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Abstract—Resource discovery enables applications deployed in and exchanging and communicating partial results. Sitgjlar
heterogeneous large-scale distributed systems to find raeswes g node participating in a peer-to-peer streaming apptinati
that meet QoS requirements. In particular, most applicatis \yqg require sufficient downstream bandwidth to download

need resource requirements to be satisfiedimultaneously for th ired video f | ith h buff d
multiple resources (such as CPU, memory and network band- € required viaeo frames along with enough bulier space an

width). Due to dynamism in many large-scale systems, providg CPU capacity for storing and decoding the frames. At the
statistical guarantees on such requirements is importantd avoid same time, it should also have sufficient upstream bandwidth

application failures and overheads. However, existing témiques to share its frames with other peers in the system. In other
either provide guarantees only for individual resources, o take words, most applications need to satisfy multiple resource

a static or memoryless approach along multiple dimensionsiVe . ts t id inal f b .
presentHiDRA, a scalable resource discovery technique providing requirements to avold any singie resource irom becoming a

statistical guarantees for resource requirements spannip mul-  bottleneck and affecting the performance of the applicatio
tiple dimensions simultaneously. Through trace analysis red a Many existing resource discovery mechanisms [6], [10], [7]

307-node PlanetLab implementation, we show that HIDRA, whe  have incorporated the need for multiple resources. However
using over 1,400 times less data, performs nearly as well as amany of these mechanisms either satisfy statically defined

fully-informed algorithm, showing better precision and having " , .
recall within 3%. We demonstrate that HIDRA is a feasible, '€duirements, such as a node’s physical CPU clock speed

low-overhead approach to statistical resource discoveryni a Of total amount of RAM, or at best, provide information
distributed system. about the recent values affecting some of these attributes,

such as CPU load. However, such static or limited resource
|. INTRODUCTION capacity information is insufficient for most large-scalatp

Recent years have seen the increasing use of large-séal@s. Many of these systems have been shown to exhibit a
distributed systems such as open Grids [1], [2], distributdarge degree of dynamism [11], [12] in terms of the effective
Clouds [3], and peer-to-peer systems [4], [5] for a wide Endesource capacity they can provide at any given time. This
of applications such as scientific computing, file sharing aflynamism is caused by several factors, such as varying,loads
multimedia streaming. Most of these distributed platfornfdetwork congestion, churn, or varying application demaiids
consist of large number of machines with heterogeneous fake such dynamic resource capacities into account, atrecen
sources, and many of them are also geographically distdbut@PProach has focused on providistatistical guaranteesn
In order to satisfy application QoS requirements such Heeting resource requirements [8]. However, this approach
throughput, latency, and jitteresource discovenys], [7], focuses on individual resource requirements, and is irsexffi
[5], [8] is often used in such systems to find suitable nodé@r Pproviding statistical guarantees for multiple resasc
for deploying application components, or to execute specifimultaneously.
computational tasks. In this paper, we present a new technique for statistical

Most distributed applications rely on multiple interagfire- multi-dimensional resource discovery called HiDRA (High-
sources, such as processing, memory, and network bangwidtifnensional Resource Allocation). This technique is desty
in order to meet their execution requirements. For instaacel© find nodes with desired resource capacities along meltipl
data-intensive bioinformatics application [9] might bening dimensions, and provide statistical guarantees on thessrea
multiple computational tasks on different machines, eash 4ti€S being satisfied over a time interval. An important @spe
alyzing gene sequences. In this scenario, each compuatid¥ this technique is that it can provide such guaranteearyn
task needs sufficient CPU capacity and memory for each in§Rmbination of a number of resourcgs.g., only CPU and
vidual task to run efficiently. If each node has enough CPU c&lemory, or CPU, memory and network bandwidth, etc.), and
pacity but insufficient memory, then the tasks may slow dowHrther, it provides guaranteésr all the resource requirements
considerably due to excessive swapping and disk accesseddqing satisfied simultaneoushp key contribution of this
addition, these tasks may also need a minimum amount Werk is the novel use ofnultivariate normal distributiongor

network bandwidth for downloading the required genome,dafi® probabilistic modeling of resource capacity over rpisti
dimensions. We provide a heuristic for converting geneisl d

This work was supported in part by NSF Grant CNS-0643505. tributions (observed in real node data) to this represiemiaio



provide high accuracy for common resource discovery gaeri¢hese predictions are limited to the next time instant, amd o
We conduct a data analysis of a month-long PlanetLab traéecus is on providing long-range statistical guarantees.
and our results show that HiDRA performs nearly as well as aSDIMS [17] and Astrolabe [18] provide distributed “control
fully-informed algorithm, showing better precision andviimg planes” as a monitoring backbones for large-scale digiibu
recall within 3% of this algorithm. We have deployed HiDRAservices. Such a distributed overlay can be useful for disse
on a 307-machine PlanetLab testbed, and our live expersneinfating resource usage information in a distributed reseur
on this testbed demonstrate that HIDRA is a feasible, lowtiscovery framework.

