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Abstract

This paper addresses the inherent unreliability and iflgyatf worker nodes in large-scale donation-
based distributed infrastructures such as P2P and GriémgstWe present adaptive scheduling tech-
nigues that can mitigate this uncertainty and significantlyperform current approaches. In this work,
we consider nodes that execute tasks via donated commahtiesources and may behave erratically
or maliciously. We present a model in which reliability istre binary property but a statistical one
based on a node’s prior performance and behavior. We usenthilel to construct several reputation-
based scheduling algorithms that employ estimated rétialbatings of worker nodes for efficient task
allocation. Our scheduling algorithms are designed to attapghanging system conditions as well as
non-stationary node reliability. Through simulation werdmstrate that our algorithms can significantly
improve throughput, while maintaining a very high succede of task completion. Our results suggest
that reputation-based scheduling can handle wide varfetyotker populations, including non-stationary
behavior, with overhead that scales well with system size.a§o show that our adaptation mechanism

allows the application designer fine-grain control overigesperformance metrics.
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. INTRODUCTION

Recently, several distributed infrastructures, includpegr-to-peer networks and donation
Grids, have been proposed to host large-scale wide-ardiaatpms ranging from file sharing/file
storage to high performance scientific computing [1]-[6¢sPite the attractive features of these
platforms (scalability, low cost, reduced cost of owngpshand resilience to local failures),
widespread deployment of such systems and applicationbéas elusive. A key problem is
the inherent unreliability of these systems: nodes mayeleawd join unexpectedly, perform
unpredictably due to resource sharing at the node and neteeel, and behave erratically or
maliciously. This paper presents a design and analysiscbihtques to cope with the inherent
unreliability of nodes that execute tasks via donated cdatfmnal resources.

We present a model in which reliability is not a binary prdpdsut a statistical one based
on a node’s prior performance and behavior. Such a statistodel is important for two main
reasons. First, a node’s behavior could change with timehande nodes cannot be classified as
being purely reliable or unreliable always. Second, regmgsg reliability as a statistical property
allows us to incorporate the uncertainty inherent in theesys knowledge of individual nodes’
reliability. We adopt a reliability model based on the acalation of the direct observation of
node behavior over prior task executions. An example of sucknvironment is BOINC [4], or
its forerunner SETI@home [6], in which a server distributesks to worker nodes and collects
results. Since nodes are not reliable, the server genematlyot be certain that the results returned
by any given worker are valid unless application-specifiagfiees are provided. Many factors
may contribute to the unreliability of a node. It has beenvwah/] that cheating has been a
considerable problem in the SETI@home project. Howeves @lso possible that nodes have
incorrectly configured software, are hacked, have poor ecions to the server, or are highly
loaded and cannot return timely results.

We speculate that when excess resources become a visibtiEaglacommodity or utility [1],

[8] , cheating or hacking nodes will become even more prenvalae to economic incentives. In

addition, it seems likely that as distributed systems bextarger and more widely dispersed,
reliability will also decrease due to more failure-pronengmnents and increased exposure to
malicious agents and viruses. To deal with uncertainty emahsence of inexpensive verifiers,

outsourced computations can be redundantly scheduled tonder of nodes. If we assume that
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the space of feasible (but not necessarily verifiable) tessilsufficiently large, it is very likely
that a result returned by a majority of workers will be valichode collusion has not occurred.
Such a majority result could then be treated as the “cornesiilt of the computation.

A major drawback of using redundancy is that it may reduce ahmunt of useful work
performed. The degree of redundancy is an important paexmetsmall degree of replication
could decrease the likelihood that the server will receiverfiable result. On the other hand, a
large degree of replication could result in unnecessaryichtipn of work by multiple resources.
Systems like BOINC rely on the application writer to specifystvalue for each task. Since
the reliability of workers in a distributed environment mbg uncertain, it is likely that any
statically-chosen redundancy value will reduce the effeness of the system.

To overcome this problem, we propose techniques to deteritia degree of redundancy
based on the estimated reliability of the workers. Inteitty a smaller degree of replication
should be possible if the allocated nodes are collectivalyenneliable. Using a simple reputation
system [9], it is possible to determine the likelihood thafivaen worker will return a correct and
timely result with fairly high accuracy. Unlike other syste which have studied the concepts
separately, we incorporate metrics of correctness as wdih#liness to generalize the notion
of trust to that ofreliability.

Using individual worker reliability estimates, we intragkian efficient technique for computing
a lower-bound on the likelihood that a group of workers wdturn a majority of correct and
timely results. These group reliability ratings can be usgdhe system to intelligently schedule
tasks to workers, such that the throughput of the systempsaved, while still maintaining the
server’s ability to distinguish fraudulent results fromigtaones.

Applying these techniques in practice introduces a numbehallenges. First, the system must
be able to learn the reliability of individual workers. A nber of different reputation systems
have been proposed for this purpose [10]-[15], althoughlcsely the right one is dependent
on the characteristics of the environment in which it will Beployed. Second, given these
reliability ratings, the system needs an algorithm or hetiarito determine how to match groups
of workers to tasks. Since it is likely that the best scheduliechnique will be dependent on
the environment, we propose a set of algorithms that aredttmehe characteristics of typical
environments. Finally, the environment may be extremelyaayic, and the underlying scheduling

mechanisms must be highly adaptive.
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We consider several different algorithms which can be usegltde scheduling decisions on
the basis of statistical reliability ratings associatethvgroups of workers. We also present an
adaptive algorithm which adjusts scheduling parametersatch conditions in the system. This
algorithm provides a “knob” for tuning scheduling decisan terms of metrics such as success
rate and throughput which are familiar to application desrg.

Finally, we compare the throughput and computational ae&dhof each of these techniques
through simulation of a BOINC-like distributed computing retructure. Our results indicate
that reputation-based scheduling can significantly im@rtdwe throughput of the system for
worker populations modeling several real-world scenarinsluding non-stationary behavior,

with overhead that scales well with system size.

Il. BACKGROUND AND RELATED WORK
A. Distributed Computing Infrastructures

Numerous computing infrastructures have been designedlizeudle distributed resources.
These systems can be loosely categorized into two groupsetthat utilize resources under
administrative control, such as Globus [16] and Condor [BY those that rely on unsupervised
donated resources such as SETI@Home [6] and Folding@Homjelfilthis paper, we mainly
focus on the latter, as these environments are much moresise to unreliability.

