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Abstract—Resource discovery enables applications deployed in
heterogeneous large-scale distributed systems to find resources
that meet QoS requirements. In particular, most applications
need resource requirements to be satisfiedsimultaneously for
multiple resources (such as CPU, memory and network band-
width). Due to dynamism in many large-scale systems, providing
statistical guarantees on such requirements is important to avoid
application failures and overheads. However, existing techniques
either provide guarantees only for individual resources, or take
a static or memoryless approach along multiple dimensions.We
presentHiDRA, a scalable resource discovery technique providing
statistical guarantees for resource requirements spanning mul-
tiple dimensions simultaneously. Through trace analysis and a
307-node PlanetLab implementation, we show that HiDRA, while
using over 1,400 times less data, performs nearly as well as a
fully-informed algorithm, showing better precision and having
recall within 3%. We demonstrate that HiDRA is a feasible,
low-overhead approach to statistical resource discovery in a
distributed system.

I. I NTRODUCTION

Recent years have seen the increasing use of large-scale
distributed systems such as open Grids [1], [2], distributed
Clouds [3], and peer-to-peer systems [4], [5] for a wide range
of applications such as scientific computing, file sharing and
multimedia streaming. Most of these distributed platforms
consist of large number of machines with heterogeneous re-
sources, and many of them are also geographically distributed.
In order to satisfy application QoS requirements such as
throughput, latency, and jitter,resource discovery[6], [7],
[5], [8] is often used in such systems to find suitable nodes
for deploying application components, or to execute specific
computational tasks.

Most distributed applications rely on multiple interacting re-
sources, such as processing, memory, and network bandwidth,
in order to meet their execution requirements. For instance, a
data-intensive bioinformatics application [9] might be running
multiple computational tasks on different machines, each an-
alyzing gene sequences. In this scenario, each computational
task needs sufficient CPU capacity and memory for each indi-
vidual task to run efficiently. If each node has enough CPU ca-
pacity but insufficient memory, then the tasks may slow down
considerably due to excessive swapping and disk accesses. In
addition, these tasks may also need a minimum amount of
network bandwidth for downloading the required genome data,
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and exchanging and communicating partial results. Similarly,
a node participating in a peer-to-peer streaming application
would require sufficient downstream bandwidth to download
the required video frames along with enough buffer space and
CPU capacity for storing and decoding the frames. At the
same time, it should also have sufficient upstream bandwidth
to share its frames with other peers in the system. In other
words, most applications need to satisfy multiple resource
requirements to avoid any single resource from becoming a
bottleneck and affecting the performance of the application.

Many existing resource discovery mechanisms [6], [10], [7]
have incorporated the need for multiple resources. However,
many of these mechanisms either satisfy statically defined
requirements, such as a node’s physical CPU clock speed
or total amount of RAM, or at best, provide information
about the recent values affecting some of these attributes,
such as CPU load. However, such static or limited resource
capacity information is insufficient for most large-scale plat-
forms. Many of these systems have been shown to exhibit a
large degree of dynamism [11], [12] in terms of the effective
resource capacity they can provide at any given time. This
dynamism is caused by several factors, such as varying loads,
network congestion, churn, or varying application demands. To
take such dynamic resource capacities into account, a recent
approach has focused on providingstatistical guaranteeson
meeting resource requirements [8]. However, this approach
focuses on individual resource requirements, and is insufficient
for providing statistical guarantees for multiple resources
simultaneously.

In this paper, we present a new technique for statistical
multi-dimensional resource discovery called HiDRA (High-
Dimensional Resource Allocation). This technique is designed
to find nodes with desired resource capacities along multiple
dimensions, and provide statistical guarantees on these capac-
ities being satisfied over a time interval. An important aspect
of this technique is that it can provide such guarantees onany
combination of a number of resources(e.g., only CPU and
memory, or CPU, memory and network bandwidth, etc.), and
further, it provides guaranteesfor all the resource requirements
being satisfied simultaneously.A key contribution of this
work is the novel use ofmultivariate normal distributionsfor
the probabilistic modeling of resource capacity over multiple
dimensions. We provide a heuristic for converting general dis-
tributions (observed in real node data) to this representation, to



provide high accuracy for common resource discovery queries.
We conduct a data analysis of a month-long PlanetLab trace,
and our results show that HiDRA performs nearly as well as a
fully-informed algorithm, showing better precision and having
recall within 3% of this algorithm. We have deployed HiDRA
on a 307-machine PlanetLab testbed, and our live experiments
on this testbed demonstrate that HiDRA is a feasible, low-
overhead approach to statistical multi-dimensional resource
discovery in a distributed system.

