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Abstract

This paper addresses the inherent unreliability and instability of worker nodes in large-scale donation-

based distributed infrastructures such as P2P and Grid systems. We present adaptive scheduling tech-

niques that can mitigate this uncertainty and significantlyoutperform current approaches. In this work,

we consider nodes that execute tasks via donated computational resources and may behave erratically

or maliciously. We present a model in which reliability is not a binary property but a statistical one

based on a node’s prior performance and behavior. We use thismodel to construct several reputation-

based scheduling algorithms that employ estimated reliability ratings of worker nodes for efficient task

allocation. Our scheduling algorithms are designed to adapt to changing system conditions as well as

non-stationary node reliability. Through simulation we demonstrate that our algorithms can significantly

improve throughput, while maintaining a very high success rate of task completion. Our results suggest

that reputation-based scheduling can handle wide variety of worker populations, including non-stationary

behavior, with overhead that scales well with system size. We also show that our adaptation mechanism

allows the application designer fine-grain control over desired performance metrics.
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I. I NTRODUCTION

Recently, several distributed infrastructures, includingpeer-to-peer networks and donation

Grids, have been proposed to host large-scale wide-area applications ranging from file sharing/file

storage to high performance scientific computing [1]–[6]. Despite the attractive features of these

platforms (scalability, low cost, reduced cost of ownership, and resilience to local failures),

widespread deployment of such systems and applications hasbeen elusive. A key problem is

the inherent unreliability of these systems: nodes may leave and join unexpectedly, perform

unpredictably due to resource sharing at the node and network level, and behave erratically or

maliciously. This paper presents a design and analysis of techniques to cope with the inherent

unreliability of nodes that execute tasks via donated computational resources.

We present a model in which reliability is not a binary property but a statistical one based

on a node’s prior performance and behavior. Such a statistical model is important for two main

reasons. First, a node’s behavior could change with time andhence nodes cannot be classified as

being purely reliable or unreliable always. Second, representing reliability as a statistical property

allows us to incorporate the uncertainty inherent in the system’s knowledge of individual nodes’

reliability. We adopt a reliability model based on the accumulation of the direct observation of

node behavior over prior task executions. An example of suchan environment is BOINC [4], or

its forerunner SETI@home [6], in which a server distributestasks to worker nodes and collects

results. Since nodes are not reliable, the server generallycannot be certain that the results returned

by any given worker are valid unless application-specific verifiers are provided. Many factors

may contribute to the unreliability of a node. It has been shown [7] that cheating has been a

considerable problem in the SETI@home project. However, itis also possible that nodes have

incorrectly configured software, are hacked, have poor connections to the server, or are highly

loaded and cannot return timely results.

We speculate that when excess resources become a visible standard commodity or utility [1],

[8] , cheating or hacking nodes will become even more prevalent due to economic incentives. In

addition, it seems likely that as distributed systems become larger and more widely dispersed,

reliability will also decrease due to more failure-prone components and increased exposure to

malicious agents and viruses. To deal with uncertainty in the absence of inexpensive verifiers,

outsourced computations can be redundantly scheduled to a number of nodes. If we assume that
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the space of feasible (but not necessarily verifiable) results is sufficiently large, it is very likely

that a result returned by a majority of workers will be valid if node collusion has not occurred.

Such a majority result could then be treated as the “correct”result of the computation.

A major drawback of using redundancy is that it may reduce theamount of useful work

performed. The degree of redundancy is an important parameter: a small degree of replication

could decrease the likelihood that the server will receive averifiable result. On the other hand, a

large degree of replication could result in unnecessary duplication of work by multiple resources.

Systems like BOINC rely on the application writer to specify this value for each task. Since

the reliability of workers in a distributed environment maybe uncertain, it is likely that any

statically-chosen redundancy value will reduce the effectiveness of the system.

To overcome this problem, we propose techniques to determine the degree of redundancy

based on the estimated reliability of the workers. Intuitively, a smaller degree of replication

should be possible if the allocated nodes are collectively more reliable. Using a simple reputation

system [9], it is possible to determine the likelihood that agiven worker will return a correct and

timely result with fairly high accuracy. Unlike other systems which have studied the concepts

separately, we incorporate metrics of correctness as well as timeliness to generalize the notion

of trust to that ofreliability.

Using individual worker reliability estimates, we introduce an efficient technique for computing

a lower-bound on the likelihood that a group of workers will return a majority of correct and

timely results. These group reliability ratings can be usedby the system to intelligently schedule

tasks to workers, such that the throughput of the system is improved, while still maintaining the

server’s ability to distinguish fraudulent results from valid ones.

Applying these techniques in practice introduces a number of challenges. First, the system must

be able to learn the reliability of individual workers. A number of different reputation systems

have been proposed for this purpose [10]–[15], although selecting the right one is dependent

on the characteristics of the environment in which it will bedeployed. Second, given these

reliability ratings, the system needs an algorithm or heuristic to determine how to match groups

of workers to tasks. Since it is likely that the best scheduling technique will be dependent on

the environment, we propose a set of algorithms that are tuned to the characteristics of typical

environments. Finally, the environment may be extremely dynamic, and the underlying scheduling

mechanisms must be highly adaptive.
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We consider several different algorithms which can be used to guide scheduling decisions on

the basis of statistical reliability ratings associated with groups of workers. We also present an

adaptive algorithm which adjusts scheduling parameters tomatch conditions in the system. This

algorithm provides a “knob” for tuning scheduling decisions in terms of metrics such as success

rate and throughput which are familiar to application designers.

Finally, we compare the throughput and computational overhead of each of these techniques

through simulation of a BOINC-like distributed computing infrastructure. Our results indicate

that reputation-based scheduling can significantly improve the throughput of the system for

worker populations modeling several real-world scenarios, including non-stationary behavior,

with overhead that scales well with system size.

II. BACKGROUND AND RELATED WORK

A. Distributed Computing Infrastructures

Numerous computing infrastructures have been designed to utilize idle distributed resources.

These systems can be loosely categorized into two groups: those that utilize resources under

administrative control, such as Globus [16] and Condor [3], and those that rely on unsupervised

donated resources such as SETI@Home [6] and Folding@Home [17]. In this paper, we mainly

focus on the latter, as these environments are much more susceptible to unreliability.

