what is the appropriate grace period. If the
grace period is too low, it is likely to result in large number
of terminated tasks. On the other hand, if the grace period is
too high, it may lead to much higher waiting times for other
schedulers waiting for the node to become available.

IV. LOCALITY-BASED PRIORITY SCHEDULING

Our discussion so far has focused on how to maintain high
locality while sharing resources between multiple frameworks.
In this section, we further look at how to improve locality in
scheduling multiple jobs for a specific framework. When a
scheduler tries to schedule a job, the scheduler may skip the
job at the head of the queue if its tasks cannot be scheduled
locally on the available resources. The scheduler will instead
try to schedule the next job on the queue and so on. However,
introducing delays in scheduling long running tasks only works
if a scheduler has a complete knowledge of the availability
of all resources. If a scheduler is only aware of the resources
that are available, delaying tasks may incur unnecessary delays
since there might not be any local nodes that are online. In
our resource management mechanism, the waiting time for the
nodes can be obtained from the lease information that is shared
by the Resource Manager. If the waiting time is too long, the
scheduler should be able to schedule the task to a different
resource right away. To avoid starvation, the scheduler can
limit the number of times a job is skipped. Once the number
of skips reaches a specific predetermined threshold, the job will
be scheduled even if its tasks cannot be scheduled locally.

We introduce a minimum locality level that has to be
achieved by each scheduler in scheduling a job. The locality
level of a job is defined as the fraction of tasks that the
scheduler tries to schedule locally. The locality level Loc is



computed as follow:

Loc =

P
t✏T

⇢
1 if B � Bmin

0 otherwise

|T | (2)

where t is a task from a set of tasks, T , that are going to
be scheduled, |T | is the cardinality of T , B is the bandwidth
used for running t and Bmin is the minimum bandwidth that
determines the locality. A job can only be scheduled if Loc �
Locmin, where Locmin is the minimum locality that is set
by the scheduler. A minimum locality level of 0 means that
the job will be scheduled regardless of the number of tasks
that can be scheduled locally. On the other hand, a minimum
locality level of 1 means that a job can be scheduled only if
all of the tasks can be scheduled locally.

In practice, a minimum locality level of 0 might result in
locality scheduling for a low-intensity workload since each
scheduler tries to schedule its tasks locally and can find such
resources available. However, setting a minimum locality level
to some value i, where 0 < i  1, may increase the number
of tasks that can be scheduled locally since it prioritizes jobs
that have higher locality. An overly high minimum locality
level may lead to a high waiting time due to the restriction
on scheduling. The maximum number of skips should also be
set carefully since a higher number of skips means a higher
waiting time. In summary, the minimum locality level should
be adjusted to the scheduler’s workload and the average num-
ber of tasks that can be scheduled locally from the statistical
history.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

For our experiments, we used the Nebula Edge Cloud [3].
Nebula is a geo-distributed system which utilizes volunteer
nodes for both its computation and storage nodes. The original
version of Nebula has a monolithic scheduler. We modified the
scheduler in Nebula to the two-level Awan Resource Manager
that shares the resources using a leasing mechanism. Awan,
however, could be expanded into any Edge Cloud that provides
the system model in section II.

Since the focus of this paper is on exploring the impact
of wide-area distribution on application performance, we did
not focus on handling the unreliability of volunteer nodes in
Nebula. When there was a straggler or a node was down
during task execution, the scheduler would be notified and it
simply rescheduled the task to another node. To protect and
isolate the compute nodes from malicious codes as part of
the applications, Nebula uses a Google Chrome Web browser-
based Native Client (NaCl) sandbox [19]. Any code execution
is carried out inside the sandbox to ensure the safety of the
nodes.