overhead approach to statistical multi-dimensional res®u System Model We assume our System is a |arge-sca|e’ pos-

discovery in a distributed system. sibly wide-area or planetary-scale system. Participamteso
may be geographically distributed and could span multiple
II. BACKGROUND & SYSTEM MODEL administrative domains. Nodes are able to monitor their own

resource usages and capacities over time. We assume the node
%fe connected via some interconnection overlay which they u

0 disseminate and share their resource usage informatien.

us of our paper is on the scalability of data represesati

he system, and we make no assumptions about the type or

Resource DiscoveryPrevious scalable approaches to resour
discovery have taken place in a static-configuration cdnte
that is, searching for nodes in a wide-area system such f
hardware and software configurations meet specified requi(rg?t
ments. Smce_ these components are quite stat|<_:, there isaw Structure of the overlay or a specific dissemination tealiq
to update this information on any regular basis and theeef

amples of data dissemination techniques that could be

the use of Conte_nt-address.abl_e netwprks [6] ha_ls begn l?'Se(jlel%ployed include gossiping and epidemic protocols.
such matchmaking of applications with nodes in a distribute
and scalable fashion.

The focus of resource discovery techniques upon dynamic !!l- STATISTICAL MULTI-DIMENSIONAL RESOURCE
node-level characteristics [7] (e.g., CPU load, memoryilava DISCOVERY
able, network bandwidth) shared many similarities with th
static-configuration approaches. In SWORD [7], a multl-
attribute range query system [13] implemented over a DHT Existing multi-dimensional resource discovery technigjue
was used to store and index load values for several nogepresent resource requirements as a tuple,, . .., Ryl,
level resource metrics. However, due to scalability conser(c, ... c,]} for m resources, such that each resource type
and the inability of DHTSs to store or index distributionslyon R, satisfies a capacity value;. For instance, an applica-
one load value per metric per node was maintained. Duetfen might needn nodes with{CPU > 1 GHz, RAM >
high variability in distributed systems such as PlanetlBH,[ 1 GB, network b/w> 1 Mbps}. This requirement can then be
such a memoryless approach is unable to provide node-leygécified ag[CPU, RAM, network], [LGHz, 1GB, 1Mbp3]
resource capacity guarantees to the application. Recerit was discussed in the previous section, these capacity ®quir
has extended SWORD to address data staleness issues fl4]nftthts can either be static values [6] or recent values [7].
the resource discovery method still lacks statistical props. However, due to dynamic variations in resource availabilit

Resource Bundles [8] introduced statistical guarantees for instance, due to load variations, failures, and conmgeti
resource discovery for single node-level resource metriegpplications, a statistical guarantee is desirable onetiies
Historical resource usage measurements were presentegdfice requirements.
profiles in the form of histograms. For scalability in large- statistical resource requirements for a single resourge ha
scale systems, aggregation was used in a hierarchicalagveReen defined [8] as a tupleR, ¢, p, t}, whereR is a resource
topology wherein nodes with similar resource usage profilgge, ¢ refers to a capacity leve} is a percentile value, and
were grouped together to form higher-level representstive js a time duration. This definition implies that a resource
This aCCUrater prOVided statistical guarantees for resou requirement can be Speciﬁed as a resource type (e_g_’ CPU)
discovery, but only for one resource metric at a time (e.gatisfying aneffective capacitg (e.g., 1 GHz) for at leasi%

. Statistical Resource Requirements

effectiveCPU capacity available). _ (e.g., 95%) of a time duration(e.g., 24 hrs). We extend this
Other Related Work: Condor [15] used a centralized co-definition to incorporate multiple resource requiremetg,
ordinator approach to finding idle workstations in grid enallowing R andc to be vector§Ry, ..., Ry] and[cy, ..., ¢

vironments among machines under the same administratige m resources, such that each resource typesatisfies
domain. Cluster computing on the fly [5] is a decentralizeg capacity requirement;, and all these requirements are
cycle-sharing approach to resource discovery in peee®-psatisfied simultaneouslgt leastp% of the timé. Thus, for
environments. This work is single-metric, as cycles weee tlinstance, the example requirement above can be specified as
primary resource sought after; no notion of resource usagePU, RAM, network], [LGHz, 1GB, 1Mbps], 95% where
profiles were used. Their goal was to find idle machines neggch capacity requirement corresponds teeffiectivecapacity
the edge of the network.