The @Home applications [6], [17] and their generalizatiBQINC [4], are instances of a
growing number of systems which utilize donated computipges to solve massive scientific
problems. BOINC provides application designers with a nedaire that can be used to design
and deploy systems in which a master task server assignsutatigmal tasks to a pool of donated
computing resources. In contrast to BOINC, several unstredteycle-sharing platforms have
been proposed [5], [18], [19] in which nodes can act as botleat@nd a server. These platforms

facilitate the formation of ad hoc communities for solviragde-scale computing problems.

B. Dealing with Unreliability

Dealing with unreliability is a core design challenge in agigtributed system and many
techniques have been proposed in the literature. Reduraidnallocation combined with voting,
as used in Byzantine fault-tolerant (BFT) systems [20], isytepdue to its general applicability.
This approach is also used by most BOINC [4] applications tafwéhe results of outsourced
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computations: if a majority of the workers assigned a taslirnethe same result, then the result
is deemed valid.

Since task replication could result in lower resource zdtiion, some techniques have been
proposed to verify results for tasks allocated to a singteuece. Golle and Mirnov [21] present
a verification technique that inserts pre-computed ima@especial spot-checks called “ringers”
into distributed tasks to verify results returned by a wordked identify cheaters. This technique
can be used only for verifying computations that exhibibree-wayproperty, and thus is not
applicable for general computations. Another verificattechnique [22], [23] employs pre-
computed tasks called ‘quizzes’ that are embedded into ch lwdt(otherwise indistinguishable)
tasks allocated to a worker. When the task server receivesch béresults from a worker, it
assumes the results for the real tasks to be correct if thdtsefor all of the quiz tasks are
valid. While not dependent on one-way functions, this teghaistill requires pre-computation

of certain tasks, which may be non-trivial or infeasible iamy scenarios.

C. Reputation-Based Scheduling

Reputation systems [24] are commonly applied in peer-to-pewvorks to gauge the reliability
of nodes [11], [12], [15], [25]. Trust or reputation systeare a general technique for predicting
the behavior of distributed entities based on past intenastwith these entities.

The concept of trust-aware resource management for the \&sdproposed in [14], where
a technique is presented for computing trust ratings in a Gsing a weighted combination of
past experience and reputation. GridEigenTrust [13] caewithis trust-computation technique
with the EigenTrust reputation system [12] to provide a naatdm for rating resources in
a Grid. This work presents an architecture for managing tegjmm ratings in a Grid, and
proposes using these ratings to perform reputation-bassalirce selection. However, it does
not provide any specific algorithms for reputation-basdtedaling. Zhao and Lo [23] propose
augmenting peer-to-peer cycle sharing systems with a agpotsystem to reduce the degree
of replication required to verify results. However, theionk makes several assumptions: nodes
are either strictly trustworthy or untrustworthy, the nwenlof nodes is large relative to the
workload which allows nodes to be discarded if untrustwgrénd node behavior is fixed
(for the results presented). These assumptions may nat boftel in practical scenarios. The
scheduling algorithms proposed by Zhao [23] and SarmerZpd explicitly designed to deal
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Fig. 1. The system model: a server maintains a reliability rating store amsdtheseatings to assign tasks to groups of workers.

with node collusion. In contrast, we assume that each woakes independently. Song [26]
recently proposed trust-based scheduling algorithmsgydedito avoid compromised resources,
as opposed to handling explicitly malicious resources.

Overall, most existing reputation-based scheduling se&shave focused on correctness as
the primary metric, and have dealt mainly with binary truatlues. The unique elements of our
approach include a more general statistical representafigeliability that includes timeliness

as well as correctness, and the use of this metric to imprppkcation and system performance.

[1l. SYSTEM MODEL
A. Computational Model

Our distributed computing model consists of a central gethvat assigns computational tasks
to a set of worker nodes as illustrated in Figure 1. The workedes in this computation
model are not centrally-controlled, and could be partitfafor various reasons. For instance,
they may be donating their idle resources voluntarily (eRjanetLab [2]), or they may be
providing their resources in return for some incentive hsas monetary remuneration [1], [27],
credit [4], [6], or use of other nodes’ resources in returB][429]. Our system model does
not make any assumptions about the incentive scheme forewpiticipation or the workload
generation methodology: the computation tasks could eltleepre-generated on the server by
the application, or they may be submitted by users accessamnmon service. We assume that
the set of tasks that need to be computed by the availablef setr&er nodes is large enough

to keep all workers busy for the duration of the application.
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B. Reliability Model

Since the participation of worker nodes is voluntary andiolgt the server’s control, workers
may not return correct results in a timely manner for sevegakons. First, a node may be
overloaded or behind a slow connection, resulting in slospoase. Another reason may be
that a node is misconfigured, hacked, or infected by a viesjlting in incorrect computation.
Finally, a node may be malicious (deliberately trying tordpg a computation) or cheating (to
gain an advantage in a remuneration scheme, such as gaktiegceedit [7]), thus returning
wrong results. We model such unreliable behavior by assggto each worker a probability
of returning a correct response within a “reasonable” timaenk. This probability need not be
fixed, and could change with time. For instance, nodes mayfftjpeoand come back up again,
or some malicious nodes may change their behavior with timetarning correct results for a
while to improve their reputation and then deliberatelyeating bad results into the system.
When modeling these unreliable workers, we assume that eadfemwacts independently, and
that there is no collusion between them. This assumptiommsistent with behavior observed
in popular outsourced computing systems, in which indigldtheating has been observed [7],

but collusion has not.

C. Redundant Computation and Result Verification

A key consideration in our model is that the server may noehav efficient way of indepen-
dently verifying each worker response for correctness. 8Védveral techniques [21], [30], [31]
have been proposed to verify the correctness of resultse tteehniques are application-specific
and are not applicable to general computational scenaResults of several computational
problems may not even be verifiable by the server withoutgoerihg the computation itself.

In our system model, we employ a verification technique basededundant computation
coupled withvoting This technique is adopted by several general computintesgssuch as
BOINC [4]. Under this verification technique, each task isumdantly assigned to a set of
worker nodes. Once the workers respond, the server conduti®te” among the returned

results. If a quorum of workers agrees on a result, the sdreats that result to be correct.