II. BACKGROUND & SYSTEM MODEL

Resource Discovery: Previous scalable approaches to resource
discovery have taken place in a static-configuration context;
that is, searching for nodes in a wide-area system such that
hardware and software configurations meet specified require-
ments. Since these components are quite static, there is no need
to update this information on any regular basis and therefore
the use of content-addressable networks [6] has been used for
such matchmaking of applications with nodes in a distributed
and scalable fashion.

The focus of resource discovery techniques upon dynamic
node-level characteristics [7] (e.g., CPU load, memory avail-
able, network bandwidth) shared many similarities with the
static-configuration approaches. In SWORD [7], a multi-
attribute range query system [13] implemented over a DHT
was used to store and index load values for several node-
level resource metrics. However, due to scalability concerns
and the inability of DHTs to store or index distributions, only
one load value per metric per node was maintained. Due to
high variability in distributed systems such as PlanetLab [11],
such a memoryless approach is unable to provide node-level
resource capacity guarantees to the application. Recent work
has extended SWORD to address data staleness issues [14], but
the resource discovery method still lacks statistical properties.

Resource Bundles [8] introduced statistical guarantees for
resource discovery for single node-level resource metrics.
Historical resource usage measurements were presented as
profiles in the form of histograms. For scalability in large-
scale systems, aggregation was used in a hierarchical overlay
topology wherein nodes with similar resource usage profiles
were grouped together to form higher-level representatives.
This accurately provided statistical guarantees for resource
discovery, but only for one resource metric at a time (e.g.
effectiveCPU capacity available).
Other Related Work: Condor [15] used a centralized co-
ordinator approach to finding idle workstations in grid en-
vironments among machines under the same administrative
domain. Cluster computing on the fly [5] is a decentralized
cycle-sharing approach to resource discovery in peer-to-peer
environments. This work is single-metric, as cycles were the
primary resource sought after; no notion of resource usage
profiles were used. Their goal was to find idle machines near
the edge of the network.

Network Weather Service [16] uses tournament predictors
to accurately predict trends in resource usage levels. However,

these predictions are limited to the next time instant, and our
focus is on providing long-range statistical guarantees.

SDIMS [17] and Astrolabe [18] provide distributed “control
planes” as a monitoring backbones for large-scale distributed
services. Such a distributed overlay can be useful for dissem-
inating resource usage information in a distributed resource
discovery framework.
System Model: We assume our system is a large-scale, pos-
sibly wide-area or planetary-scale system. Participant nodes
may be geographically distributed and could span multiple
administrative domains. Nodes are able to monitor their own
resource usages and capacities over time. We assume the nodes
are connected via some interconnection overlay which they use
to disseminate and share their resource usage information.The
focus of our paper is on the scalability of data representation
in the system, and we make no assumptions about the type or
structure of the overlay or a specific dissemination technique.
Examples of data dissemination techniques that could be
employed include gossiping and epidemic protocols.

III. STATISTICAL MULTI -DIMENSIONAL RESOURCE

DISCOVERY

A. Statistical Resource Requirements

Existing multi-dimensional resource discovery techniques
represent resource requirements as a tuple{[R1, . . . , Rm],
[c1, . . . , cm]} for m resources, such that each resource type
Ri satisfies a capacity valueci. For instance, an applica-
tion might needn nodes with{CPU ≥ 1 GHz, RAM ≥
1 GB, network b/w≥ 1 Mbps}. This requirement can then be
specified as{[CPU, RAM, network], [1GHz, 1GB, 1Mbps]}.
As discussed in the previous section, these capacity require-
ments can either be static values [6] or recent values [7].
However, due to dynamic variations in resource availability,
for instance, due to load variations, failures, and competing
applications, a statistical guarantee is desirable on these re-
source requirements.