Network Weath(_:"r SerVice. [16] uses tournament prediCtorSWe omit the time duratiort for clarity of discussion; one could easily
to accurately predict trends in resource usage levels. Memve extend our techniques for each time periodf interest.
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1, o parameters and correlations between dimensions ik thetrix. Shown

is an example 2-dimensional requirement space.
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(b) Positive correlation between CPU and Network usages
Fig. 1. Two time series showing the same resource usagequrdir HOwever, this approach does not capture gmultaneous
individual resources, but with substantially differentretations between the occurrence of the two requirements, which depends on the
resources. correlation between the two resource usages. Figure % illus
trates this time-dependence of the resource usage behavior
otsmultiple resources. Therefore in order to derive multi-
glmensional resource requirement guarantees directlyn fro
single-metric guarantees, all involved dimensions woltliee
B. Resource Usage Representation need to be completely correlated or completely indepenafent
each other; in practice, neither of these conditions odeuoir.

Based on the above definition of statistical resource requ'fnstance, in our study of PlanetLab traces, correlationsden

ments, the resource discovery process then involves find|8 U and network bandwidth metrics were observed to var
nodes based on the following criterion: Given a requiremegetweenr — 013 andr — 0.96 y

{R, c,p}, which nodes satisfyi(R; > ¢;) (vector compari-
sony at leastp% of time. A key issue here is how to represent . Modeling Multiple Dimensions
the resource usage information of multiple resources tblena
such aquery to be resolved easily. Let us pe_gm by cops@erwe model individual resource profiles accurately while also
a few possible approaches, based on existing techniques and. ' . . X )

. . capturing the inter-resource correlations. In order toi@aeh
their extensions. ) )

) these goals, we have the following key requirements for
One possible approach would be to use a key-based rep-_ " . - bl
. - odeling resource capacity information:

resentation as used by several existing DHT-based resource i
discovery algorithms [6], [7]. These algorithms represent ~ * A compact representation of the resource usage data over
source capacity/usage information of individual nodes B D multiple resource types for each node.
keys, where, each key incorporates information about eactt An efflc_lent means for characterizing the inter-resource
resource type as well as its capacity value. However, while Correlations at each node. _ o
such a representation is effective for representing poines ~ * A Simple way to map the representation to the statistical
multi-dimensional space (e.g., static values or recentes)| .requwement for resource d|§coyery. .
it is not suitable for representing distributions or for gan  Histograms or probability distributions can provide corwipa
queries (as required for statistical inference). representations of individual dimensions, and are alsp &as

Another possible approach could be to apply a statistic@#@p to individual statistical requirements (by finding thee-c
resource discovery technique such as Resource Bundles [8]&@Sponding percentile values). However, as discussedeabov
individual metrics and then to combine individual resourcdhey lose the time-dependent correlation among different d
level guarantees to derive multi-dimensional guarantBes. mensions. One possibility could be to maintain histograms
example, if a multi-dimensional requirement §§CPU, net- for individual dimensions along with inter-dimension cses
work], [1 GHz, 10 Mbps], 90%, then a node that can sustaircorrelation values. However, as discussed above, there is
1 GHz effective CPU capacity for 90% of the time as well0 straightforward way of combining individual histograms
as 10 Mbps effective network bandwidth capacity for 90% d¢¥ith the correlation values to determine the corresponding

the time would be expected to satisfy the given requiremeRgrcentile values across multiple dimensions (See Figure 1
A statistical distribution that satisfies the requiremenén-
“To capture the notion ofneeting resource requirements for multipletioned above is the Multivariate Normal (MVN) Distribution
metrics s_|mu|tanec_)uslyve will use the termsnulti-dimensionglmulti-metrig This distribution is a generalization of the normal disitibn
and multi-resourceinterchangeably in the rest of our paper. . .
SWe allow both> and < comparisons, but mention only one for clarity ofto n Q|m§ns!ons. It can be represented as a Seh qur'
discussion. mal distributions N (p;,0;), ¢ = 1,...n, each distribution

of the corresponding resource, and all these requireme
should be satisfiedimultaneousk:

Based on our discussion above, the question is how can



corresponding to one dimension, and anx n covariance Actual ——

Normal ======x .ue
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matrix 3 capturing the correlation among the different di-
mensions. The MVN distribution has the advantage of being
a statistically “smooth” approach to finding the “volume” of
an n-dimensional requirement plane. An example of a multi-
dimensional requirement space generated by MVN is shown
in Figure 2. Given desired ranges of values for each ofrthe
normally distributed variables, and the covariances betwe
each of then variables, we can calculate the probabilityig. 3. Construction of an approximation of a resource cipaarofile
of these ranges co-occurring together. An MVN distributiogﬁcwa') by a normal distribution (Normal), by defining ttogitical region