The @Home applications [6], [17] and their generalization,BOINC [4], are instances of a

growing number of systems which utilize donated computing cycles to solve massive scientific

problems. BOINC provides application designers with a middleware that can be used to design

and deploy systems in which a master task server assigns computational tasks to a pool of donated

computing resources. In contrast to BOINC, several unstructured cycle-sharing platforms have

been proposed [5], [18], [19] in which nodes can act as both a client and a server. These platforms

facilitate the formation of ad hoc communities for solving large-scale computing problems.

B. Dealing with Unreliability

Dealing with unreliability is a core design challenge in anydistributed system and many

techniques have been proposed in the literature. Redundant task allocation combined with voting,

as used in Byzantine fault-tolerant (BFT) systems [20], is popular due to its general applicability.

This approach is also used by most BOINC [4] applications to verify the results of outsourced
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computations: if a majority of the workers assigned a task return the same result, then the result

is deemed valid.

Since task replication could result in lower resource utilization, some techniques have been

proposed to verify results for tasks allocated to a single resource. Golle and Mirnov [21] present

a verification technique that inserts pre-computed images of special spot-checks called “ringers”

into distributed tasks to verify results returned by a worker and identify cheaters. This technique

can be used only for verifying computations that exhibit aone-wayproperty, and thus is not

applicable for general computations. Another verificationtechnique [22], [23] employs pre-

computed tasks called ‘quizzes’ that are embedded into a batch of (otherwise indistinguishable)

tasks allocated to a worker. When the task server receives a batch of results from a worker, it

assumes the results for the real tasks to be correct if the results for all of the quiz tasks are

valid. While not dependent on one-way functions, this technique still requires pre-computation

of certain tasks, which may be non-trivial or infeasible in many scenarios.

C. Reputation-Based Scheduling

Reputation systems [24] are commonly applied in peer-to-peer networks to gauge the reliability

of nodes [11], [12], [15], [25]. Trust or reputation systemsare a general technique for predicting

the behavior of distributed entities based on past interactions with these entities.

The concept of trust-aware resource management for the Gridwas proposed in [14], where

a technique is presented for computing trust ratings in a Grid using a weighted combination of

past experience and reputation. GridEigenTrust [13] combines this trust-computation technique

with the EigenTrust reputation system [12] to provide a mechanism for rating resources in

a Grid. This work presents an architecture for managing reputation ratings in a Grid, and

proposes using these ratings to perform reputation-based resource selection. However, it does

not provide any specific algorithms for reputation-based scheduling. Zhao and Lo [23] propose

augmenting peer-to-peer cycle sharing systems with a reputation system to reduce the degree

of replication required to verify results. However, their work makes several assumptions: nodes

are either strictly trustworthy or untrustworthy, the number of nodes is large relative to the

workload which allows nodes to be discarded if untrustworthy, and node behavior is fixed

(for the results presented). These assumptions may not often hold in practical scenarios. The

scheduling algorithms proposed by Zhao [23] and Sarmenta [22] are explicitly designed to deal
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Fig. 1. The system model: a server maintains a reliability rating store and uses the ratings to assign tasks to groups of workers.

with node collusion. In contrast, we assume that each workeracts independently. Song [26]

recently proposed trust-based scheduling algorithms designed to avoid compromised resources,

as opposed to handling explicitly malicious resources.

Overall, most existing reputation-based scheduling schemes have focused on correctness as

the primary metric, and have dealt mainly with binary trust values. The unique elements of our

approach include a more general statistical representation of reliability that includes timeliness

as well as correctness, and the use of this metric to improve application and system performance.

III. SYSTEM MODEL

A. Computational Model

Our distributed computing model consists of a central server that assigns computational tasks

to a set of worker nodes as illustrated in Figure 1. The workernodes in this computation

model are not centrally-controlled, and could be participating for various reasons. For instance,

they may be donating their idle resources voluntarily (e.g.: PlanetLab [2]), or they may be

providing their resources in return for some incentive, such as monetary remuneration [1], [27],

credit [4], [6], or use of other nodes’ resources in return [28], [29]. Our system model does

not make any assumptions about the incentive scheme for worker participation or the workload

generation methodology: the computation tasks could either be pre-generated on the server by

the application, or they may be submitted by users accessinga common service. We assume that

the set of tasks that need to be computed by the available set of worker nodes is large enough

to keep all workers busy for the duration of the application.
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B. Reliability Model

Since the participation of worker nodes is voluntary and outside the server’s control, workers

may not return correct results in a timely manner for severalreasons. First, a node may be

overloaded or behind a slow connection, resulting in slow response. Another reason may be

that a node is misconfigured, hacked, or infected by a virus, resulting in incorrect computation.

Finally, a node may be malicious (deliberately trying to disrupt a computation) or cheating (to

gain an advantage in a remuneration scheme, such as gaining extra credit [7]), thus returning

wrong results. We model such unreliable behavior by assigning to each worker a probability

of returning a correct response within a “reasonable” time frame. This probability need not be

fixed, and could change with time. For instance, nodes may go offline and come back up again,

or some malicious nodes may change their behavior with time—returning correct results for a

while to improve their reputation and then deliberately injecting bad results into the system.

When modeling these unreliable workers, we assume that each worker acts independently, and

that there is no collusion between them. This assumption is consistent with behavior observed

in popular outsourced computing systems, in which individual cheating has been observed [7],

but collusion has not1.

C. Redundant Computation and Result Verification

A key consideration in our model is that the server may not have an efficient way of indepen-

dently verifying each worker response for correctness. While several techniques [21], [30], [31]

have been proposed to verify the correctness of results, these techniques are application-specific

and are not applicable to general computational scenarios.Results of several computational

problems may not even be verifiable by the server without performing the computation itself.

In our system model, we employ a verification technique basedon redundant computation

coupled withvoting. This technique is adopted by several general computing systems such as

BOINC [4]. Under this verification technique, each task is redundantly assigned to a set of

worker nodes. Once the workers respond, the server conductsa “vote” among the returned

results. If a quorum of workers agrees on a result, the servertreats that result to be correct.