We deployed Nebula on PlanetLab [16] Europe (PLE)
nodes located across more than 15 countries for both the
compute and storage nodes. We used 40 compute nodes and
32 storage nodes for most of the experiments. The nodes in
PlanetLab are heterogeneous in both their computation power
and bandwidth (varying from less than 1Mbps to more than
10Mbps). In our experiment, we considered a node to be a

local node if it provided a bandwidth connection higher than
8Mbps. Most of the storage nodes that we deployed had at least
one local compute node, but not all. The centralized services
such as Node Monitor, File Master, Resource Manager, and
Framework Schedulers were hosted on a dedicated machine
with an Intel Xeon CPU E5-2609 and 16GB of memory.

To emulate the resource sharing among multiple Frame-
work Schedulers, we implemented a MapReduce (MR) sched-
uler, a First-Come-First-Serve (FCFS) scheduler, and a Ran-
dom scheduler. Both MR and FCFS would schedule their
tasks locally as far as possible whereas the Random scheduler
always selected nodes randomly. The MR scheduler would
consider delay scheduling its tasks if waiting for a local node
was a better option. The FCFS scheduler, on the other hand,
did not consider waiting for local nodes. So, if a local node
was not available, the FCFS scheduler would assign the task
to a randomly selected node. In our experiments, we omitted
the results from the Random scheduler since the scheduler did
not utilize any information proposed in our mechanisms.

In our experiments, all of the schedulers would schedule
a set of homogeneous MapReduce Word Count jobs with
different data-sets (varied from 256MB to 512MB per job).
We also assumed that the data had already been distributed
randomly across the storage nodes as 16MB chunks. Thus,
each task in every job would run on a maximum of 16MB data.
In every experiment, we only show the result for the Map jobs
which: download the data, process the data, and store the result
back to one or more storage nodes, because locality for Reduce
jobs requires different optimization during the shuffle phase,
which is not the focus in this paper. We ran a background
process that randomly posted a job from 12 homogeneous jobs
(each operates on a different data-set) using a Poisson Process
with different inter-arrival rates. We used a job inter-arrival
rate of 100 seconds in a ”Low Workload” and 50 seconds in
a ”High Workload” which resulted in 1 to 2 concurrent jobs
and 2 to 4 concurrent jobs respectively. On average, a task
could be completed in about 40 to 60 seconds if it was run on
a local node and could take more than 100 seconds if it was
run on a non-local node. In our leasing mechanism, we gave a
20 second grace period to every lease upon expiration (unless
explicitly specified).

B. Benefit of Awan Resource Manager

1) Resource Management Comparison: To compare the
Awan Resource Manager to other existing resource manage-
ment mechanisms, we implemented mechanisms similar to
those used in the resource offer and the shared-state mecha-
nisms within the Nebula infrastructure. The Resource Manager
in the resource offer mechanism offered all available resources
(omitting any busy nodes) whenever a scheduler requested
compute resources. The scheduler then decided either to select
a subset of the offered resources or to reject them. On the other
hand, every scheduler in the shared-state mechanism had a
visibility to all of the online resources, including those that
were busy. However, the shared information only indicated
whether a node was busy or available, and did not have any
lease time information.

In this experiment, we used 8 homogeneous MapReduce
Word Count jobs where each of them operated on a 256MB
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Fig. 3: Comparison of different resource management mechanisms
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Fig. 4: Locality achieved with different numbers of compute
nodes

data-set. We compared the result in a ”Low Workload” and
”High Workload” with 5 iterations. Figure 3a and 3b show
the comparison on the average task turnaround time and job
turnaround time respectively. In the ”Low Workload”, all of
the resource management mechanisms performed similarly be-
cause most of the jobs could be scheduled locally. However, the
performance differences can be seen in the ”High Workload”.
In the ”High Workload”, our resource management mechanism
resulted in 17% reduction in average task and job turnaround
time. These improvements resulted from the higher locality
that was achieved, as can be seen in Figure 3c. The main
reason for the higher locality was because of the knowledge
of the availability time for each node that was shared to all
schedulers via lease information. Thus, the scheduler in our
resource management mechanism would wait for local nodes
to achieve locality scheduling.