Statistical resource requirements for a single resource have
been defined [8] as a tuple{R, c, p, t}, whereR is a resource
type, c refers to a capacity level,p is a percentile value, and
t is a time duration. This definition implies that a resource
requirement can be specified as a resource type (e.g., CPU)
satisfying aneffective capacityc (e.g., 1 GHz) for at leastp%
(e.g., 95%) of a time durationt (e.g., 24 hrs). We extend this
definition to incorporate multiple resource requirements,by
allowing R andc to be vectors[R1, . . . , Rm] and[c1, . . . , cm]
for m resources, such that each resource typeRi satisfies
a capacity requirementci, and all these requirements are
satisfied simultaneouslyat leastp% of the time1. Thus, for
instance, the example requirement above can be specified as
{[CPU, RAM, network], [1GHz, 1GB, 1Mbps], 95%}, where
each capacity requirement corresponds to theeffectivecapacity

1We omit the time durationt for clarity of discussion; one could easily
extend our techniques for each time periodt of interest.



(a) Negative correlation between CPU and Network usages

(b) Positive correlation between CPU and Network usages

Fig. 1. Two time series showing the same resource usage profiles for
individual resources, but with substantially different correlations between the
resources.

of the corresponding resource, and all these requirements
should be satisfiedsimultaneously2.

B. Resource Usage Representation

Based on the above definition of statistical resource require-
ments, the resource discovery process then involves finding
nodes based on the following criterion: Given a requirement
{R, c, p}, which nodes satisfy∀i(Ri ≥ ci) (vector compari-
son)3 at leastp% of time. A key issue here is how to represent
the resource usage information of multiple resources to enable
such a query to be resolved easily. Let us begin by considering
a few possible approaches, based on existing techniques and
their extensions.

One possible approach would be to use a key-based rep-
resentation as used by several existing DHT-based resource
discovery algorithms [6], [7]. These algorithms representre-
source capacity/usage information of individual nodes as DHT
keys, where, each key incorporates information about each
resource type as well as its capacity value. However, while
such a representation is effective for representing pointsin a
multi-dimensional space (e.g., static values or recent values),
it is not suitable for representing distributions or for range
queries (as required for statistical inference).

Another possible approach could be to apply a statistical
resource discovery technique such as Resource Bundles [8] to
individual metrics and then to combine individual resource-
level guarantees to derive multi-dimensional guarantees.For
example, if a multi-dimensional requirement is{[CPU, net-
work], [1 GHz, 10 Mbps], 90%}, then a node that can sustain
1 GHz effective CPU capacity for 90% of the time as well
as 10 Mbps effective network bandwidth capacity for 90% of
the time would be expected to satisfy the given requirement.

2To capture the notion ofmeeting resource requirements for multiple
metrics simultaneously, we will use the termsmulti-dimensional, multi-metric,
andmulti-resourceinterchangeably in the rest of our paper.

3We allow both≥ and≤ comparisons, but mention only one for clarity of
discussion.
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Fig. 2. MVN combines multiple normal distributions together with varying
µ, σ parameters and correlations between dimensions in theΣ matrix. Shown
is an example 2-dimensional requirement space.

However, this approach does not capture thesimultaneous
occurrence of the two requirements, which depends on the
correlation between the two resource usages. Figure 1 illus-
trates this time-dependence of the resource usage behavior
of multiple resources. Therefore in order to derive multi-
dimensional resource requirement guarantees directly from
single-metric guarantees, all involved dimensions would either
need to be completely correlated or completely independentof
each other; in practice, neither of these conditions occur.For
instance, in our study of PlanetLab traces, correlations between
CPU and network bandwidth metrics were observed to vary
betweenr = 0.13 andr = 0.96.

C. Modeling Multiple Dimensions

Based on our discussion above, the question is how can
we model individual resource profiles accurately while also
capturing the inter-resource correlations. In order to achieve
these goals, we have the following key requirements for
modeling resource capacity information:

• A compact representation of the resource usage data over
multiple resource types for each node.

• An efficient means for characterizing the inter-resource
correlations at each node.

• A simple way to map the representation to the statistical
requirement for resource discovery.

Histograms or probability distributions can provide compact
representations of individual dimensions, and are also easy to
map to individual statistical requirements (by finding the cor-
responding percentile values). However, as discussed above,
they lose the time-dependent correlation among different di-
mensions. One possibility could be to maintain histograms
for individual dimensions along with inter-dimension cross-
correlation values. However, as discussed above, there is
no straightforward way of combining individual histograms
with the correlation values to determine the corresponding
percentile values across multiple dimensions (See Figure 1).