1Based on private communication with Dr. David Anderson, creator of SETI@Home, there has been no observed evidence
of collusion in SETI@Home.
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In the absence of a quorum after voting, the task is rescheduled. While the quorum size could

be application-dependent,majority is typically used to determine the correct answer. Note that

such a voting-based verification scheme does not require anyapplication-specific support or

knowledge.

D. Definitions and Assumptions

Definition 1: Task (τj): A task is defined as a self-contained computational activitythat can

be carried out by a worker node. Upon completion, each task generates a well-defined result

that is returned to the server.

A task would typically correspond to an independent unit of alarger computation. For example,

a task may correspond to computing the determinant of a submatrix, and the result of the task

would be the value of the determinant. Another example of a task could be to match a DNA

sequence against a subset of gene sequences from a genetic database. In this case, the result

could be the best matching gene and the similarity score.

Definition 2: Solution Space (Σ): The solution space of a task is the set of potential result

values that can be returned for the task.

For instance, a task whose answer is Boolean has a two-elementsolution space,Σ = {true, false}.

On the other hand, a task whose answer is drawn from the set of integers has an infinite solution

space,Σ = I. We assume that the solution space for the tasks in our model is of sufficiently

large cardinality, so that it is unlikely that two workers will independently return the same wrong

result.

Definition 3: Reliability (ri): Reliability of a workeri is defined as the probability that the

worker returns a correct result within a (system-defined) time period.

Note that reliability is not a binary property—a node could return the correct result some of the

time, and a wrong result at other times. Moreover, the reliability property of a worker could also

change with time (e.g.: due to outages, fluctuating load, malicious node behavior, etc.).

Definition 4: Redundancy Group 1 (Gj): Redundancy group for a taskτj is defined as the

group of worker nodes assigned to compute the task.

In most existing systems, the size of each redundancy group is typically set to a fixed static value

selected by the application designer or the system administrator. This value may be determined

1In the rest of the paper, we would refer to a redundancy group simply as agroup unless required to avoid confusion.
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empirically, although often it is simply based on a rule of thumb. In our system model, the

redundancy factor for each group can be different and dynamically determined, and is dependent

on the reliability of the group’s constituent worker nodes.

Definition 5: Quorum: We say that a groupGj has reached quorum if some number of

worker nodes, which may be fixed or dependent on the group size, return the same result.

In our system model, we say a group has reached quorum if a majority of the workers return the

same result. In general, the quorum size could be dependent on the cardinality of the solution

space, for instance, a binary solution space would likely require a larger quorum.

Definition 6: Likelihood-of-Correctness (λj): Likelihood-of-correctness for a groupGj is

defined as the probability that the group would return a correct result based on majority voting.

The likelihood-of-correctnessλj for a group represents the collective reliability of the group.

This value is dependent on the individual reliability values of the constituent nodes of the group.

We will see in the next section how this value can be computed for groups using the reliability

of individual workers.

IV. REPUTATION-BASED SCHEDULING

We now present a reputation-based scheduling algorithm fordistributing the server work-

load among the worker nodes. This algorithm employs reliability ratings of individual worker

nodes for task assignment in order to improve the overall throughput and success rate of task

completions. This reputation-based task scheduling algorithm consists of the following steps:

• Estimating reliability ratings of individual worker nodes.

• Using the estimated worker reliability ratings to compute the likelihood-of-correctness

(LOC) of possible groups.

• Grouping workers for task assignment based on LOC estimatesto maximize the throughput

and success rate of task completions.

We will now describe each of these steps in more detail, discussing the various techniques

and algorithms employed in each case.

A. Estimating Reliability Ratings

We use areputation systemto estimate the reliability ratings of individual worker nodes.

These reliability ratings are learned over time based on theresults returned by the workers to
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the server. All workers report their results to a centralized server, so a local reputation system

can be employed. We estimate a worker’s reliabilityri(t), at a given timet, as follows:

ri(t) =
ni(t) + 1

Ni(t) + 2
,

whereni(t) andNi(t) are respectively the number of correct responses generatedand the total

number of tasks attempted by the worker by timet. By this formula, the reliability rating of

a worker is initialized to1

2
, corresponding to having no knowledge about its actual reliability.

The rating of each worker is updated each time it is assigned atask, based on the response it

returns (a missing or late response is treated as incorrect). While we assume that the server learns

the reliability ratings using its own observations, it is possible to use a peer-to-peer reputation

reporting system [11], [12] to improve the accuracy of theseratings or reduce the time to learn

them, if the system has multiple servers interacting independently with the workers.

Recall from Section III-C that the server employs a majority-based voting scheme to determine

the correctness of a task. Thus, if the workers in a group reach a majority on their results, the

server accepts the majority answer as the “correct” result.In this case, it would increase the

reliability ratings of the workers that are part of the majority, and decrease those of the remaining

workers, treating their responses to be incorrect.

However, this still raises the question of how to update the ratings of workers in a group

that doesn’t reach quorum. In a previous work [32], we considered three different heuristics for

updating reliability ratings. For each of the heuristics, we analyzed both the accuracy relative

to an optimal heuristic and the impact on system performance. In addition, we considered the

effects of using bounded and unbounded history on the accuracy and fluidity of worker reliability

ratings.

In this work, we will restrict our attention to theOptimistic heuristic, which was the most

accurate in simulation. The Optimistic heuristic is definedas follows: In the absence of a quorum,

this heuristic increases the reliability ratings of any setof workers that agree on the result

value. It penalizes those workers whose answers do not matchany other answers from the

group. Intuitively, this heuristic is based on the assumption that the probability of two workers

returning the same wrong result independently is negligible, thus treating any matching answers

to be pseudo-correct.
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B. Computing the Likelihood-of-Correctness

The likelihood-of-correctness (LOC) of a group represents the probability of getting a correct

answer from that group using the majority-based voting criterion of verification. This value can

be computed using the individual reliability ratings of themembers of the group, as estimated

above. Consider a groupG = {w1, . . . , w2k+1} consisting of workerswi, i = 1 . . . 2k + 1 2. Let

ri(t) be the reliability rating of a workerwi, i = 1 . . . 2k + 1, at a given point in timet. Then,

the LOCλ(t) of the groupG is given by:

λ(t) =
2k+1
∑

m=k+1

∑

{ǫ:||ǫ||=m}

2k+1
∏

i=1

ri(t)
ǫi · (1 − ri(t))

1−ǫi (1)

where ǫ = {ǫ1, . . . , ǫ2k+1} is a vector of responses from the workers in the group, with 1

representing a correct response, and 0 representing an incorrect response. The criterion for

determining correctness is based on achieving a majority, as described above. For simplicity,

we will omit the implicit time variable,t, in future discussion of the LOC. For example, for

a groupG consisting of 5 workersw1 throughw5, one possible vector could be{1, 1, 0, 0, 1},

indicating correct responses from workersw1, w2, andw5. Intuitively, Equation 1 considers all

possible subsets of the given set of workers in which a majority of workers could respond

correctly. It then computes the probability of occurrence of each of these subsets as a function

of the reliability rating of the workers. Note that the likelihood of the false-positive case where a

majority of workers return the same wrong answer is negligible, and hence ignored in Equation 1.