. . etween points A and B.
meets each of the above-mentioned requirements as follows: P

« It provides a compact representation of individual re-
source usage distributions: each distribution can esseahe covariance matrix for the original distributions. Thet of
tially be represented by two numbergi, &), the mean normal distributions along each dimension coupled with the

and standard deviation of the normal distribution. covariance matrix provides us with an MVN representation of
» The covariance matrix captures the time-dependent ctiie resource usage profiles.
relation between different dimensions. The question is whether these normal approximations are

« We can compute the probability of a multi-dimensionadequate representations of their respective resourcge usa
requirement being met by evaluating the parameterizedofiles? Furthermore, are the combination of these approx-
MVN over the desired ranges along each of the resourigaations into the MVN distribution sufficient for accuratp-a
dimensions. proximations of multi-dimensional resource requirememite

MVN would be a suitable representation to use if the actghow empirically in Section IV-B that these approximatiofs
ally observed resource usage distributions could be atatyra Single-metric resource usage profiles to normal distrainsti
modeled as MVN distributions. However, we cannot assun@€, in fact, highly accurate approximations for their exsjve
resource capacities to be normally distribdtebhe question is critical regions. Next, we show how the MVN model can be
whether we can somehow exploit the nice properties of MvNsed for resource discovery.

for solving our problem, while accounting for the real resgu Applying MVN to Multi-dimensional Resource Discovery

usage behavior. . , )
An MVN-based multi-dimensional resource discovery tech-

D. The Critical Region: Normal Approximation of Usagehique for n resource metrics, takes as its input an MVN
Profiles model of n resource usage profiles in the form of normal
déstributionsu = (1, 2, s fin )y 0 = (01,09, ...,0,), and

N n x n covariance matrixX capturing the correlations

etween resources. Also, it accepts a range of desiredsvalue
for each metric. For example: for effective CPU available5[
)QHZ, oo], and for observed (node-level) network transmission
rates, oo, 1 Mbps]. Notice we must use-co instead of
zero (even for nonnegative metrics) due to the use of normal
approximations.

As its output, this resource discovery technique uses the
MVN distribution CDF to compute therobability that all of
the resource usage variables will fall within their respeet

Therefore, under the assumption of such a critical regié’é]ven ranges simultaneouslyhus, if the resuiting probability

. . . 1S greater than or equal to the desired guaranteed level of
of interest, we approximate a resource usage profile to the

I - . .service for the given requirement, then that node will be
normal distribution. As seen in Figure 3, only two points in . .
eemedsuitablefor the application.

the resource usage profile are necessary in order to prowd% : )
N . . t a high level, each node in the system would analyze
normal approximation. We define these points to be the left : )
) . g . itS own traces to determine the correlation values betwden a
and right boundaries of the critical region of the resoursaye resource metrics. and perform approximations to the normal
profile (e.g. 99th and 90th percentiles, respectively) eNbat ' P P

. glistribution for all such metrics. In order to represent its
this normal curve need not be accurate for the shape of tae reqate multi-dimensional resource requirement CHOsCi
distribution outside the critical region, but should captthe 9greg q PaC

critical region with high accuracy. In addition, to captuhe only _the normal dlstr|but|on_par_ametem(az-) and covariance
matrix () need to be maintained, and propagated to other

correlations among the different dimensions, we simply use ) .
nodes in the system as required (e.g., a central manager, or

4For instance, for PlanetLab data, we found that most resousage nelghbprs 'n_an_overlaY)' Overlays_appropnate for th'ShSUC_
distributions werenot normally distributed. data dissemination for resource discovery are presented in

To solve the above problem, we observe that given
resource capacity distribution, there is likely to be only
small region of interest for resource discovery purposes.
example, an application is unlikely to request affiective
CPU rate of 2 GHz for only 50% of the time. Instead, an
statistical guarantees are likely to lie in a high percentinge
(such as 90-99 percentile). Therefore, sincedtitcal values
of the resource capacity distribution lie near the tail o th
distribution, then a fair approximation would be to fit a natm
distribution to more accurately capture traaitical region of
interest.