The schedulers in the resource offer mechanism did not
know about the existence of the busy nodes because the
Resource Manager offered only the available nodes. In this
case, a scheduler would only try to schedule its tasks locally
on a subset of the nodes that had been offered. This led
to a lower locality scheduling that could be achieved. The
states that were shared in the shared state mechanism only
provided information whether a node was available or busy.
This information was only used by the scheduler to avoid
scheduling tasks on a busy node. Waiting for busy nodes
that can be used for locality scheduling in a shared-state
architecture is not appropriate since a scheduler does not know
the availability time for the node. Thus, a scheduler in this
architecture would only try to schedule its tasks locally on
the nodes that were available, which is similar to the resource
offer mechanism.

2) Scalability: We also explored the locality that can be
achieved with a growing number of nodes using our lease
mechanism. In this experiment, we changed each job to run on
32 tasks instead of 16 tasks with a total data size of 512MB.
We increased the number of storage nodes to 60 and varied
the number of compute nodes from 30 to 60. The jobs were
posted using a Poisson Process with 8 jobs and an inter-arrival
rate of 60 seconds.

Figure 4 shows the locality that was achieved vs. the
maximum locality that could be achieved over different num-
ber of compute nodes. The maximum locality that could be
achieved was low when the number of compute nodes was
low because the data was randomly distributed throughout a
much higher number of storage nodes. However, the locality
that was achieved was close to the maximum locality that
could be achieved (about 5% difference on average) for each
configuration of compute nodes. Thus, the schedulers could
schedule their tasks achieving close to the best possible locality
regardless of the number of compute nodes.

C. Lease Estimation and Enforcement

1) Lease Estimation: Since our resource management de-
pends critically on the lease estimation that is provided by
each Framework Scheduler, the estimation should reflect the
actual time needed to complete a task. Achieving a perfect
lease time accuracy may not be possible due to the dynamic
nature of a wide area network and a machine’s workload.
However, having a close estimation is possible by exploiting
knowledge of the task’s running time from its statistical history
and the monitored network performance between nodes. In this
experiment, we deployed 8 MapReduce jobs, each of which
ran on 256MB data-sets. The jobs were posted using a Poisson
Process with a rate of 100 seconds.

Figure 5a and 5b show the accuracy and the CDF of the
lease estimation in our system respectively. The accuracy is
defined as:

accuracy = 1� |runtime� prediction|
runtime

(3)

On average, the lease estimation we used results in about 82%
accuracy. There were some points in Figure 5a where the
accuracy dropped below 80%. The main reason was because
of new jobs that were posted or stragglers that appeared during
the experiments. The latter can be explained in Figure 5b.
If there were tasks whose information was not available, a
scheduler would estimate the task’s running time using a



(a) Lease estimation accuracy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-60 -50 -40 -30 -20 -10  0  10  20  30  40  50  60

C
D

F

Deviation (second)

(b) Lease estimation deviation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

Under-estimated Estimated Over-estimatedA
ve

ra
g

e
 T

a
sk

 T
u

rn
a

ro
u

n
d

 T
im

e
 (

se
co

n
d

s)

Waiting Time
Running Time

(c) Impact of misestimation on average task
turnaround time

Fig. 5: Lease estimation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Low High

A
ve

ra
ge

 T
as

k 
Tu

rn
ar

ou
nd

 T
im

e 
(s

ec
on

ds
)

Workload

GP: 0s
GP: 20s

GP: 100s

(a) Task turnaround time

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Low High

A
ve

ra
ge

 J
ob

 T
ur

na
ro

un
d 

Ti
m

e 
(s

ec
on

ds
)

Workload

GP: 0s
GP: 20s

GP: 100s

(b) Job turnaround time

 0

 5

 10

 15

 20

 25

Low High

A
ve

ra
ge

 N
um

be
r o

f K
ill

ed
 T

as
ks

/J
ob

 (%
)

Workload

GP: 0s
GP: 20s

GP: 100s

(c) Number of killed tasks per job

Fig. 6: Impact of different grace periods

predefined conservative value (100 seconds lease time was
used in the experiment). Thus the lease estimation time resulted
in low accuracy whenever new jobs arrived. When similar
jobs were posted later on, the scheduler could predict the task
running time better from its statistical records. However, the
accuracy still fluctuated over time even if similar jobs were
posted due to a slight inconsistency in the network bandwidth.
We can also see there were some stragglers that appeared in a
deviation greater than 50 seconds which causes the reduction
in prediction accuracy.