A statistical distribution that satisfies the requirementsmen-
tioned above is the Multivariate Normal (MVN) Distribution.
This distribution is a generalization of the normal distribution
to n dimensions. It can be represented as a set ofn nor-
mal distributionsN(µi, σi), i = 1, . . . n, each distribution



corresponding to one dimension, and ann × n covariance
matrix Σ capturing the correlation among the different di-
mensions. The MVN distribution has the advantage of being
a statistically “smooth” approach to finding the “volume” of
an n-dimensional requirement plane. An example of a multi-
dimensional requirement space generated by MVN is shown
in Figure 2. Given desired ranges of values for each of then

normally distributed variables, and the covariances between
each of then variables, we can calculate the probability
of these ranges co-occurring together. An MVN distribution
meets each of the above-mentioned requirements as follows:

• It provides a compact representation of individual re-
source usage distributions: each distribution can essen-
tially be represented by two numbers: (µ, σ), the mean
and standard deviation of the normal distribution.

• The covariance matrix captures the time-dependent cor-
relation between different dimensions.

• We can compute the probability of a multi-dimensional
requirement being met by evaluating the parameterized
MVN over the desired ranges along each of the resource
dimensions.

MVN would be a suitable representation to use if the actu-
ally observed resource usage distributions could be accurately
modeled as MVN distributions. However, we cannot assume
resource capacities to be normally distributed4. The question is
whether we can somehow exploit the nice properties of MVN
for solving our problem, while accounting for the real resource
usage behavior.

D. The Critical Region: Normal Approximation of Usage
Profiles

To solve the above problem, we observe that given a
resource capacity distribution, there is likely to be only a
small region of interest for resource discovery purposes. For
example, an application is unlikely to request aneffective
CPU rate of 2 GHz for only 50% of the time. Instead, any
statistical guarantees are likely to lie in a high percentile range
(such as 90-99 percentile). Therefore, since thecritical values
of the resource capacity distribution lie near the tail of the
distribution, then a fair approximation would be to fit a normal
distribution to more accurately capture thatcritical region of
interest.

Therefore, under the assumption of such a critical region
of interest, we approximate a resource usage profile to the
normal distribution. As seen in Figure 3, only two points in
the resource usage profile are necessary in order to provide a
normal approximation. We define these points to be the left
and right boundaries of the critical region of the resource usage
profile (e.g. 99th and 90th percentiles, respectively). Note that
this normal curve need not be accurate for the shape of the
distribution outside the critical region, but should capture the
critical region with high accuracy. In addition, to capturethe
correlations among the different dimensions, we simply use

4For instance, for PlanetLab data, we found that most resource usage
distributions werenot normally distributed.

Fig. 3. Construction of an approximation of a resource capacity profile
(Actual) by a normal distribution (Normal), by defining thecritical region
between points A and B.

the covariance matrix for the original distributions. Thisset of
normal distributions along each dimension coupled with the
covariance matrix provides us with an MVN representation of
the resource usage profiles.

The question is whether these normal approximations are
adequate representations of their respective resource usage
profiles? Furthermore, are the combination of these approx-
imations into the MVN distribution sufficient for accurate ap-
proximations of multi-dimensional resource requirements? We
show empirically in Section IV-B that these approximationsof
single-metric resource usage profiles to normal distributions
are, in fact, highly accurate approximations for their respective
critical regions. Next, we show how the MVN model can be
used for resource discovery.

E. Applying MVN to Multi-dimensional Resource Discovery

An MVN-based multi-dimensional resource discovery tech-
nique for n resource metrics, takes as its input an MVN
model of n resource usage profiles in the form of normal
distributionsµ = (µ1, µ2, ..., µn), σ = (σ1, σ2, ..., σn), and
an n × n covariance matrixΣ capturing the correlations
between resources. Also, it accepts a range of desired values
for each metric. For example: for effective CPU available, [1.5
GHz,∞], and for observed (node-level) network transmission
rates, [−∞, 1 Mbps]. Notice we must use−∞ instead of
zero (even for nonnegative metrics) due to the use of normal
approximations.

As its output, this resource discovery technique uses the
MVN distribution CDF to compute theprobability that all of
the resource usage variables will fall within their respective
given ranges simultaneously. Thus, if the resulting probability
is greater than or equal to the desired guaranteed level of
service for the given requirement, then that node will be
deemedsuitablefor the application.

At a high level, each node in the system would analyze
its own traces to determine the correlation values between all
resource metrics, and perform approximations to the normal
distribution for all such metrics. In order to represent its
aggregate multi-dimensional resource requirement capacities,
only the normal distribution parameters (µi, σi) and covariance
matrix (Σ) need to be maintained, and propagated to other
nodes in the system as required (e.g., a central manager, or
neighbors in an overlay). Overlays appropriate for this such
data dissemination for resource discovery are presented in



our previous work [8] which makes use of a hierarchical
overlay [17].