our previous work [8] which makes use of a hierarchicalodes to the client application, indicating their best effo
overlay [17]. at finding the most accurate set of acceptable nodes. To
quantify the accuracy of resource discovery algorithms, we
define the following evaluation metrics that take into aatou
We next present an evaluation dfiDRA: our MVN  the proportion ofacceptablenodes—nodes that actually meet
distribution-based resource discovery technique. Weyaaut  the requirements—uwith respect to the selected nodes as well
this evaluation using a data analysis of PlanetLab traces, s the total number of nodes in the system.
well as through a live deployment on PlanetLab. As pagt precision is the proportion of nodes selected that were
of the evaluation, we first validate the accuracy of approxictuallyacceptableA precision value of 1 indicates that every
mating individual resource usage distributions using ra@rmpode selected by the resource discovery algorithm fulfilied
distributions. Then we evaluate the accuracy of HIDRA f%iven requirements' However’ precision by itself is notm
multi-dimensional resource discovery. Finally, we evéduaie since it could still mean that the algorithm may have missed
performance of this technique through a live deployment Qany acceptable nodes in the system.
PlanetLab. We begin by describing our data analysis methqdrecallis the proportion oicceptablenodes that were chosen
ology for evaluating resource discovery techniques. by the resource discovery algorithm of those that existed in
the whole system. A low recall value means that the algorithm

A. Data Analysis Methodology tails to find tabl p H )
ils to find many acceptable nodes. However, one canno
We used a month-long PlanetLab trace of 427 nodes o§) y P

. -consider recall alone, since a trivial algorithm that selevery
tained by CoMon [19] from February 2007 for our eXPeriz \de in the system will always have a recall of 1.

ments. This trace provided resource usage values at 5 minyte. Jirce Discovery Algorithms We will compare the fol-
intervals for various resources for each node: CPU, memorgwmg resource discovery algorithms;

network b?r_]dw'dt?" :;:‘ Itr_1 pa(r:t;:ulari wle ::odnflderfr(]j@ru e Memoryless: This algorithm uses the last data point for each
;sage :n;e rt|_cs S u<|: q def: |v§ M ucz ctu ate b rom 4 net knetric on each node to estimate its expected capacity oger th
urp statistic included in CoMon data), observed networ, ext day. This algorithm emulates resource discovery algo-

transmission rate (NetTx), observed receive rate (NétR)ﬂthms that use recent resource usage information to determ

and 5-minute load average (SLoadAvg). We did not conmdm’e suitability of a node to meet a minimum requirement, and

memory usage, as PlanetLab has a stringent memory USgdEs not incorporate statistical resource usage pattetmss
policy, which renders memory usage data useless for M cisions

PUrposes. . e History: This is a centralized algorithm with global historical
Emulating Resource DiscoveryIn order to evaluate resource{?1

IV. EVALUATION

discovery techniaues throuah data analvsis. we emulate nowledge of the entire system. It maintains complete 2drho
y 4 9 ysIS, races for each node. This provides a baseline to determine

resource d|_scovery process -as follows. This proces_s_fr Re effect of data loss due to approximation/aggregation on
the client-side perspective begins as a query (specn‘ylngth% accuracy of resource discovery

requirement), receives an answer from the resource dispovg Resource Bundles: This algorithm is used for single-
glegﬂgthmaﬁcdorzﬁzt]mgng; % Silsglt:;:inm t?lzde‘:')oc:jnnevg'cgc t|(;%1gtric resource discovery results only. This uses Resource

ploy), . Dy . 9 9 tQundles [8] to aggregate the resource usage histograms of
node selections, determining which nodes waoeeptable

: ) L . . ..~ groups of nodes into resource bundles. Note this technique
I.e., which nodes satisfied the requirement over the lifeth s o6 15 maintain the overall shape of the single-resource
the deployment.

. . istributions, whereas the NormApprox method below sacri-
We execute each resource discovery algorithm over a %E PP

T 2. Fes all but the critical region of the distributions. It nle
hour trace of data for making its decisions (for nOde'Iev%oted however, that the Resource Bundles algorithm pagor
statistical guarantees over the next 24 hours), and thdnatea ' ' g Fa

. . aggregation at a more complex group-level granularityt¢iad
the goodness of the selection by observing the resource greg piex group 9 %

us . . X .
data for the selected nodes for the following 24 hours. V\? node-level granularity), supporting more functionaiban

erform this evaluation for each successive day in the mon erely resource discovery. In our experiments, nodes are
P y undled based on histogram similarity. For each bundle, if

long trace. Each baseline algorithm (described next) may us . . - .
: o ItS representative meets the desired statistical reqeingnall
all or part of the 24 hours of data to make its decisions. The P q

NS . . itS members are considered acceptable.
MVN distribution-based algorithm (HiDRA) uses the 24 hours™ . ) ; : P
: . L e HIiDRA: This algorithm uses the MVN-based resource

of data to construct single-metric normal approximationd a g , . : . .

) ) : : iscovery described in the previous section. Our single-
cross-metric correlations which are then used for multirime . : . . .