'Based on private communication with Dr. David Anderson, creator afl@Home, there has been no observed evidence
of collusion in SETI@Home.
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In the absence of a quorum after voting, the task is rescaddi¥Vhile the quorum size could
be application-dependennajority is typically used to determine the correct answer. Note that
such a voting-based verification scheme does not requireapplication-specific support or

knowledge.

D. Definitions and Assumptions

Definition 1: Task (7;): A task is defined as a self-contained computational activig can
be carried out by a worker node. Upon completion, each taslergées a well-defined result
that is returned to the server.

A task would typically correspond to an independent unit ¢drger computation. For example,
a task may correspond to computing the determinant of a swinand the result of the task
would be the value of the determinant. Another example ofsé taould be to match a DNA
sequence against a subset of gene sequences from a geriebas#a In this case, the result
could be the best matching gene and the similarity score.

Definition 2: Solution Space (X): The solution space of a task is the set of potential result
values that can be returned for the task.

For instance, a task whose answer is Boolean has a two-elewolatibn space). = {true, false}.
On the other hand, a task whose answer is drawn from the setegfars has an infinite solution
space,>. = I. We assume that the solution space for the tasks in our medgf sufficiently
large cardinality, so that it is unlikely that two workerslvindependently return the same wrong
result.

Definition 3: Reliability (r;): Reliability of a workeri is defined as the probability that the
worker returns a correct result within a (system-definedietperiod.

Note that reliability is not a binary property—a node coudturn the correct result some of the
time, and a wrong result at other times. Moreover, the réiialproperty of a worker could also
change with time (e.g.: due to outages, fluctuating loadjamals node behavior, etc.).

Definition 4: Redundancy Group * (G;): Redundancy group for a task is defined as the
group of worker nodes assigned to compute the task.

In most existing systems, the size of each redundancy gsotypically set to a fixed static value

selected by the application designer or the system admwatost This value may be determined

In the rest of the paper, we would refer to a redundancy group singplygaoup unless required to avoid confusion.
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empirically, although often it is simply based on a rule ofirtib. In our system model, the
redundancy factor for each group can be different and dyceliyidetermined, and is dependent
on the reliability of the group’s constituent worker nodes.

Definition 5: Quorum: We say that a grougr; has reached quorum if some number of
worker nodes, which may be fixed or dependent on the group igaern the same result.

In our system model, we say a group has reached quorum if aitgaydthe workers return the
same result. In general, the quorum size could be dependetiteocardinality of the solution
space, for instance, a binary solution space would liketyuire a larger quorum.

Definition 6: Likelihood-of-Correctness ()\;): Likelihood-of-correctness for a grou@; is
defined as the probability that the group would return a obmresult based on majority voting.
The likelihood-of-correctness; for a group represents the collective reliability of the wpo
This value is dependent on the individual reliability vaug# the constituent nodes of the group.
We will see in the next section how this value can be compubedyfoups using the reliability

of individual workers.

IV. REPUTATION-BASED SCHEDULING

We now present a reputation-based scheduling algorithndistributing the server work-
load among the worker nodes. This algorithm employs rditghiatings of individual worker
nodes for task assignment in order to improve the overatludjinput and success rate of task
completions. This reputation-based task scheduling algorconsists of the following steps:

« Estimating reliability ratings of individual worker nodes

« Using the estimated worker reliability ratings to compuke tlikelihood-of-correctness

(LOC) of possible groups.

« Grouping workers for task assignment based on LOC estintatesximize the throughput

and success rate of task completions.

We will now describe each of these steps in more detail, dsog the various techniques

and algorithms employed in each case.

A. Estimating Reliability Ratings

We use areputation systento estimate the reliability ratings of individual worker des.

These reliability ratings are learned over time based orrésalts returned by the workers to
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the server. All workers report their results to a centraliserver, so a local reputation system

can be employed. We estimate a worker’s reliabilitt), at a given timet, as follows:

ni(t) +1
N;(t) +2’

ri(t) =
wheren;(t) and N;(t) are respectively the number of correct responses geneaatkthe total
number of tasks attempted by the worker by timeBy this formula, the reliability rating of
a worker is initialized toj, corresponding to having no knowledge about its actuahlbdity.
The rating of each worker is updated each time it is assignesla based on the response it
returns (a missing or late response is treated as incark®tije we assume that the server learns
the reliability ratings using its own observations, it isspible to use a peer-to-peer reputation
reporting system [11], [12] to improve the accuracy of thetengs or reduce the time to learn
them, if the system has multiple servers interacting inddpatly with the workers.

Recall from Section IlI-C that the server employs a majobsed voting scheme to determine
the correctness of a task. Thus, if the workers in a grouphr@amajority on their results, the
server accepts the majority answer as the “correct” resulthis case, it would increase the
reliability ratings of the workers that are part of the méjgrand decrease those of the remaining
workers, treating their responses to be incorrect.

However, this still raises the question of how to update #ngs of workers in a group
that doesn’t reach quorum. In a previous work [32], we comr®d three different heuristics for
updating reliability ratings. For each of the heuristice analyzed both the accuracy relative
to an optimal heuristic and the impact on system performalcaddition, we considered the
effects of using bounded and unbounded history on the acgarad fluidity of worker reliability
ratings.

In this work, we will restrict our attention to th®ptimistic heuristic, which was the most
accurate in simulation. The Optimistic heuristic is defiasdollows: In the absence of a quorum,
this heuristic increases the reliability ratings of any eétworkers that agree on the result
value. It penalizes those workers whose answers do not naatghother answers from the
group. Intuitively, this heuristic is based on the assuopthat the probability of two workers
returning the same wrong result independently is neghyitilus treating any matching answers

to be pseudo-correct.
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B. Computing the Likelihood-of-Correctness

The likelihood-of-correctness (LOC) of a group represenésgrobability of getting a correct
answer from that group using the majority-based votingedon of verification. This value can
be computed using the individual reliability ratings of tembers of the group, as estimated
above. Consider a grouf = {wy, ..., w1} consisting of workersv;,i = 1...2k + 1 2. Let
r;(t) be the reliability rating of a workew;,i = 1...2k + 1, at a given point in tim&. Then,
the LOC \(t) of the groupG is given by:

2k+1 2k+1

= > > JIno-@—rwm (1)

m=k+1 {e||el|=m} i=1

wheree = {e,...,e941} IS @ vector of responses from the workers in the group, with 1
representing a correct response, and 0 representing amraotawesponse. The criterion for
determining correctness is based on achieving a majomstydescribed above. For simplicity,
we will omit the implicit time variablet, in future discussion of the LOC. For example, for
a groupG consisting of 5 workersv; throughws, one possible vector could b, 1,0,0,1},
indicating correct responses from workess, wy, and ws. Intuitively, Equation 1 considers all
possible subsets of the given set of workers in which a ntgjari workers could respond
correctly. It then computes the probability of occurrenteeach of these subsets as a function
of the reliability rating of the workers. Note that the likedod of the false-positive case where a
majority of workers return the same wrong answer is nedkgidnd hence ignored in Equation 1.
1) Lower Bound for Likelihood-of-Correctnesés can be seen from Equation 1, calculating
the likelihood-of-correctness for a group results in a comatorial explosion of the possible
subsets that need to enumerated. In fact, the complexitpropating the\ value can be shown
to be O(2%), which is infeasible for most practical purposes. To rediheecost of computing
A values for multiple groups, we use a lower bouxid for \ that is much simpler and more
efficient to compute. This is obtained from Equation 1 usihg &rithmetic-geometric means

inequality which is a special case of Jensen’s Inequalit@].[3

2k+1 2k+1
3 2k +1 .
)\lbz ( ) | | 7ﬂ 1_Tz 1 m> (2)

m=k+1

2We consider odd-sized groups to avoid ambiguity in defining majority fenesized groups.
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wherea,,, = % It can be shown that the complexity of computiNg is O(k?), and is thus
much more efficient to compute than the actual value.ofhe grouping algorithms, which we
will describe shortly, use the lower bound function to comepM In Section V-E, we compare
the effect of the lower bound function on our simulation tesu

2) The Role of LOC in Task Schedulinfo determine the size and composition of the groups,
the system relies on a parameter indicating whether or retLthC for a proposed group is
acceptable. That is, we require some valg,.; such that if\ > A, ., then we conclude that
G is an acceptable group. We refer Xq,.,.; as thetarget LOC

Choosing an appropriate value fay,,.,. is critical to maximizing the benefit derived from
the system. If\;,,4.: IS too small, many groups may return incorrect results, icgube tasks to
be rescheduled. If it is set too high, the scheduler will bell& to form groups which meet the
target, and the scheduler will degenerate to forming langdfsize groups, adversely affecting
the system throughput. Thus, the target LOC must be caye$dlected to fit the reliability
distribution of the workers. In Section IV-D, we will pregean algorithm to adaptively determine
the target LOC value. But first, we will describe how to grouprkess into redundancy groups
givena target LOC.

C. Forming Redundancy Groups

So far, we have described heuristics for estimating indi@idvorker ratings, and provided a
mechanism for combining these ratings to determine thalbiily of groups. We now present
algorithms to assign workers into groups for task allocgtiasing these heuristics and mech-
anisms. The goal of forming these groups is to maximize bbéhthroughput of successful
task completions (those that result in correct results)taedrate of successful task completion
(success rate) given a set of individual worker ratings (Vileshiow in the next section how to
incorporate both these metrics into the group formationsiaas).

Formally, given a set of worker8/ = {wy,...,w,}, a group formationalgorithm would
produce a partitioning = {G,}, where a task; is assigned to each group;. These groups
would be formed in such a way that of eachG; exceeds)\, .., thus achieving two goals:
(a) increasing the likelihood of obtaining a correct redudim the worker group working on
the assigned task (in turn decreasing the likelihood ofcreeduling a task) and (b) increasing

resource utilization by forming worker groups whose sizaegbased on the reliability rating
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of its members. The algorithm for selecting an appropriatg,.. is deferred to the next section.
Here, we present group formation algorithms givena,.. value. The only property of the
workers used by these algorithms is their reliability rg&n

1) Fixed-Size:This is the baseline algorithm for our system model as itee@nts “standard-
best-practice” exhibited in systems such as BOINC. The Fsied-algorithm randomly assigns
workers to groups of siz&,,.., whereR,, .. is a statically-defined constant. Every worker of a
given groupG is assigned the same task. This algorithm does not use thbilig} ratingsr;
of workers to size groups in an intelligent way. For a givehafeworkers, this algorithm will
form a fixed number of groups, irrespectivegfvalues.

2) First-Fit: In the First-fit algorithm, the available workers are sotbgdlecreasing reliability
rating. Starting with the most reliable, workers are assibto groupG; until either; > A\yqrge
or until the maximum group siz®&,,.. is reached. This process is repeated until all the available
workers are assigned to a group. Intuitively, First-fit mupés to form the first group that satisfies
Marger from the available workers in a greedy fashion. By boundirggize ofG; with R,
we ensure that First-fit forms bounded groups and degeset@tde Fixed-size heuristic in the

absence of a sufficient number of reliable workers.

Algorithm 1 First-Fit (w worker-list, 7 task-list, \o,4e; target LOC,R,,;,, Min-group-size,R,,,., max-group-
size)

1: Sort the listw of all available workers on the basis of the reliability nafs r;

2: while |w| > R,,;, do

3:  Select taskr; from 7

4:  repeat

5: Assign themost reliableworker w,. from w to G;
6: W — W - Wy

8: Update);

9: end if

10: until (>\J > >\ta7'get A ‘Gj| > R'min) \ |Gj‘ = Rmuw
11: end while

3) Tight-Fit: The Tight-fit algorithm attempts to form a grodp; such that\; is as close as
possible to\,.... The Tight-fit algorithm searches the space of availablekessr to find the
smallestG; that exceeds\,,q: by the minimum possible margin. If no group of si#,,, or
smaller meets\,,, (., the algorithm forms a group that falls short of the targettixy smallest

amount. As with First-fit, this process is repeated untilwaeker pool is exhausted. Intuitively,
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this algorithm attempts to form the best-fit of worker nodasd given\,,,4.:. As a result, tasks
are not overprovisioned with more reliable resources thegessary, and well-balanced groups

are more likely to be formed.