1) Lower Bound for Likelihood-of-Correctness:As can be seen from Equation 1, calculating

the likelihood-of-correctness for a group results in a combinatorial explosion of the possible

subsets that need to enumerated. In fact, the complexity of computing theλ value can be shown

to beO(22k), which is infeasible for most practical purposes. To reducethe cost of computing

λ values for multiple groups, we use a lower boundλlb for λ that is much simpler and more

efficient to compute. This is obtained from Equation 1 using the arithmetic-geometric means

inequality which is a special case of Jensen’s Inequality [33].

λlb ≥
2k+1
∑

m=k+1

(

2k + 1

m

)

·
2k+1
∏

i=1

rαm

i · (1 − ri)
1−αm , (2)

2We consider odd-sized groups to avoid ambiguity in defining majority for even-sized groups.
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whereαm =
( 2k

m−1)
(2k+1

m )
. It can be shown that the complexity of computingλlb is O(k2), and is thus

much more efficient to compute than the actual value ofλ. The grouping algorithms, which we

will describe shortly, use the lower bound function to compute λ. In Section V-E, we compare

the effect of the lower bound function on our simulation results.

2) The Role of LOC in Task Scheduling:To determine the size and composition of the groups,

the system relies on a parameter indicating whether or not the LOC for a proposed group is

acceptable. That is, we require some valueλtarget such that ifλ ≥ λtarget, then we conclude that

G is an acceptable group. We refer toλtarget as thetarget LOC.

Choosing an appropriate value forλtarget is critical to maximizing the benefit derived from

the system. Ifλtarget is too small, many groups may return incorrect results, causing the tasks to

be rescheduled. If it is set too high, the scheduler will be unable to form groups which meet the

target, and the scheduler will degenerate to forming large fixed-size groups, adversely affecting

the system throughput. Thus, the target LOC must be carefully selected to fit the reliability

distribution of the workers. In Section IV-D, we will present an algorithm to adaptively determine

the target LOC value. But first, we will describe how to group workers into redundancy groups

givena target LOC.

C. Forming Redundancy Groups

So far, we have described heuristics for estimating individual worker ratings, and provided a

mechanism for combining these ratings to determine the reliability of groups. We now present

algorithms to assign workers into groups for task allocation, using these heuristics and mech-

anisms. The goal of forming these groups is to maximize both the throughput of successful

task completions (those that result in correct results) andthe rate of successful task completion

(success rate) given a set of individual worker ratings (We will show in the next section how to

incorporate both these metrics into the group formation decisions).

Formally, given a set of workersW = {w1, . . . , wn}, a group formationalgorithm would

produce a partitioningG = {Gj}, where a taskτj is assigned to each groupGj. These groups

would be formed in such a way thatλj of eachGj exceedsλtarget, thus achieving two goals:

(a) increasing the likelihood of obtaining a correct resultfrom the worker group working on

the assigned task (in turn decreasing the likelihood of re-scheduling a task) and (b) increasing

resource utilization by forming worker groups whose size varies based on the reliability rating
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of its members. The algorithm for selecting an appropriateλtarget is deferred to the next section.

Here, we present group formation algorithms given aλtarget value. The only property of the

workers used by these algorithms is their reliability ratings.

1) Fixed-Size:This is the baseline algorithm for our system model as it represents “standard-

best-practice” exhibited in systems such as BOINC. The Fixed-size algorithm randomly assigns

workers to groups of sizeRmax, whereRmax is a statically-defined constant. Every worker of a

given groupGj is assigned the same task. This algorithm does not use the reliability ratingsri

of workers to size groups in an intelligent way. For a given set of workers, this algorithm will

form a fixed number of groups, irrespective ofri values.

2) First-Fit: In the First-fit algorithm, the available workers are sortedby decreasing reliability

rating. Starting with the most reliable, workers are assigned to groupGj until eitherλj ≥ λtarget

or until the maximum group sizeRmax is reached. This process is repeated until all the available

workers are assigned to a group. Intuitively, First-fit attempts to form the first group that satisfies

λtarget from the available workers in a greedy fashion. By bounding the size ofGj with Rmax,

we ensure that First-fit forms bounded groups and degenerates to the Fixed-size heuristic in the

absence of a sufficient number of reliable workers.

Algorithm 1 First-Fit (w worker-list, τ task-list,λtarget target LOC,Rmin min-group-size,Rmax max-group-
size)
1: Sort the listw of all available workers on the basis of the reliability ratingsri

2: while |w| ≥ Rmin do
3: Select taskτj from τ

4: repeat
5: Assign themost reliableworker wr from w to Gi

6: w ← w - wr

7: if |Gj | ≥ Rmin then
8: Updateλj

9: end if
10: until (λj ≥ λtarget ∧ |Gj | ≥ Rmin) ∨ |Gj | = Rmax

11: end while

3) Tight-Fit: The Tight-fit algorithm attempts to form a groupGj such thatλj is as close as

possible toλtarget. The Tight-fit algorithm searches the space of available workers to find the

smallestGj that exceedsλtarget by the minimum possible margin. If no group of sizeRmax or

smaller meetsλtarget, the algorithm forms a group that falls short of the target bythe smallest

amount. As with First-fit, this process is repeated until theworker pool is exhausted. Intuitively,
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this algorithm attempts to form the best-fit of worker nodes for a givenλtarget. As a result, tasks

are not overprovisioned with more reliable resources than necessary, and well-balanced groups

are more likely to be formed.