L dimensional version of HIDRA is calleNormApprox .

approximations.
Evaluation Metrics: The goodness of choice between difB. Validating Normal Approximations
ferent resource discovery algorithms can be evaluated in#

. : n order to justify our modeling of resource usage profiles as
several ways. Resource discovery algorithms return a set Q)

rmal distributions, we first show that these approxinretio
5Note that NetTx and NetRx should not be confused with netvaksmit &€ apcurate mOd?IS' Note .that an important assumption We
or receive capacity. have is that the main area of interest for resource usagegwofi
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NormApprox EX<X NormApprox =3

ResourceBundles mmm— ResourceBundles mmmmm—m |

Precision
Recall

340 MHz 680 MHz 1020 MHz MeanCPU 340 MHz 680 MHz 1020 MHz MeanCPU
CPU Capacity Requirement CPU Capacity Requirement
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Fig. 4. Normal Approximations (NormApprox) compared agaibaseline resource discovery algorithms along with ResoBundles. = 95" percentile
for NormApprox, Cluster and History.) 420 PlanetLab nodeds from Feb 2007 were used.

is the critical region. If we assume that applications will « Is HIDRA accurate across a wide variety of require-

infrequently ask for percentiles less than the 90th peilegnt ment percentiles inside the critical regiorn@iven the

then it is reasonable to choose the critical region endpdmt requirement metric values and critical region, if we vary

be the 90th and 99th percentiles. the requirement percentile, we want to see how accurate
But is this still accurate for resource discovery requiratae HIDRA is inside the critical region, and investigate its

between the 90th and 99th percentiles? In Figure 4 we show accuracy for percentiles outside of the critical region.

the accuracy in terms of precision and recall for 95th pdileen « How does the critical region size impact the accuracy
CPU requirements. NormApprox shows more precision than of HIDRA? As we hold constant the requirement metric
History itself, similar to Resource Bundles. We explairs thé- values and the requirement percentile, we want to inves-
havior as the algorithms being conservative about theirceho tigate the changes on accuracy as we vary the boundaries
of nodes; it finds fewer nodes than History, but is slightlyreno of the critical region.

preCise in its choice of nodes. This most ||k8|y is a result 1) Performance Across Different Requirements[:n
of the approximation and “smoothing” of the distributiongur analysis we used five multi-dimensional resource
so that fewer nodes are chosen. However, NormApprox h@guirements for our evaluations, defined below.

recall nearly as high as that of History; Resource Bundle®eq | EffCPU NetTx NetRx | 5Load | 15Load

lags behind in this regard since the accuracy of its aggieyat— (25"(")32) (Slgggs) (Slgggs) égo)o (=)

technique depends on other “similar” node resource usage 500 1000 5.00

profiles, whereas our approximation technique is independe 3 1000 8.00
istributi 4 1000 5000

of other node distributions. c 300 2000 2000

~ Thus, NormApprox is a highly accurate means for approx—Tresg requirements were chosen to represent a wide variety
imating node resource usage profiles using normal apprey-applications having a different multi-metric requireme
imations, even though the distributions themselves may nRiso notice that there may be varying amounts of correlation
entirely be normal. This is sufficient since we wish to modeeteen various metrics chosen above, e.g., while some of
only the most important critical regions of the distributidAs  {hese metrics may be highly correlated, (e.g., effectivéJCP
we discussed in Section lI-D, this normal approximation ignq the 5-minute Load Average), others may be largely
crucial for the MVN approach to work, and we next show,qependent of each other (e.g., Load Average and NetTx).
th_e benefit of this approach for multi-dimensional resource The results of applying these requirements (withe 95
discovery. percentile) can be seen in Figure 5. For each of the five
requirements, HIDRA consistently performs very close ® th
fully-informed History technique (that uses complete node
We now evaluate HIDRA over multi-dimensional resourcgaces). The number of acceptable nodes chosen between the
requirements. In our evaluation of HIDRA, we ask the followistory and HIDRA algorithms is extremely close. As in the
Ing questions: previous results, HIDRA selects slightly fewer nodes, singw
« Is HIDRA accurate across a wide variety of resourca slightly better precision but slightly worse recall.
metrics?We would like to evaluate its performance on a These results show that under a wide variety of resource
set of resource requirements, varying of the number angfjuirements, also among varied configurations and metrics
combination of metrics selected. chosen under these requirements, HiIDRA is a highly accurate

C. Multi-dimensional resource discovery



History-Unacceptable History-Precision —+—

140 - History-Acceptable Bz - HIDRA-Precision ---x---
HIDRA-Unacceptable =—= History-Recall -
HIDRA-Acceptable zzz2 0.95 |- HiDRA-Recall & i
120 F Total Actual Acceptable —— | .

or SO OV AT

B
T e B N R = L B Bl

Nodes Chosen
Accuracy
o
)
a
T
o]