Algorithm 2 Tight-Fit (w worker-list, 7 task-list, A get target LOC,R,,,;,, Min-group-size,R,,.. max-group-
size)
1: Sort the listw of all available workers on the basis of the reliability nafs r;
2: while |w| > R,,;, do
3:  Select taskr; from 7
4:  Use binary search to identify the smallest setf n workers w, from w such that), exceedsh;q,get
minimally
if such a ses is foundthen
Assign thew,, workers toG;
else
Select the set ofi workerss for which Agrge: — As IS minimized
Assign thew,, workers toG,;
10:  end if
11: W «— W - w,
12: end while

4) Random-Fit: The Random-fit algorithm uses reliability ratings to formgpe by randomly
adding workers to a group; until either \; meets\, 4. or the group hasi,,., workers. It
differs from First-fit in that workers are added to groupsd@mly, rather than in sorted order.

Given a set of workers and &4, €ach algorithm is likely to produce different groups. A
simple example for\;,,4; = 0.5 is illustrated in Figure 2. In this example, First-fit is ordjple
to form a single group which meets,,,, because it uses all of the highly reliable workers
in the first group. Similarly. Random-fit also produces onlye @roup that is able to meet the
target as it assigns workers randomly to groups. In contiaght-fit is able to form two groups
which meet\,,,.; because it searches for groupings whasealues deviate from the target by

the smallest amount.

Worker nedes with reliakility ratings

First-fit Best-fit Random-fit
DO .@.@.\ .@@ @@. BEE9) EIEIEEE
=0.863 A =0345 A =08610 A = 0566 | A =0825 =0.281

Fig. 2. Example node groupings produced by different algorithms\fgfge: = 0.5, Rpmin = 3 and Rynaz = 5.

The time spent computing the LOC for a given group is the pryncamponent of the overhead
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incurred by the reputation-based schedulers, so we can arentpe algorithms in a system-
independent manner. The First-fit and Random-fit algorithom® fgroups in a sequential fashion.
Each grouping considers at most a constant number of woiies, @nd the number of groups
is linear in the number of workers, so the number of calls ® tWC function scales linearly
with the size of the network. The Tight-fit algorithm is morgpensive because it tries to form
the best possible groups by using a binary search of theaéailvorkers. Thus, the number of

calls to the LOC function i$)(nlogn), wheren is the size of the network.

D. Adaptive Determination of Target LOC

As we saw in the previous section, the target LQG, ., is a critical parameter in forming
redundancy groups. There are several drawbacks assoevtedising a static value for this
parameter. First, it is difficult to select an appropriatéugawithout prior knowledge of the
expected worker population. For instance, while a largaesaf \,,,,.; can be satisfied efficiently
by small groups in a highly reliable population, it may leadektremely low resource utilization
and may even be unachievable for a population of largely lae workers. Second, the
reliability of workers may vary with time due to node churmaages in node behavior, and
other events which affect a node’s reliability. Such dymantianges could make even a carefully
chosen\,,: value undesirable. To summarize,, .. is influenced by the underlying system
characteristics, which are not easy for a user or systemrastnaitor to determine statically.

To maximize the benefit derived from the system, it would bsirdéle if the system was
capable of selecting an appropriate target LOC value autoatiy. Furthermore, we would like
the system to be able to dynamically adapf,,.. to meet current system conditions. The task
server is ideally suited to select an appropriatg,.:, since it constantly updates the reliability
ratings of the workers and monitors the performance of tistesy.

Besides the system characteristics, the choick f.; also depends on the metric (throughput
or success rate) being optimized by the application desiginere is a natural trade-off between
the throughput of successful task completion and the saaeds. By forming larger groups, we
generally increase the likelihood that an individual group return a correct answer, but we
decrease the number of tasks attempted, which may in tuneakse the throughput of successful
tasks. Conversely, decreasing the average group size wkié reach group less likely to return

correct results, but may increase the number of successflks tcompleted due to the increase
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in the number of tasks attempted. One can imagine scenaria$ich either metric would be
preferred over the other. Thus, neither throughput noresgcate alone is a sufficient metric for
determining an optimal value of,,,,. In particular, if we wish to bound the latency experienced
by individual tasks, success rate is a more important métan throughput (as high success
rate reduces the need to re-execute the tasks). On the @they ifiwe simply wish to maximize
the number of tasks completed, throughput is more impartant

Thus, determining an optimal value foy,, .. requires us to consider both throughput and
success rate simultaneously. Such an optimization is aanos of anulti-objective optimization
(MO) problem. A common approach to solving an MO problem is to ashrtiques such as Goal
Programming [34], [35] or Multilevel Programming [35] thagduce the multiple objectives to a
single objective, and then employ standard Linear Progragptechniques to obtain a solution.

Depending on the specific application, we can tailor our dbje to favor either throughput
or success rate by using a weighted combination of these bjerives, which we refer to as
the gain, G:

G(p,s)=a-p+(l—a)-s,

wherep ands represent the normalized throughput and success ratectesy. o is a tunable
parameter that can be set by a user or administrator to exfines relative bias towards one
of the metrics:a = 1 would correspond to a throughput-optimal system, while- 0 would
correspond to a success rate-optimal system.

We use an adaptive algorithm to update the target LQGC,.; based on measurements of
the current value of the gai@. The detailed algorithm is given in the Appendix due to space
constraints: here, we present the intuition behind it. Thapéve algorithm employs a custom
hill-climbing algorithm to converge to an initial,,,,; value reflecting the underlying reliability
distribution of the system. The algorithm then constantiynitors the current gain values (using
the observed throughput and success rate) and comparestéham exponentially smoothed
average over time. A significant change in the current vafugain serves as an indicator that
the underlying worker distribution has changed, and resumitthe selection of a new,, 4
based on the current measures of gain.

The description of the adaptive algorithm may lead one toebelthat we are removing

one user-specified parametey,(,.;) at the expense of adding several new parameters (such
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as «, and hill-climbing algorithm parameters such as its persignificance thresholds, etc.).
However, most of these parameters can be configured enllyirmadetermined automatically
using feedback, without any input from the user. Effectivéhe user is only responsible for
specifying the value ofy, which is a much more intuitive value thawg,,,.;, asa only depends
on the relative importance of the metrics to the user. Theptadaalgorithm is then able to
incorporate this fixed user preference in determining tteecehof \,, 4;, Which is highly system-

dependent and dynamic in nature.

V. EVALUATION

In this section, we evaluate the performance of the ratingrigues and grouping algorithms
described in the previous section through simulation of mation-based distributed computing
platform. In our simulations, we model a large number of -kgafld scenarios using different

distributions for worker reliability values.