Algorithm 2 Tight-Fit (w worker-list, τ task-list,λtarget target LOC,Rmin min-group-size,Rmax max-group-
size)
1: Sort the listw of all available workers on the basis of the reliability ratingsri

2: while |w| ≥ Rmin do
3: Select taskτj from τ

4: Use binary search to identify the smallest sets of n workers wn from w such thatλs exceedsλtarget

minimally
5: if such a sets is found then
6: Assign thewn workers toGj

7: else
8: Select the set ofn workerss for which λtarget − λs is minimized
9: Assign thewn workers toGj

10: end if
11: w ← w - wn

12: end while

4) Random-Fit:The Random-fit algorithm uses reliability ratings to form groups by randomly

adding workers to a groupGj until either λj meetsλtarget or the group hasRmax workers. It

differs from First-fit in that workers are added to groups randomly, rather than in sorted order.

Given a set of workers and aλtarget, each algorithm is likely to produce different groups. A

simple example forλtarget = 0.5 is illustrated in Figure 2. In this example, First-fit is onlyable

to form a single group which meetsλtarget because it uses all of the highly reliable workers

in the first group. Similarly. Random-fit also produces only one group that is able to meet the

target as it assigns workers randomly to groups. In contrast, Tight-fit is able to form two groups

which meetλtarget because it searches for groupings whoseλ values deviate from the target by

the smallest amount.

Fig. 2. Example node groupings produced by different algorithms forλtarget = 0.5, Rmin = 3 andRmax = 5.

The time spent computing the LOC for a given group is the primary component of the overhead
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incurred by the reputation-based schedulers, so we can compare the algorithms in a system-

independent manner. The First-fit and Random-fit algorithms form groups in a sequential fashion.

Each grouping considers at most a constant number of worker pairs, and the number of groups

is linear in the number of workers, so the number of calls to the LOC function scales linearly

with the size of the network. The Tight-fit algorithm is more expensive because it tries to form

the best possible groups by using a binary search of the available workers. Thus, the number of

calls to the LOC function isO(n log n), wheren is the size of the network.

D. Adaptive Determination of Target LOC

As we saw in the previous section, the target LOCλtarget is a critical parameter in forming

redundancy groups. There are several drawbacks associatedwith using a static value for this

parameter. First, it is difficult to select an appropriate value without prior knowledge of the

expected worker population. For instance, while a large value ofλtarget can be satisfied efficiently

by small groups in a highly reliable population, it may lead to extremely low resource utilization

and may even be unachievable for a population of largely unreliable workers. Second, the

reliability of workers may vary with time due to node churn, changes in node behavior, and

other events which affect a node’s reliability. Such dynamic changes could make even a carefully

chosenλtarget value undesirable. To summarize,λtarget is influenced by the underlying system

characteristics, which are not easy for a user or system administrator to determine statically.

To maximize the benefit derived from the system, it would be desirable if the system was

capable of selecting an appropriate target LOC value automatically. Furthermore, we would like

the system to be able to dynamically adaptλtarget to meet current system conditions. The task

server is ideally suited to select an appropriateλtarget, since it constantly updates the reliability

ratings of the workers and monitors the performance of the system.

Besides the system characteristics, the choice ofλtarget also depends on the metric (throughput

or success rate) being optimized by the application designer. There is a natural trade-off between

the throughput of successful task completion and the success rate. By forming larger groups, we

generally increase the likelihood that an individual groupwill return a correct answer, but we

decrease the number of tasks attempted, which may in turn decrease the throughput of successful

tasks. Conversely, decreasing the average group size will make each group less likely to return

correct results, but may increase the number of successful tasks completed due to the increase
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in the number of tasks attempted. One can imagine scenarios in which either metric would be

preferred over the other. Thus, neither throughput nor success rate alone is a sufficient metric for

determining an optimal value ofλtarget. In particular, if we wish to bound the latency experienced

by individual tasks, success rate is a more important metricthan throughput (as high success

rate reduces the need to re-execute the tasks). On the other hand, if we simply wish to maximize

the number of tasks completed, throughput is more important.

Thus, determining an optimal value forλtarget requires us to consider both throughput and

success rate simultaneously. Such an optimization is an instance of amulti-objective optimization

(MO) problem. A common approach to solving an MO problem is to use techniques such as Goal

Programming [34], [35] or Multilevel Programming [35] thatreduce the multiple objectives to a

single objective, and then employ standard Linear Programming techniques to obtain a solution.

Depending on the specific application, we can tailor our objective to favor either throughput

or success rate by using a weighted combination of these two objectives, which we refer to as

the gain, G:

G(ρ, s) = α · ρ + (1 − α) · s,

whereρ ands represent the normalized throughput and success rate, respectively.α is a tunable

parameter that can be set by a user or administrator to express their relative bias towards one

of the metrics:α = 1 would correspond to a throughput-optimal system, whileα = 0 would

correspond to a success rate-optimal system.

We use an adaptive algorithm to update the target LOCλtarget based on measurements of

the current value of the gainG. The detailed algorithm is given in the Appendix due to space

constraints: here, we present the intuition behind it. The adaptive algorithm employs a custom

hill-climbing algorithm to converge to an initialλtarget value reflecting the underlying reliability

distribution of the system. The algorithm then constantly monitors the current gain values (using

the observed throughput and success rate) and compares themto an exponentially smoothed

average over time. A significant change in the current value of gain serves as an indicator that

the underlying worker distribution has changed, and results in the selection of a newλtarget

based on the current measures of gain.

The description of the adaptive algorithm may lead one to believe that we are removing

one user-specified parameter (λtarget) at the expense of adding several new parameters (such
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as α, and hill-climbing algorithm parameters such as its period, significance thresholds, etc.).

However, most of these parameters can be configured empirically or determined automatically

using feedback, without any input from the user. Effectively, the user is only responsible for

specifying the value ofα, which is a much more intuitive value thanλtarget, asα only depends

on the relative importance of the metrics to the user. The adaptive algorithm is then able to

incorporate this fixed user preference in determining the choice ofλtarget, which is highly system-

dependent and dynamic in nature.