60 |-
08 ]
40

0.75 q
20

A1 B 8 07 L
q3 Req4  Req5 74 76 78 80 82 84 86 88 90
Requirement Left Boundary to Critical Region (in percentile)

Req 1 Req 2

Fig. 5.  Number of nodes chosen as acceptable nodes for fiferedif Fig. 7. 95th percentile for Req 2, Varying critical regiofit leoundary from

requirements under the 95th percentile and critical regib80-99. 75 to 90; right boundary is 99.
1 1
History-Precision —+—
HiDRA-Precision ---x---
History-Recall -~
0.95 L HIiDRA-Recall & | 0.95 7
Ko, g
e LRI
&) ‘% B,
09 F “xe Bg
e
> X\‘X*
> X
g £ e T
5 3 r 1
E E ) x‘\x“\xx
0.8 B
075 | b 0.75 - History-Precision —+— b
HIDRA-Precision ---x---
History-Recall -—#—
HiDRA-Recall &
0.7 1 1 1 1 0.7 1 1 1 1 1 1
75 80 85 90 95 100 74 76 78 80 82 84 86 88 90
Percentile Left Boundary to Critical Region (in percentile)

Fig. 6. Varying requirement percentiles from 75 to 99, fogReand critical Fig. 8. 75th percentile for Req 2, Varying critical regiofitleoundary from
region of 90-99. 75 to 90; right boundary is 99.

algorithm for resource discovery, performing on par with Retter than that of History, while recall lags slightly bedi
fully-informed algorithm. This indicates that, in the critical region, HIDRA tends to
2) Performance Across Requirement Percentilext, we select slightly fewer nodes than History, but its selection
show HiDRAs performance as we vary the requiremelﬂighﬂy more accurate than that of History. T_hese resihitss _
percentile itself (for Requirement 2 above) with a criticah@t HIDRA is highly accurate when the requirement perdenti
region of 90-99. The results can be seen in Figure 6. Fifélls inside the critical region.
notice how both the precision and recall of History decline 3) Impact of Critical Region BoundariedNext, we inves-
as the percentile value increases; this indicates that it tigate the sensitivity of HIDRA's performance when we vary
more difficult to accurately predict a selection of nodes fdhe critical region left boundary under two different pertie
higher requirement percentiles. The precision and redall €¢hoices (for Requirement 2 above). Note that the accuracy
HIDRA approaches the goodness of History as the percentigasures for History will not change as it does not depend on
approaches the left boundary of the critical region, theh9othe critical region of HIDRA.
percentile. This is happening because the modeled normaWe set the percentile of the requirement to 95 and vary the
distribution more accurately approximates the actualueso left boundary of the critical region, keeping its right balamy
profile within the critical region, with an exact overlap aet fixed at 99 percentile. The results can be seen in Figure 7.
endpoints of the critical region. Thus, we expect HiDRAdn this example, the requirement is always inside the etitic
performance to follow History more closely within the ccti  region, and the measures of accuracy, both precision aad,rec
region. In particular, it can be seen by how the precisighow signs of improvement as the critical region is bound
and recall of History and HiDRA both match exactly at th&ighter to the percentile, as expected.
90th and 99th percentile points, the critical region bouieda Next we set the percentile to 75 and again vary the left
Inside the critical region, the precision of HIDRA is slight boundary of the critical region in Figure 8. This time, the



requirement starts on the left boundary of the critical oagi Memoryless-Unacceptable. mummm

Memoryless-Acceptable E<<<

and moves outside of the region as we move the boundary of 250 N o Acceptable. mmm |
the critical region to the right. Not surprisingly, both pigon R ecebtable
and recall decline as the critical region moves away from the 200 Toal Actual Acceptable === J
percentile of interest. However, the deviations from thstéty
algorithm are not too severe (precision within 11%), shawin
that even with a misconfigured critical region, the resuits a
still fairly accurate. 100 -

4) Selecting The Critical RegiorOur results provide some
guiding principles for the choice of critical region bouniéa. 50 |
First, we observe that tighter critical regions surrougdine
requirement percentile result in higher accuracy. Secawhén 0 Req 1 Req 2 Req 3
the requirement percentile falls outside the critical oegi 95th Percentile Requirement
there is a dropoff in accuracy.