A. Evaluation Methodology

Our evaluation is based on a simulator loosely modeled adha BOINC [4] distributed
computing infrastructure, which consists of a task sermer ome number of worker machines.
We make two simplifying assumptions to enable fair comparibetween different grouping
algorithms.

First, the simulator isound-based-work assignment and verification is done periodically in
fixed-duration time periods called rounds. The task sergsigas work to all the workers at
the beginning of a round, and then waits for the workers tarretheir results. At the end of
each round, the server collects and verifies the receivadtsesipdates the reliability ratings
using the Optimistic heuristic described earlier, andamnls groups for task allocation in the
next round. Workers who fail to respond by the end of a roumdsanulated as having returned
incorrect results. In the results shown here, we ran our lsitions for a total of 1000 rounds
each. In practice, the length of a round would be linked toekgected execution time of the
tasks within it.

Second, the task server has an extremely large pool of wéattve to the number of workers
available. This assumption is consistent with the projéctsted by the BOINC infrastructure,

and is likely to be true for future large-scale scientific @uting applications as well. As a
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Name Distribution (over [0,1]) Real-world Scenario
Uniform Uniform General environment
Heavy-tail-high 1-Pareto¢ = 1,b = 0.1) Majority of reliable workers; a few unreliable workers
Heavy-tail-low Pareto¢ = 1,b = 0.2) Majority of workers unreliable; major virus/outage
Normal-high Normal: . = 0.9, o = 0.05 Reliable environment; most workers reliable
Bimodal Bi-Normal: . = 0.2/0.8, 0 = 0.1 50% reliable workers, 50% unreliable
Normal-low Normal: 4 = 0.3, ¢ = 0.1 Hostile environment, e.g., military scenarios
TABLE |

PROBABILITY DISTRIBUTIONS USED IN THE SIMULATIONS TO EMULATE DIFFERENT REAL-WORLD SCENARIOS

result, the task server will always attempt to utilize alltbé available workers, and workers
will never have to wait for work.

An individual worker’s reliability is modeled by assigninga probability p of returning a
correct result within a round. When a worker is assigned a, tagleturns the correct result
with probability p. These probabilities are known only to the workers - the efier has no
knowledge of these values a priori.

To simulate various real-world reliability scenarios, vengrate individual worker probabilities
from several different probability distributions. Tabldidts some of the distributions used in
our simulations and the corresponding scenarios modeledabir of them. For instance, we
use a normal distribution with a high mean to emulate a higélgble system, where most
workers are well-connected and return correct results mb#te time. On the other hand, we
use a bimodal distribution to represent a system that hasxeofighly-reliable workers and

compromised or poorly-connected nodes.

B. Reputation-Based Scheduling

We now evaluate the various reputation-based groupingittigos described in Section IV-C.
We start by evaluating these algorithms for a fixed target L@(Tie in this section. We first
describe the metrics and parameters used in our evaluation.

1) Metrics and ParametersTo evaluate the effectiveness of the grouping algorithrmes uge

the following metrics:
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« Throughput p): The throughput during a round is defined as the number o&teskwhich

a majority was achieved during that round (i.e., the numliésuxcessful’ tasks).

P = |Tsuccess ’ )

whereTy,...ss IS the set of successfully completed tasks during a round.
« Mean Group Sizeg): The mean group size for a round is the mean number of workers
assigned to each task during the round.
DA (]
Ng
where N¢; is the total number of groups formed during the round.
« Success Rates); The success rate during a round is defined as the ratio oessitdly
completed tasks to the number of tasks attempted (equaktaumber of groups formed)

during that round.
P

S:N—G.

To fully understand the behavior of the reputation-basdetdulers, we ran an exhaustive set
of simulations covering a large parameter space: the wogtbility distributions described in
Table I, a worker pool size of 100 and 1000, minimum group $i2g;,) of 3, and maximum
group sizes R,...) of 3, 5, 7, and 9. For each parameter setting, we comparethefgorithms
described in Section IV-C (First-fit, Tight-fit, Random-fipch Fixed).

For a given distribution an®,,, .., we set\,,,,.; equal to the success rate of the Fixed algorithm
for the same parameter values. This ensures that the suetessf the various algorithms will
be approximately the same, facilitating a comparison beitwaur proposed algorithms and the
baseline Fixed algorithm. Due to space constraints, wepsdkent a subset of the results here,
including descriptions of the most interesting findings.

2) Comparing Scheduling Algorithmdn our first experiment, we compared the different
grouping algorithms using a pool of 100 workers. In Figura) 3¢ve present the mean throughput
across all rounds for aR,,,, value of 7 workers. FoR,,,. = 7, the theoretical success rate of a
Fixed strategy under the realistic Heavy-High distribati® 90%, which seems like a reasonable
'target’ success rate. This led to selection®f,,, = 7 as a representative value for the fixed

group size. The First-fit and Tight-fit algorithms improve thre throughput of Fixed by 25-
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Fig. 3. Algorithm Comparison

250%, depending on the worker reliability distribution.eTRandom-fit algorithm, while not
performing as well as First-fit and Tight-fit, still outpenfos Fixed by about 20-50%.

Figure 3(b) plots the mean success rate across all roundse Sie set\;,,,.; equal to the
success rate achieved by the Fixed algorithm, we would é¢xpatthe mean success rate for the
other algorithms to be similar. The success rate of Randoanfit Tight-fit is equal or greater
to that of Fixed—the minor shortfalls in some cases are dubdause of approximate worker
reliability measures and maximum group sizes. First-fitiatleg significantly for most of the
distributions due to its greedy group formation policy—ttieanpts to form groups starting with
the most reliable workers, and working down to the leastibdi workers, so that it can form
highly reliable groups for distributions with low averageliability. Conversely, it also forms
several unreliable groups for high reliability distribris.

Overall, these results indicate that reputation-baseeddding algorithms significantly increase
the average throughput for all of the reliability distrilmurts, while maintaining a high success
rate.

Figure 4 shows the mean group-size results for the aboveriexg@. Both First-fit and
Tight-fit are able to form substantially smaller groups &ging the target LOC requirement.
As a result, these algorithms attempt significantly mor&gda each round, resulting in the
substantially higher throughput shown in Figure 3.