V. EVALUATION

In this section, we evaluate the performance of the rating techniques and grouping algorithms

described in the previous section through simulation of a donation-based distributed computing

platform. In our simulations, we model a large number of real-world scenarios using different

distributions for worker reliability values.

A. Evaluation Methodology

Our evaluation is based on a simulator loosely modeled around the BOINC [4] distributed

computing infrastructure, which consists of a task server and some number of worker machines.

We make two simplifying assumptions to enable fair comparison between different grouping

algorithms.

First, the simulator isround-based—work assignment and verification is done periodically in

fixed-duration time periods called rounds. The task server assigns work to all the workers at

the beginning of a round, and then waits for the workers to return their results. At the end of

each round, the server collects and verifies the received results, updates the reliability ratings

using the Optimistic heuristic described earlier, and re-forms groups for task allocation in the

next round. Workers who fail to respond by the end of a round are simulated as having returned

incorrect results. In the results shown here, we ran our simulations for a total of 1000 rounds

each. In practice, the length of a round would be linked to theexpected execution time of the

tasks within it.

Second, the task server has an extremely large pool of work relative to the number of workers

available. This assumption is consistent with the projectshosted by the BOINC infrastructure,

and is likely to be true for future large-scale scientific computing applications as well. As a
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Name Distribution (over [0,1]) Real-world Scenario
Uniform Uniform General environment

Heavy-tail-high 1-Pareto(a = 1, b = 0.1) Majority of reliable workers; a few unreliable workers
Heavy-tail-low Pareto(a = 1, b = 0.2) Majority of workers unreliable; major virus/outage
Normal-high Normal: µ = 0.9, σ = 0.05 Reliable environment; most workers reliable

Bimodal Bi-Normal: µ = 0.2/0.8, σ = 0.1 50% reliable workers, 50% unreliable
Normal-low Normal: µ = 0.3, σ = 0.1 Hostile environment, e.g., military scenarios

TABLE I

PROBABILITY DISTRIBUTIONS USED IN THE SIMULATIONS TO EMULATE DIFFERENT REAL-WORLD SCENARIOS.

result, the task server will always attempt to utilize all ofthe available workers, and workers

will never have to wait for work.

An individual worker’s reliability is modeled by assigningit a probability p of returning a

correct result within a round. When a worker is assigned a task, it returns the correct result

with probability p. These probabilities are known only to the workers - the taskserver has no

knowledge of these values a priori.

To simulate various real-world reliability scenarios, we generate individual worker probabilities

from several different probability distributions. Table Ilists some of the distributions used in

our simulations and the corresponding scenarios modeled byeach of them. For instance, we

use a normal distribution with a high mean to emulate a highly-reliable system, where most

workers are well-connected and return correct results mostof the time. On the other hand, we

use a bimodal distribution to represent a system that has a mix of highly-reliable workers and

compromised or poorly-connected nodes.

B. Reputation-Based Scheduling

We now evaluate the various reputation-based grouping algorithms described in Section IV-C.

We start by evaluating these algorithms for a fixed target LOCvalue in this section. We first

describe the metrics and parameters used in our evaluation.

1) Metrics and Parameters:To evaluate the effectiveness of the grouping algorithms, we use

the following metrics:
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• Throughput (ρ): The throughput during a round is defined as the number of tasks for which

a majority was achieved during that round (i.e., the number of ’successful’ tasks).

ρ = |Tsuccess|,

whereTsuccess is the set of successfully completed tasks during a round.

• Mean Group Size (g): The mean group size for a round is the mean number of workers

assigned to each task during the round.

g =

∑NG

i=1
|Gi|

NG

,

whereNG is the total number of groups formed during the round.

• Success Rate (s): The success rate during a round is defined as the ratio of successfully

completed tasks to the number of tasks attempted (equal to the number of groups formed)

during that round.

s =
ρ

NG

.

To fully understand the behavior of the reputation-based schedulers, we ran an exhaustive set

of simulations covering a large parameter space: the workerreliability distributions described in

Table I, a worker pool size of 100 and 1000, minimum group size(Rmin) of 3, and maximum

group sizes (Rmax) of 3, 5, 7, and 9. For each parameter setting, we compare the four algorithms

described in Section IV-C (First-fit, Tight-fit, Random-fit, and Fixed).

For a given distribution andRmax, we setλtarget equal to the success rate of the Fixed algorithm

for the same parameter values. This ensures that the successrate of the various algorithms will

be approximately the same, facilitating a comparison between our proposed algorithms and the

baseline Fixed algorithm. Due to space constraints, we willpresent a subset of the results here,

including descriptions of the most interesting findings.

2) Comparing Scheduling Algorithms:In our first experiment, we compared the different

grouping algorithms using a pool of 100 workers. In Figure 3(a), we present the mean throughput

across all rounds for anRmax value of 7 workers. ForRmax = 7, the theoretical success rate of a

Fixed strategy under the realistic Heavy-High distribution is 90%, which seems like a reasonable

’target’ success rate. This led to selection ofRmax = 7 as a representative value for the fixed

group size. The First-fit and Tight-fit algorithms improve onthe throughput of Fixed by 25-
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Fig. 3. Algorithm Comparison

250%, depending on the worker reliability distribution. The Random-fit algorithm, while not

performing as well as First-fit and Tight-fit, still outperforms Fixed by about 20-50%.

Figure 3(b) plots the mean success rate across all rounds. Since we setλtarget equal to the

success rate achieved by the Fixed algorithm, we would expect that the mean success rate for the

other algorithms to be similar. The success rate of Random-fitand Tight-fit is equal or greater

to that of Fixed—the minor shortfalls in some cases are due tothe use of approximate worker

reliability measures and maximum group sizes. First-fit deviates significantly for most of the

distributions due to its greedy group formation policy— it attempts to form groups starting with

the most reliable workers, and working down to the least reliable workers, so that it can form

highly reliable groups for distributions with low average reliability. Conversely, it also forms

several unreliable groups for high reliability distributions.

Overall, these results indicate that reputation-based scheduling algorithms significantly increase

the average throughput for all of the reliability distributions, while maintaining a high success

rate.

Figure 4 shows the mean group-size results for the above experiment. Both First-fit and

Tight-fit are able to form substantially smaller groups satisfying the target LOC requirement.