These two observations highlight a tradeoff concernirfgg- 9. Node selection for three different requirements eunthe 95th
critical region selection. If the critical region is too veid Pe'centile in our Planetl.ab implementation
several percentiles would likely fall inside the region,t bu

accuracy would suffer from approximating such a wide regio[he node-level resource profile MVN distribution parameter
On the other hand, if the critical region is too small, th?naintained by HIDRA asesource descriptors

accuracy would be high inside the region, but many perati In our resource discovery framework, we chose to utilize a

are likely to fall outs!de of the cnup_al reglon. This tram‘é_ centralized query manager because PlanetLab is a rejativel
suggests that th? width of the critical region can be f'n%i”nall system. Here we place less focus on the actual means
tuned and dynamically adapted based on the frequentlyecdb5|6f data propagation in the systémand rather pay attention

percentile values. For instance, even if the initial catiegion to the amount of data, and provide results on the data transfe

was chosen as [90-99], if most queries are for 95 percentg)serhead “oer update’" as a result

requirgments, Fhen the critical region can be tightenet_%e [ We propagated updates every 10 minutes of the resource

99.].' S|m|Ia_rIy, if many percentiles appear to fall outsidest descriptors at each node to the centralized query manager.

g'ti'rfglu;eeg'tﬁg’ ézz:;ecljt \(/:;Eeie expanded or the range mov te that if the centralized query manager goes offline, its
' complete data store of resource descriptors will be coralyiet

D. Implementation replenished within 10 minutes of coming back online by

deploved . loorith des in Pl receiving the usual amount of data from each node every 10
We deployed our HIDRA algorithm on 307 nodes in Plan, ;a5 Also note that the size of the resource descrifgors

_etLab. Our p_rimary goal was FO validate the resul_ts We_saIWdependent of the size of the trace from which it originated
in our analysis, through an online deployment of HiDRA in 2 is of fixed size dependent only on how many resource
real system and also to measure the overhead of HiDRA. Wenensions are being measured

chose three simple multi-dimensional requirements toctnje
into our implementation:

Nodes Chosen

We chose a time window of 24 hours for application deploy-
ment which is also used for resource descriptor constmictio

Req | EffCPU > MHz) | NetTx (< Mbps) | NetRx (< Mbps) . . .

1 500 10 10 We submitted our query for the three multi-resource require

2 1000 10 10 ments to the central query manager and received responses
3 1500 8 8 from each of the algorithms. Then to evaluate this response

Nodes monitored their own resource usage time serie . .
: i . of the resource discovery algorithms, we analyzed the éutur
via their own access to their local CoMon daemon process.
S L . aces of the nodes chosen for deployment to measure the
We limited our monitoring to the three resource metrics g

interest: effective CPU, network transmit bandwidth oledr ﬁgggnfsgsg; %ho:;? :If ;rci)t?]?ns ttha:t 2a%23230&2pfglcli?$ents
and network receive bandwidth observed. From this time y 9 q

. : .~ . IS hereby called “acceptable”, and a node that does nofysatis
series, the nodes computed their own normal approximatiops ; : K - .

A : . . ) ItS requirements is labeled “unacceptable” in the evabmati
to individual metrics and also the covariance (i.e., catieh)

. . . . . ; that follows.
matrix. This functionality was implemented using a Perlgscr .
S ) Resource discovery accuracyWe evaluated our results over
Then these normal distribution and correlation data we

) . Rree different percentiles for each of the three multotese
sent to a centralized query manager node, which executeq - -
. . . : : équirements. The results are shown in Figures 9 and 10.
the HIDRA algorithm using a Fortran implementation o

the_ MVN distribution function [20]. Th&ritic_al region Was  6rorms of propagation (in structured or unstructured sysjemclude
defined between the 90th and 99th percentile values for eaokhsiping and flooding, as well as communication in systemas assume

of the resource metrics. Also, the History and Memoryle§§Mme super-node or hierarchical based overlay such as [17].
’ “PlanetLab has stringent rules for network bandwidth and emgnaon-

a|99r|th_rns were employed in this system by each node Sendgﬂjgwption that are prohibitive to extensive multi-metripesimentation, which
a historical trace of its resource usage. For clarity, werrtd led us to use a pseudo-application, instead of a real afiplica



Memoryless-Unacceptable. mummm well as the fully-informed History technique (with better

300 - Memoryless-Acceptable <N

History-Unaccepiable. e precision than History and recall within 3% of History). &n
250 | R cebtable i HiDRA has such a compact representation of node behavior on
oty Acual Acceptable == multiple metrics simultaneously, it becomes a very ativact
200 | 1 solution for large-scale systems that need a scalable m&sou

discovery mechanism. Also, HIDRA provides statistical gua
antees to applications that allow deployments to be more
stable and reliable, not subject to frequent failures oratign
scenarios. Our live implementation in the PlanetLab tabtbe
shows our system to be a feasible, low-overhead method in
finding acceptable nodes for applications. In future work, w
will investigate an integration with our previous work [8].

150

Nodes Chosen

100

50

Req 1 Req 2
75th Percentile Requirement
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V. CONCLUSION