In Table Il, we present the throughput results for varyingkimaum group sizes using the
Heavy-High distribution. As thé,,,,, parameter is reduced, the gap between the Fixed algorithm

and the reputation-based algorithms starts to narrowgsinbecomes harder to form smaller
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Mean Group Size
o r N ®w & O O N ®
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‘D First-Fit @ Tight-Fit 0 Random @ leed‘

Fig. 4. Mean Group Size

Rmaz =9 Rmaz =7 Rmaz =5 Rmaz =3

First-fit 18.21£1.29 | 20.33 £1.42 | 22.37£1.55 | 26.13 £ 1.86
Tight-fit 20.56 £1.65 | 22.61 £1.77 | 24.03£1.74 | 26.01 =1.86
Random-fit| 11.06 +1.05 | 14.41+1.32 | 18.95+ 1.60 | 26.78 4+ 2.08
Fixed-size | 10.20+£0.83 | 12.65+1.05 | 17.32 £ 1.48 | 26.84 +2.13

TABLE 1l
EFFECT OF DECREASINGRnac ON THROUGHPUT(HEAVY-HIGH DISTRIBUTION)

groups that meet\,, ... In particular, if we setR,,;, = Rna, then all of the scheduling
algorithms are essentially the same. In this case, all gparighms form groups of size 3,causing
them to have nearly the same throughput.

3) Effect of Scale:In our second experiment, we use the same parameter se#mgfse
previous experiment, but increase the network size fromtb00000 workers. Figure 5 shows
the throughput and success-rate results for this expetingmaling the size of the network up
to 1000 workers causes a proportional increase in the thpoutgwithout affecting success rate
much. Clearly, scaling up the network will have little to nopatt on the relative throughput
or success rate in simulation. We will consider the impacsa#le on the overhead associated

with the different scheduling algorithms in Section V-D.

C. Adaptive Algorithm for Determining Target LOC

In the previous section, we compared the various group fbomaalgorithms using a fixed
value of the target LOQ\,, ., Which was selected based on the observed success rateefor th

Fixed algorithm. In this section, we evaluate the adaptigeréhm presented in Section IV-D
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Fig. 6. Comparison of min/max gain achieved using static LOC to gain achiesiag adaptive algorithma(= 0.5)

for its ability to determine a desirablg,, ., value based on current system conditions and the
relative importance of throughput and success rate metfioese experiments use the same
values forR,,;, and R,,., as the previous experiments.

The default values for the parameters specific to the hitaing algorithm (the periog,
significance thresholds, etc.) were empirically determhihased on a comprehensive evaluation
of the parameter space. The selected values were chosemitoiz@ noise in the periodic gain
measurements, and to improve the stability and speed ofecgence.

The periodp was set to 10, the significance threshotdg, J,,.,« andd;, were set to 1.15,
1.05, and 1.01, respectivelyiaxrounds was set to Sweight .., was set to 0.3 andeighty;q

was set to 0.7.
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(a) Firstit (b) Tight-fit

Fig. 7. Comparison of min/max throughput achieved using static LOC tai¢imout achieved using adaptive algorithmn=€ 1)

(a) Firstit (b) Tight-fit

Fig. 8. Comparison of min/max success rate achieved using static LOCttadhi@ved using adaptive algorithmx & 0)

1) Convergence to a Desirable Valu@ur first experiment illustrates the adaptive algorithm’s
ability to converge to an appropriatg,, ... despite starting with no knowledge of the underlying
worker population. In this experiment, we measured the amgesrgain achieved over 10,000
rounds using the First-fit and Tight-fit scheduling alganthcoupled with the adaptive,q, gc:.-
determination algorithm (referred to as adaptive Firsefitd adaptive Tight-fit, respectively).
Then, we measured the average gain achieved using the amtived First-fit and Tight-fit
algorithms for every possible value of,.,; from O to 1 (with a granularity of 0.01), to
determine the best and worst achievable values. FiguresaBd® compare the minimum and

maximum gains achieved using a static value\pf.,.; to that achieved by the corresponding
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Fig. 9. Comparison of throughput/success rate achieved using aglafgiorithm with varyingo

adaptive algorithm. These figures show the gain computedgusivalues of 0.5, 1, and 0
respectively where Figure 6 gives equal weight to both thhpuit and success rate, Figures 7
and 8 correspond to throughput-optimal and success rateapalgorithms respectively.

As seen from the figures, the average gain achieved by theiaglapgorithm is very close to
the maximum gain possible using a stalkig,,.; value in all instances. This observation holds
for both First-fit and Tight-fit algorithms. Overall, we tedt 36 algorithm/worker-distribution
configurations, out of which the adaptive algorithm dewdat®m the maximum achievable gain
by less than 2% in 25 cases, and by less than 5% in 32 cases.nfheneaningful deviation
experienced was for the Normal-Low worker distributionngsthe First-fit algorithm, where the
algorithm has a higher likelihood of getting stuck in a loo@ahimum.

2) Effectiveness ofi: In our next experiment, we evaluated the effectiveness efdain
metric and then parameter to represent the relative importance of the ¢fimout and success
rate metrics. Figures 9(a) and (b) show the values of sugeéssand throughput using adaptive
First-fit, as we vary the value of from O to 1. Recall thatv = 0 corresponds to a pure success
rate-oriented system, while = 1 corresponds to a throughput-oriented system. As can be seen
from the figures, an increase inresults in decreasing success rate and increasing thraughp
This result implies that the gai@¥ is an effective metric for incorporating user preferences.

3) Dealing with Non-Stationary WorkerdMe next illustrate the effectiveness of the adaptive
algorithm to deal with non-stationary behavior of workeirs,, when their reliability varies
with time. We consider a large-scale worker blackout sdertaat corresponds to a real-world

event such as a network partitioning, a large organizatiash; or a major virus, which may

March 6, 2007 DRAFT



25

T T T T T T
"tight-fit" "tight-fit"

25 25

ound)

20 r 20
15

10

Throughput (tasks/round)

Throughput (tasks/r
-
o

0 . . . . . . . . . 0 . . . . . . . .
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Round

(@) Statizn/\tm,get Adaptive \igyget

Fig. 10. Large-Scale Blackout: Effect of Adaptive,-4.: on throughput

suddenly compromise the reliability of a large number of keos. To emulate such an event, we
modified the simulation so that 30% of the workers transdtbfrom a highly-trusted normal-
high distribution to an unreliable heavy-low distributiafter round 300. These experiments use
the Tight-fit algorithm withR,,,.. = 7.