IV. EVALUATION

We next present an evaluation ofHiDRA: our MVN
distribution-based resource discovery technique. We carry out
this evaluation using a data analysis of PlanetLab traces, as
well as through a live deployment on PlanetLab. As part
of the evaluation, we first validate the accuracy of approxi-
mating individual resource usage distributions using normal
distributions. Then we evaluate the accuracy of HiDRA for
multi-dimensional resource discovery. Finally, we evaluate the
performance of this technique through a live deployment on
PlanetLab. We begin by describing our data analysis method-
ology for evaluating resource discovery techniques.

A. Data Analysis Methodology

We used a month-long PlanetLab trace of 427 nodes ob-
tained by CoMon [19] from February 2007 for our experi-
ments. This trace provided resource usage values at 5 minute
intervals for various resources for each node: CPU, memory,
network bandwidth, etc. In particular, we considered resource
usage metrics such aseffective CPU(calculated from theCPU
Burp statistic included in CoMon data), observed network
transmission rate (NetTx), observed receive rate (NetRx)5

and 5-minute load average (5LoadAvg). We did not consider
memory usage, as PlanetLab has a stringent memory usage
policy, which renders memory usage data useless for our
purposes.
Emulating Resource Discovery: In order to evaluate resource
discovery techniques through data analysis, we emulate the
resource discovery process as follows. This process from
the client-side perspective begins as a query (specifying a
requirement), receives an answer from the resource discovery
algorithm (consisting of a selection of nodes on which to
deploy), and then ends by evaluating the goodness of the
node selections, determining which nodes wereacceptable,
i.e., which nodes satisfied the requirement over the lifetime of
the deployment.

We execute each resource discovery algorithm over a 24
hour trace of data for making its decisions (for node-level
statistical guarantees over the next 24 hours), and then evaluate
the goodness of the selection by observing the resource usage
data for the selected nodes for the following 24 hours. We
perform this evaluation for each successive day in the month-
long trace. Each baseline algorithm (described next) may use
all or part of the 24 hours of data to make its decisions. The
MVN distribution-based algorithm (HiDRA) uses the 24 hours
of data to construct single-metric normal approximations and
cross-metric correlations which are then used for multi-metric
approximations.
Evaluation Metrics: The goodness of choice between dif-
ferent resource discovery algorithms can be evaluated in
several ways. Resource discovery algorithms return a set of

5Note that NetTx and NetRx should not be confused with networktransmit
or receive capacity.

nodes to the client application, indicating their best efforts
at finding the most accurate set of acceptable nodes. To
quantify the accuracy of resource discovery algorithms, we
define the following evaluation metrics that take into account
the proportion ofacceptablenodes—nodes that actually meet
the requirements—with respect to the selected nodes as well
as the total number of nodes in the system.
• Precision is the proportion of nodes selected that were
actuallyacceptable. A precision value of 1 indicates that every
node selected by the resource discovery algorithm fulfilledits
given requirements. However, precision by itself is not enough,
since it could still mean that the algorithm may have missed
many acceptable nodes in the system.
• Recallis the proportion ofacceptablenodes that were chosen
by the resource discovery algorithm of those that existed in
the whole system. A low recall value means that the algorithm
fails to find many acceptable nodes. However, one cannot
consider recall alone, since a trivial algorithm that selects every
node in the system will always have a recall of 1.
Resource Discovery Algorithms: We will compare the fol-
lowing resource discovery algorithms:
• Memoryless: This algorithm uses the last data point for each
metric on each node to estimate its expected capacity over the
next day. This algorithm emulates resource discovery algo-
rithms that use recent resource usage information to determine
the suitability of a node to meet a minimum requirement, and
does not incorporate statistical resource usage patterns into its
decisions.
• History: This is a centralized algorithm with global historical
knowledge of the entire system. It maintains complete 24-hour
traces for each node. This provides a baseline to determine
the effect of data loss due to approximation/aggregation on
the accuracy of resource discovery.
• Resource Bundles: This algorithm is used for single-
metric resource discovery results only. This uses Resource
Bundles [8] to aggregate the resource usage histograms of
groups of nodes into resource bundles. Note this technique
is able to maintain the overall shape of the single-resource
distributions, whereas the NormApprox method below sacri-
fices all but the critical region of the distributions. It must be
noted, however, that the Resource Bundles algorithm performs
aggregation at a more complex group-level granularity (instead
of node-level granularity), supporting more functionality than
merely resource discovery. In our experiments, nodes are
bundled based on histogram similarity. For each bundle, if
its representative meets the desired statistical requirement, all
its members are considered acceptable.
• HiDRA: This algorithm uses the MVN-based resource
discovery described in the previous section. Our single-
dimensional version of HiDRA is calledNormApprox .