We also looked at the impact of lease time misestimation
on performance. We observed the problems of overestimation
and underestimation on the lease estimation by varying the
� value in the lease estimation equation (Equation 1). The �

value was set to -30 seconds for the underestimated and +100
seconds for the overestimated cases, respectively. We ran the
experiments with 10 iterations each of which used a Poisson
Process with a rate of 50 seconds. In this experiment, we gave
an expired lease a very long grace period to prevent the vast
majority of tasks from being killed (except for the occasional
straggler). Figure 5c shows the effect of misestimation on
the average task turnaround time. The underestimated result
shows the highest average waiting time or delay (about 12
seconds), whereas the overestimated time resulted in less than
1 second average task waiting time. Most of the jobs in the
underestimated results were delayed by the schedulers because
the schedulers preferred to wait for local nodes with short
waiting time. However, the information that was shared by the
Resource Manager to the schedulers was not accurate, thus
most of the delays were unnecessary. On the other hand, a
highly overestimated lease time resulted in a very low average

task waiting time. Since every scheduler leased nodes with a
highly overestimated time, other schedulers rarely waited for
local nodes and decided to schedule their tasks non-locally.
This was the main reason for the increase in the running
time. Thus, having an accurate estimation for the lease time is
desirable, since a misestimation can increase the average task
running time by up to 20%.

2) Handling Expired Leases: We compared 3 different
techniques to handle expired leases. The first one was to
immediately terminate the process running on expired node
(no grace period was given). The second one was to give a
small grace period (20 seconds was used in the experiment)
to an expired lease. The schedulers that had been waiting for
the node were notified and guaranteed that the node would
be available within the grace period. If the task could not be
completed even after the grace period ended, the task would
be killed. The last one was to give a very high grace period
(100 seconds) to the expired lease. We ran the experiments
with 10 iterations using a Poisson Process for each workload.

Figure 6 compares the system’s performance with different
grace periods. The figure shows that a strict lease with no
grace periods resulted in the worst performance for both the
average tasks and job turnaround time. The main reason to
the low performance was due to the high number of tasks that
were killed, as shown in Figure 6c. As mentioned previously,
having a perfect estimation is not possible and there were a
few tasks that took slightly longer than the estimated time.
In a strict lease, these tasks were restarted even if they
only had a few seconds left. Figure 6c shows that when a
small grace period was given, the number of tasks that were
killed reduced significantly. This resulted in a much better
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Fig. 7: Comparison of different minimum locality levels

system performance compared to the strict lease (15% and
about 28% improvements on average job turnaround time in
a ”Low Workload” and ”High Workload” respectively). A
lease with too high a grace period, however, results in worse
performance compared to the 20 seconds grace period although
the number of tasks that were killed was much lower. The
tasks that were killed in the 100 seconds grace period were
basically stragglers. In a ”High Workload”, there were multiple
schedulers that waited for nodes for locality scheduling. Giving
a very high grace period to an expired lease made most of
the schedulers give up waiting on the nodes and to schedule
the tasks non-locally, thus leading to a slight increase in the
average job turnaround time by 8%. However, the difference
is not significant since most of the tasks in our experiments
completed before the lease expired.

D. Locality-based Priority Scheduling

In this experiment, we evaluated the benefit of prioritizing
higher locality jobs using a minimum locality level. This
technique is used to reduce the number of tasks that are
scheduled on non-local nodes, which may prevent locality
scheduling for the other tasks. A job that could not achieve
the minimum locality level constraint will be skipped for no
more than a predefined amount of time, set to 10 seconds. In
this experiment, we varied the minimum locality level from 0
to 1. The locality level 0 means that a job can be scheduled
regardless of the number of local tasks that it tries to schedule.
On the other hand, if the minimum locality level is set to 1, a
job can only be scheduled if all of the tasks are scheduled to
run locally.