As a result, these algorithms attempt significantly more tasks in each round, resulting in the

substantially higher throughput shown in Figure 3.

In Table II, we present the throughput results for varying maximum group sizes using the

Heavy-High distribution. As theRmax parameter is reduced, the gap between the Fixed algorithm

and the reputation-based algorithms starts to narrow, since it becomes harder to form smaller
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Fig. 4. Mean Group Size

Rmax = 9 Rmax = 7 Rmax = 5 Rmax = 3

First-fit 18.21 ± 1.29 20.33 ± 1.42 22.37 ± 1.55 26.13 ± 1.86

Tight-fit 20.56 ± 1.65 22.61 ± 1.77 24.03 ± 1.74 26.01 ± 1.86

Random-fit 11.06 ± 1.05 14.41 ± 1.32 18.95 ± 1.60 26.78 ± 2.08

Fixed-size 10.20 ± 0.83 12.65 ± 1.05 17.32 ± 1.48 26.84 ± 2.13

TABLE II

EFFECT OF DECREASINGRmax ON THROUGHPUT(HEAVY-HIGH DISTRIBUTION)

groups that meetλtarget. In particular, if we setRmin = Rmax, then all of the scheduling

algorithms are essentially the same. In this case, all the algorithms form groups of size 3,causing

them to have nearly the same throughput.

3) Effect of Scale:In our second experiment, we use the same parameter settingsas the

previous experiment, but increase the network size from 100to 1000 workers. Figure 5 shows

the throughput and success-rate results for this experiment. Scaling the size of the network up

to 1000 workers causes a proportional increase in the throughput, without affecting success rate

much. Clearly, scaling up the network will have little to no impact on the relative throughput

or success rate in simulation. We will consider the impact ofscale on the overhead associated

with the different scheduling algorithms in Section V-D.

C. Adaptive Algorithm for Determining Target LOC

In the previous section, we compared the various group formation algorithms using a fixed

value of the target LOCλtarget, which was selected based on the observed success rate for the

Fixed algorithm. In this section, we evaluate the adaptive algorithm presented in Section IV-D
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Fig. 5. Mean Throughput and Success Rate, Network Size=1000
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Fig. 6. Comparison of min/max gain achieved using static LOC to gain achieved using adaptive algorithm (α = 0.5)

for its ability to determine a desirableλtarget value based on current system conditions and the

relative importance of throughput and success rate metrics. These experiments use the same

values forRmin andRmax as the previous experiments.

The default values for the parameters specific to the hill-climbing algorithm (the periodp,

significance thresholds, etc.) were empirically determined based on a comprehensive evaluation

of the parameter space. The selected values were chosen to minimize noise in the periodic gain

measurements, and to improve the stability and speed of convergence.

The periodp was set to 10, the significance thresholdsδsig, δmod and δin were set to 1.15,

1.05, and 1.01, respectively.maxrounds was set to 5,weightcurr was set to 0.3 andweighthist

was set to 0.7.
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Fig. 7. Comparison of min/max throughput achieved using static LOC to throughput achieved using adaptive algorithm (α = 1)
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Fig. 8. Comparison of min/max success rate achieved using static LOC to that achieved using adaptive algorithm (α = 0)

1) Convergence to a Desirable Value:Our first experiment illustrates the adaptive algorithm’s

ability to converge to an appropriateλtarget despite starting with no knowledge of the underlying

worker population. In this experiment, we measured the average gain achieved over 10,000

rounds using the First-fit and Tight-fit scheduling algorithms coupled with the adaptiveλtarget-

determination algorithm (referred to as adaptive First-fitand adaptive Tight-fit, respectively).

Then, we measured the average gain achieved using the non-adaptive First-fit and Tight-fit

algorithms for every possible value ofλtarget from 0 to 1 (with a granularity of 0.01), to

determine the best and worst achievable values. Figures 6, 7and 8 compare the minimum and

maximum gains achieved using a static value ofλtarget to that achieved by the corresponding
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Fig. 9. Comparison of throughput/success rate achieved using adaptive algorithm with varyingα

adaptive algorithm. These figures show the gain computed using α values of 0.5, 1, and 0

respectively where Figure 6 gives equal weight to both throughput and success rate, Figures 7

and 8 correspond to throughput-optimal and success rate-optimal algorithms respectively.

As seen from the figures, the average gain achieved by the adaptive algorithm is very close to

the maximum gain possible using a staticλtarget value in all instances. This observation holds

for both First-fit and Tight-fit algorithms. Overall, we tested 36 algorithm/worker-distribution

configurations, out of which the adaptive algorithm deviated from the maximum achievable gain

by less than 2% in 25 cases, and by less than 5% in 32 cases. The only meaningful deviation

experienced was for the Normal-Low worker distribution using the First-fit algorithm, where the

algorithm has a higher likelihood of getting stuck in a localminimum.

2) Effectiveness ofα: In our next experiment, we evaluated the effectiveness of the gain

metric and theα parameter to represent the relative importance of the throughput and success

rate metrics. Figures 9(a) and (b) show the values of successrate and throughput using adaptive

First-fit, as we vary the value ofα from 0 to 1. Recall thatα = 0 corresponds to a pure success

rate-oriented system, whileα = 1 corresponds to a throughput-oriented system. As can be seen

from the figures, an increase inα results in decreasing success rate and increasing throughput.

This result implies that the gainG is an effective metric for incorporating user preferences.

3) Dealing with Non-Stationary Workers:We next illustrate the effectiveness of the adaptive

algorithm to deal with non-stationary behavior of workers,i.e., when their reliability varies

with time. We consider a large-scale worker blackout scenario that corresponds to a real-world

event such as a network partitioning, a large organization crash, or a major virus, which may
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Fig. 10. Large-Scale Blackout: Effect of Adaptiveλtarget on throughput

suddenly compromise the reliability of a large number of workers. To emulate such an event, we

modified the simulation so that 30% of the workers transitioned from a highly-trusted normal-

high distribution to an unreliable heavy-low distributionafter round 300. These experiments use

the Tight-fit algorithm withRmax = 7.