B. Validating Normal Approximations

In order to justify our modeling of resource usage profiles as
normal distributions, we first show that these approximations
are accurate models. Note that an important assumption we
have is that the main area of interest for resource usage profiles
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Fig. 4. Normal Approximations (NormApprox) compared against baseline resource discovery algorithms along with Resource Bundles. (p = 95
th percentile

for NormApprox, Cluster and History.) 420 PlanetLab node traces from Feb 2007 were used.

is the critical region. If we assume that applications will
infrequently ask for percentiles less than the 90th percentile,
then it is reasonable to choose the critical region endpoints to
be the 90th and 99th percentiles.

But is this still accurate for resource discovery requirements
between the 90th and 99th percentiles? In Figure 4 we show
the accuracy in terms of precision and recall for 95th percentile
CPU requirements. NormApprox shows more precision than
History itself, similar to Resource Bundles. We explain this be-
havior as the algorithms being conservative about their choice
of nodes; it finds fewer nodes than History, but is slightly more
precise in its choice of nodes. This most likely is a result
of the approximation and “smoothing” of the distributions
so that fewer nodes are chosen. However, NormApprox has
recall nearly as high as that of History; Resource Bundles
lags behind in this regard since the accuracy of its aggregation
technique depends on other “similar” node resource usage
profiles, whereas our approximation technique is independent
of other node distributions.

Thus, NormApprox is a highly accurate means for approx-
imating node resource usage profiles using normal approx-
imations, even though the distributions themselves may not
entirely be normal. This is sufficient since we wish to model
only the most important critical regions of the distribution. As
we discussed in Section III-D, this normal approximation is
crucial for the MVN approach to work, and we next show
the benefit of this approach for multi-dimensional resource
discovery.

C. Multi-dimensional resource discovery

We now evaluate HiDRA over multi-dimensional resource
requirements. In our evaluation of HiDRA, we ask the follow-
ing questions:

• Is HiDRA accurate across a wide variety of resource
metrics?We would like to evaluate its performance on a
set of resource requirements, varying of the number and
combination of metrics selected.

• Is HiDRA accurate across a wide variety of require-
ment percentiles inside the critical region?Given the
requirement metric values and critical region, if we vary
the requirement percentile, we want to see how accurate
HiDRA is inside the critical region, and investigate its
accuracy for percentiles outside of the critical region.

• How does the critical region size impact the accuracy
of HiDRA? As we hold constant the requirement metric
values and the requirement percentile, we want to inves-
tigate the changes on accuracy as we vary the boundaries
of the critical region.

1) Performance Across Different Requirements:In
our analysis we used five multi-dimensional resource
requirements for our evaluations, defined below.

Req EffCPU NetTx NetRx 5Load 15Load
(≥ MHz) (≤ Kbps) (≤ Kbps) (≤) (≤)

1 500 1000 1000 5.00
2 500 1000 5.00
3 1000 8.00
4 1000 5000
5 300 2000 2000
These requirements were chosen to represent a wide variety

of applications having a different multi-metric requirements.
Also notice that there may be varying amounts of correlations
between various metrics chosen above, e.g., while some of
these metrics may be highly correlated, (e.g., effective CPU
and the 5-minute Load Average), others may be largely
independent of each other (e.g., Load Average and NetTx).

The results of applying these requirements (withp = 95
percentile) can be seen in Figure 5. For each of the five
requirements, HiDRA consistently performs very close to the
fully-informed History technique (that uses complete node
traces). The number of acceptable nodes chosen between the
History and HiDRA algorithms is extremely close. As in the
previous results, HiDRA selects slightly fewer nodes, showing
a slightly better precision but slightly worse recall.

These results show that under a wide variety of resource
requirements, also among varied configurations and metrics
chosen under these requirements, HiDRA is a highly accurate
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algorithm for resource discovery, performing on par with a
fully-informed algorithm.