In this experiment, the resources were shared among the
schedulers using the resource-lease mechanism. We only show
the results for a ”High Workload” because for a ”Low Work-
load” the schedulers would already schedule their tasks with
high locality. The jobs were posted using a Poisson Process
with a rate of 50 seconds and we posted 2 jobs at a time instead
of 1 job to allow multiple jobs to reside in the job queue.

Figure 7a shows the average job turnaround time for
different minimum locality levels. As we can see from the
figure, the average job turnaround time decreased by 15%
when the minimum locality level increased from 0 to 0.5.
However, the average job turnaround time increased when the
minimum locality level was set too high even if the number of
tasks that were locally scheduled was about the same as shown
in Figure 7a. The increase of the average job turnaround time

was caused by the delay that was enforced by the minimum
locality constraint. Figure 7b shows the locality level achieved
with different minimum locality levels. If a scheduler enforced
a high level of minimum locality level that must be satisfied
in order to schedule, more jobs would be skipped due to the
limited number of local tasks. Thus, the minimum locality level
should be adjusted dynamically depending on the number of
resources and the workload.

VI. RELATED WORK

Geo-distributed Systems: There have been projects that
utilize geographically distributed nodes for computation [?],
[11], [12], [20]. However, most of them focus on extend-
ing a specific framework to a wide-area environment with-
out considering resource sharing between multiple computing
frameworks. There are also projects that utilize geographically
distributed nodes for storages [21]–[25]. Most of these geo-
distributed systems, however, focus on inter-data-center envi-
ronments, which is different from the wide-area Edge Cloud
environment that we target in Awan.

Resource Management: Sharing resources across multiple
frameworks in a cluster is not a new topic. There have
been projects that observe the challenges of sharing resources
between multiple schedulers [13]–[15], [26]. These mecha-
nisms, however, are intended for a centralized cluster which
requires modifications to scale to a wide-area environment. The
architecture that we used is similar to Mesos. However, we
use a leasing mechanism which is different from the resource-
offer mechanism in Mesos. We incorporate the shared state
mechanism that is used in Omega with further modification by
sharing the future availability of every node to every scheduler.
The technique that we used is similar to Apollo [27], which
estimates the running time for each task and shares it with
every scheduler. While Apollo and Omega focus on resource
sharing in a centralized cluster as opposed to Awan which is
designed for a geo-distributed system.

Cluster Scheduling: Researchers have also considered
optimizing individual framework schedulers in a cluster.
Torque [28] is a batch scheduler for High Performance Com-
puting cluster where data locality is not the main issue for
such jobs. Delay scheduling [18] and Quincy [29] incorporate
techniques to handle locality and fair sharing in a co-located
cluster where the data is stored on the nodes that run the jobs.
In delay scheduling, a scheduler would delay for a pre-defined
short period of time if a job cannot be scheduled locally. This



technique is sufficient if the task running time is short. If the
task running time is long, which is common in a wide-area
system, the waiting time should be measured to determine
whether delay scheduling is necessary. Grid schedulers like
Condor [30] also support locality constraints in a widely
distributed environment, but the focus of their system is not
data-intensive applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented Awan: a resource manage-
ment mechanism for data-intensive applications in a geo-
distributed system. Our mechanism allows resource sharing
across multiple Framework Schedulers while maintaining high
locality for each framework. Since network cost is expensive
in a widely distributed system, improving locality scheduling
greatly reduces the average task turnaround time for data-
intensive applications. We also looked at improving locality
in job scheduling by prioritizing jobs with higher locality over
lower locality jobs.

In future work, we plan to investigate how other global
policies can be enforced in Awan without sacrificing locality.
We will also explore a more diverse and heterogeneous set of
resources which may include inter-cluster data-center nodes,
to enable Awan to support resource management in multiple
data centers. We also plan to include each resource’s reliability
in the process of selecting resources in Awan to enable the
inclusion of more volatile volunteer nodes such as in Nebula.
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