Figures 10(a) and (b) show the effect of the large-scale blackout on the system throughput

using static and adaptiveλtarget values, respectively. Figure 10(a) shows a considerable dip in

throughput after the blackout. This is because Tight-fit continues to operate with aλtarget value

that was tailored to the higher reliability environment. Since the system has fewer trusted workers

at its disposal after the blackout, it ends up forming very large (and thus fewer) groups in an

attempt to satisfy this highλtarget. This failure to adapt to the new reliability distribution results

in the observed dip in throughput.

Figure 10(b) shows that although the throughput drops drastically in round 300 (immediately

after the blackout), the system immediately starts compensating for the drop in reliability by

reducingλtarget. The average throughput returns to near pre-blackout levels approximately 100

rounds later. There is a slight drop in the throughput between rounds 550 and 600, because the

system is probing for higherλtarget in an attempt to improve the success rate. However, the

system automatically corrects for this drop in performanceand stabilizes near round 700 at a

higher throughput (but considerably lower success-rate - 80% vs. 96%) than it was achieving

before the blackout. This experiment clearly demonstratesthe value of dynamically updating

λtarget based on current conditions in the system.
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uniform normal-high heavy-low heavy-high bimodal
First-fit 340 130 210 80 90
Tight-fit 350 130 230 210 200

TABLE III

NUMBER OF ROUNDS REQUIRED TO ACHIEVE STEADY-STATE λtarget FOR SEVERAL CLIENT DISTRIBUTIONS

4) Convergence Time:The time to converge for the adaptive algorithm is dependenton several

different variables - variance in the underlying client distribution, the wait time between target

LOC adjustments, the granularity of adjustments and the number of stationary rounds before

steady-state.

In Table III, we list the number of rounds required to converge starting with zero knowledge

(initial target LOC of 0.5) using one particular set of parameters. The wait time between

adjustments was set to 10 rounds and the number of stationaryrounds required was set to 5,

thus the minimum number of rounds for convergence is 50. These values are fairly conservative,

but they yielded excellent average gain measurements for our data sets. Selecting a smaller wait

time will cause the average time to convergence to decrease,but may result in a loss of average

gain due to noisy feedback measures. Moreover, the time to converge due to a change in the

underlying client distribution will depend on the magnitude of the change.

D. Overhead

In this section, we compare the overhead of the grouping algorithms in terms of the number of

invocations of the LOC function. In Section IV-C, we determined that the theoretical overhead

is O(n) for First-fit and Random-fit, andO(n log n) for Tight-fit, wheren is the size of the

network. Figure 11 shows the average number of calls to the LOC function during a single

round for network sizes of 100 and 1000. As expected, the number of calls to the LOC function

grows significantly faster for Tight-fit.

E. Accuracy ofλlb

In Section IV-B, we presented a function (Equation 2) to compute λlb, a lower bound for LOC

of a group. We now analyze the impact of using this approximation function on the effectiveness
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Fig. 11. Overhead (Number of calls to LOC function)

uniform normal heavy-tail bimodal
First-fit 0.0010 ± 0.0016 0.0000 ± 0.0002 0.0014 ± 0.0052 0.0012 ± 0.0052

Tight-fit 0.0784 ± 0.0587 0.0015 ± 0.0023 0.0210 ± 0.0123 0.0910 ± 0.0755

Random-fit 0.3532 ± 0.2325 0.0025 ± 0.0033 0.0561 ± 0.0442 0.3328 ± 0.2252

TABLE IV

λ VS. λlb: AVERAGE ERROR IN PRACTICE

of the system. The lower bound function corresponds to the GMin the AM-GM inequality, a

special case of Jensen’s inequality. For functions that comply to this inequality, the difference

between the AM (the actual LOC function in our case), and the GM increases as the spread

of the values increases. Therefore, as the disparity between the low and high reliability ratings

within a group increases, the lower bound diverges more and more from the actualλ value.

We empirically computed the difference betweenλ andλlb for each of the reputation-based

algorithms (shown in Table IV). As expected, we found that the error for Random-fit, which may

end up grouping workers with very dissimilar ratings, was quite high (0.05-0.3). In contrast, the

First-fit algorithm, which groups similarly rated workers,had negligible error (≤ 0.001). The

error for Tight-fit fell in the middle but is still relativelysmall (0.002-0.09).

To quantify the effect of these errors on the effectiveness of the reputation-based algorithms,

we repeated the experiment from Section V-B.2 using the actual LOC function instead of the

lower-bound. The throughput results are shown in Figure 12.As expected, these results show a

correlation between the error experienced by an algorithm and the benefit associated with using

λ instead ofλlb. In addition, the benefit is the highest for the distributions where the error was
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Fig. 12. Change in throughput when usingλ vs. λlb

the worst (uniform, bimodal). Based on these measurements, we conclude that Tight-fit could

improve its throughput by up to 10% by using a more accurate value for λ, and Random-fit

could gain up to 35% over the values presented earlier forλlb.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented a design and analysis of techniques to handle the inherent

unreliability of nodes in large-scale donation-based distributed infrastructures, such as P2P

and Grid systems. We proposed a reputation-based scheduling model to achieve efficient task

allocation in such an unreliable environment. Our reputation system represents the underlying

reliability of system nodes as a statistical quantity that is estimated based on the prior performance

and behavior of the nodes. Our scheduling algorithms use theestimated reliability ratings to form

redundancy groups that achieve higher throughput while maintaining desired success rates of task

completion. In addition, we present a technique for adaptively adjusting scheduling parameters

to match the underlying reliability distribution, which can be used to control the system’s

response to non-stationary node reliability. We evaluate our algorithms using a simulator based

on the BOINC distributed computing infrastructure. In our simulation, we varied the underlying

reliability distribution of the worker reliability valuesto emulate several real-world scenarios.

Our simulation results indicate that reputation-based scheduling can significantly improve the

throughput of the system (by as much as 25-250%) for worker populations modeling several real-

world scenarios, including non-stationary behavior, withoverhead that scales well with system

size. As part of future work, we intend to implement our techniques in a real testbed (e.g., one
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using BOINC) and to use real workload traces to evaluate the efficacy and overhead of our

algorithms under real-world deployment.
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APPENDIX

ADAPTIVE ALGORITHM FOR TARGET LOC

The appendix has been provided as a supplemental document tothis article.
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