2) Performance Across Requirement Percentiles:Next, we
show HiDRA’s performance as we vary the requirement
percentile itself (for Requirement 2 above) with a critical
region of 90-99. The results can be seen in Figure 6. First
notice how both the precision and recall of History decline
as the percentile value increases; this indicates that it is
more difficult to accurately predict a selection of nodes for
higher requirement percentiles. The precision and recall of
HiDRA approaches the goodness of History as the percentile
approaches the left boundary of the critical region, the 90th
percentile. This is happening because the modeled normal
distribution more accurately approximates the actual resource
profile within the critical region, with an exact overlap at the
endpoints of the critical region. Thus, we expect HiDRA’s
performance to follow History more closely within the critical
region. In particular, it can be seen by how the precision
and recall of History and HiDRA both match exactly at the
90th and 99th percentile points, the critical region boundaries.
Inside the critical region, the precision of HiDRA is slightly
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better than that of History, while recall lags slightly behind.
This indicates that, in the critical region, HiDRA tends to
select slightly fewer nodes than History, but its selectionis
slightly more accurate than that of History. These results show
that HiDRA is highly accurate when the requirement percentile
falls inside the critical region.

3) Impact of Critical Region Boundaries:Next, we inves-
tigate the sensitivity of HiDRA’s performance when we vary
the critical region left boundary under two different percentile
choices (for Requirement 2 above). Note that the accuracy
measures for History will not change as it does not depend on
the critical region of HiDRA.

We set the percentile of the requirement to 95 and vary the
left boundary of the critical region, keeping its right boundary
fixed at 99 percentile. The results can be seen in Figure 7.
In this example, the requirement is always inside the critical
region, and the measures of accuracy, both precision and recall,
show signs of improvement as the critical region is bound
tighter to the percentile, as expected.

Next we set the percentile to 75 and again vary the left
boundary of the critical region in Figure 8. This time, the



requirement starts on the left boundary of the critical region,
and moves outside of the region as we move the boundary of
the critical region to the right. Not surprisingly, both precision
and recall decline as the critical region moves away from the
percentile of interest. However, the deviations from the History
algorithm are not too severe (precision within 11%), showing
that even with a misconfigured critical region, the results are
still fairly accurate.

4) Selecting The Critical Region:Our results provide some
guiding principles for the choice of critical region boundaries.
First, we observe that tighter critical regions surrounding the
requirement percentile result in higher accuracy. Second,when
the requirement percentile falls outside the critical region,
there is a dropoff in accuracy.

These two observations highlight a tradeoff concerning
critical region selection. If the critical region is too wide,
several percentiles would likely fall inside the region, but
accuracy would suffer from approximating such a wide region.
On the other hand, if the critical region is too small, the
accuracy would be high inside the region, but many percentiles
are likely to fall outside of the critical region. This tradeoff
suggests that the width of the critical region can be fine-
tuned and dynamically adapted based on the frequently desired
percentile values. For instance, even if the initial critical region
was chosen as [90-99], if most queries are for 95 percentile
requirements, then the critical region can be tightened to [95-
99]. Similarly, if many percentiles appear to fall outside the
critical region, then, it can be expanded or the range moved
to include the desired values.

D. Implementation

We deployed our HiDRA algorithm on 307 nodes in Plan-
etLab. Our primary goal was to validate the results we saw
in our analysis, through an online deployment of HiDRA in a
real system and also to measure the overhead of HiDRA. We
chose three simple multi-dimensional requirements to inject
into our implementation:

Req EffCPU (≥ MHz) NetTx (≤ Mbps) NetRx (≤ Mbps)
1 500 10 10
2 1000 10 10
3 1500 8 8
Nodes monitored their own resource usage time series

via their own access to their local CoMon daemon process.
We limited our monitoring to the three resource metrics of
interest: effective CPU, network transmit bandwidth observed
and network receive bandwidth observed. From this time
series, the nodes computed their own normal approximations
to individual metrics and also the covariance (i.e., correlation)
matrix. This functionality was implemented using a Perl script.
Then these normal distribution and correlation data were
sent to a centralized query manager node, which executed
the HiDRA algorithm using a Fortran implementation of
the MVN distribution function [20]. Thecritical region was
defined between the 90th and 99th percentile values for each
of the resource metrics. Also, the History and Memoryless
algorithms were employed in this system by each node sending
a historical trace of its resource usage. For clarity, we refer to
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Fig. 9. Node selection for three different requirements under the 95th
percentile in our PlanetLab implementation

the node-level resource profile MVN distribution parameters
maintained by HiDRA asresource descriptors.