Figures 10(a) and (b) show the effect of the large-scalekblsicon the system throughput
using static and adaptive,,..: values, respectively. Figure 10(a) shows a consideralplendi
throughput after the blackout. This is because Tight-fitticoes to operate with &,,,,., value
that was tailored to the higher reliability environmenn&i the system has fewer trusted workers
at its disposal after the blackout, it ends up forming vergda(and thus fewer) groups in an
attempt to satisfy this high,, ... This failure to adapt to the new reliability distributioasults
in the observed dip in throughput.

Figure 10(b) shows that although the throughput drops idedist in round 300 (immediately
after the blackout), the system immediately starts conguergs for the drop in reliability by
reducing\;..¢.. The average throughput returns to near pre-blackoutdesgbroximately 100
rounds later. There is a slight drop in the throughput betweends 550 and 600, because the
system is probing for highek,,,,. in an attempt to improve the success rate. However, the
system automatically corrects for this drop in performaand stabilizes near round 700 at a
higher throughput (but considerably lower success-raté% &s. 96%) than it was achieving
before the blackout. This experiment clearly demonstrétesvalue of dynamically updating

Aarger D@sed on current conditions in the system.
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uniform | normal-high| heavy-low | heavy-high| bimodal |
First-fit 340 130 210 80 90
Tight-fit 350 130 230 210 200
TABLE 11l

NUMBER OF ROUNDS REQUIRED TO ACHIEVE STEADYSTATE Atarget FOR SEVERAL CLIENT DISTRIBUTIONS

4) Convergence TimeThe time to converge for the adaptive algorithm is dependerseveral
different variables - variance in the underlying clienttdimition, the wait time between target
LOC adjustments, the granularity of adjustments and thebaunof stationary rounds before
steady-state.

In Table Ill, we list the number of rounds required to coneesggarting with zero knowledge
(initial target LOC of 0.5) using one particular set of pasers. The wait time between
adjustments was set to 10 rounds and the number of stationands required was set to 5,
thus the minimum number of rounds for convergence is 50. & kakies are fairly conservative,
but they yielded excellent average gain measurements fodata sets. Selecting a smaller wait
time will cause the average time to convergence to decréasenay result in a loss of average
gain due to noisy feedback measures. Moreover, the time rieecge due to a change in the

underlying client distribution will depend on the magniudf the change.

D. Overhead

In this section, we compare the overhead of the groupingisthgas in terms of the number of
invocations of the LOC function. In Section IV-C, we detergdnthat the theoretical overhead
is O(n) for First-fit and Random-fit, and)(nlogn) for Tight-fit, wheren is the size of the
network. Figure 11 shows the average number of calls to th€ fxihction during a single
round for network sizes of 100 and 1000. As expected, the eumbcalls to the LOC function

grows significantly faster for Tight-fit.

E. Accuracy of\?

In Section IV-B, we presented a function (Equation 2) to cotepét, a lower bound for LOC

of a group. We now analyze the impact of using this approxonaunction on the effectiveness
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Overhead (Number of calls to LOC function)

uniform

normal

heavy-tail

bimodal

First-fit
Tight-fit
Random-fit

0.0010 £ 0.0016
0.0784 £ 0.0587
0.3532 £ 0.2325

0.0000 + 0.0002
0.0015 + 0.0023
0.0025 £ 0.0033

0.0014 +£ 0.0052
0.0210 £ 0.0123
0.0561 £ 0.0442

0.0012 £ 0.0052
0.0910 £ 0.0755
0.3328 £ 0.2252
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TABLE IV
A Vs. \?: AVERAGE ERROR IN PRACTICE

of the system. The lower bound function corresponds to the iGkhe AM-GM inequality, a
special case of Jensen’s inequality. For functions thatptpro this inequality, the difference
between the AM (the actual LOC function in our case), and th i@Gcreases as the spread
of the values increases. Therefore, as the disparity betweelow and high reliability ratings
within a group increases, the lower bound diverges more amet ritom the actual value.

We empirically computed the difference betweemand )\ for each of the reputation-based
algorithms (shown in Table 1V). As expected, we found thatehror for Random-fit, which may
end up grouping workers with very dissimilar ratings, wagegtigh (0.05-0.3). In contrast, the
First-fit algorithm, which groups similarly rated worketsad negligible error { 0.001). The
error for Tight-fit fell in the middle but is still relativelgmall (0.002-0.09).

To quantify the effect of these errors on the effectivendsh® reputation-based algorithms,
we repeated the experiment from Section V-B.2 using the htiO& function instead of the
lower-bound. The throughput results are shown in FigureAR2expected, these results show a
correlation between the error experienced by an algorithchthe benefit associated with using

A instead of\. In addition, the benefit is the highest for the distributiomhere the error was
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the worst (uniform, bimodal). Based on these measuremems;onclude that Tight-fit could
improve its throughput by up to 10% by using a more accurateevéor A, and Random-fit

could gain up to 35% over the values presented earlienfor

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a design and analysis difitess to handle the inherent
unreliability of nodes in large-scale donation-basedrithgted infrastructures, such as P2P
and Grid systems. We proposed a reputation-based schgdulidel to achieve efficient task
allocation in such an unreliable environment. Our repatagystem represents the underlying
reliability of system nodes as a statistical quantity teastimated based on the prior performance
and behavior of the nodes. Our scheduling algorithms usedtimated reliability ratings to form
redundancy groups that achieve higher throughput whiletaming desired success rates of task
completion. In addition, we present a technique for adaptiadjusting scheduling parameters
to match the underlying reliability distribution, which rcebe used to control the system’s
response to non-stationary node reliability. We evaluateadgorithms using a simulator based
on the BOINC distributed computing infrastructure. In ounglation, we varied the underlying
reliability distribution of the worker reliability valueto emulate several real-world scenarios.
Our simulation results indicate that reputation-basededaling can significantly improve the
throughput of the system (by as much as 25-250%) for workpuladons modeling several real-
world scenarios, including non-stationary behavior, watlerhead that scales well with system

size. As part of future work, we intend to implement our taghes in a real testbed (e.g., one
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using BOINC) and to use real workload traces to evaluate theaeifiand overhead of our

algorithms under real-world deployment.
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APPENDIX

ADAPTIVE ALGORITHM FORTARGET LOC

The appendix has been provided as a supplemental documdhis tarticle.
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