In our resource discovery framework, we chose to utilize a
centralized query manager because PlanetLab is a relatively
small system. Here we place less focus on the actual means
of data propagation in the system6, and rather pay attention
to the amount of data, and provide results on the data transfer
overhead “per update” as a result.

We propagated updates every 10 minutes of the resource
descriptors at each node to the centralized query manager.
Note that if the centralized query manager goes offline, its
complete data store of resource descriptors will be completely
replenished within 10 minutes of coming back online by
receiving the usual amount of data from each node every 10
minutes. Also note that the size of the resource descriptorsis
independent of the size of the trace from which it originated;
it is of fixed size dependent only on how many resource
dimensions are being measured.

We chose a time window of 24 hours for application deploy-
ment which is also used for resource descriptor construction.
We submitted our query for the three multi-resource require-
ments to the central query manager and received responses
from each of the algorithms. Then to evaluate this response
of the resource discovery algorithms, we analyzed the future
traces of the nodes chosen for deployment to measure the
goodness of choice of nodes for a pseudo-application7. A
node chosen by an algorithm that satisfied its requirements
is hereby called “acceptable”, and a node that does not satisfy
its requirements is labeled “unacceptable” in the evaluation
that follows.
Resource discovery accuracy:We evaluated our results over
three different percentiles for each of the three multi-resource
requirements. The results are shown in Figures 9 and 10.

6Forms of propagation (in structured or unstructured systems) include
gossiping and flooding, as well as communication in systems that assume
some super-node or hierarchical based overlay such as [17].

7PlanetLab has stringent rules for network bandwidth and memory con-
sumption that are prohibitive to extensive multi-metric experimentation, which
led us to use a pseudo-application, instead of a real application.
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Fig. 10. Node selection for three different requirements under the 75th
percentile in our PlanetLab implementation

As seen above in section IV-C, HiDRA’s selection of nodes
shows precision on-par with (or better than) History along
each of the three requirements. Also, HiDRA has a recall
slightly lower than that of History, which we also saw in the
previous analysis. Even in the 75th percentile experiment that
does not lie in the critical region, the precision and recallof
HiDRA is remarkably close to History, showing again that
HiDRA is robust to an improperly configured critical region.
Our evaluation of this live implementation confirms our results
in the data analysis section above that HiDRA is a highly
accurate means for multi-dimensional resource discovery.
Data overhead: The total size of all 307 resource descriptors
at the central node was 70 KB. A fully-informed history-
based algorithm would need about 99 MB of full traces from
all nodes, which is 1,458 times more overhead than using
our resource descriptors. The memoryless approach would
have a data transfer size of 6 KB per update, but we have
shown it is highly inaccurate. Again, note that our resource
descriptors describe the whole trace, so we feel this is a fair
comparison, especially in systems that may use flooding or
gossiping of the resource descriptors. An impressive property
of HiDRA is its data size independence from the trace length.
Additionally, we can also be flexible in how often we send data
in HiDRA because resource usage distributions are unlikelyto
change over the short run, and hence HiDRA can send updates
less frequently than a history-based or memoryless algorithm,
reducing the network transmission overhead further.

V. CONCLUSION

Statistical resource discovery is critical for applications to
find suitable resources in dynamic and heterogeneous large-
scale distributed systems. A key problem is achieving such
statistical resource discovery for multiple resources simul-
taneously. In this paper, we presented HiDRA, a scalable
multi-dimensional resource discovery algorithm that employs
multivariate normal distributionfor the probabilistic modeling
of resource capacity over multiple dimensions. Our PlanetLab
trace-based analysis showed that HiDRA performs nearly as

well as the fully-informed History technique (with better
precision than History and recall within 3% of History). Since
HiDRA has such a compact representation of node behavior on
multiple metrics simultaneously, it becomes a very attractive
solution for large-scale systems that need a scalable resource
discovery mechanism. Also, HiDRA provides statistical guar-
antees to applications that allow deployments to be more
stable and reliable, not subject to frequent failures or migration
scenarios. Our live implementation in the PlanetLab testbed
shows our system to be a feasible, low-overhead method in
finding acceptable nodes for applications. In future work, we
will investigate an integration with our previous work [8].
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