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Abstract. We state a wall-crossing formula for the virtual classes of ε-stable quasimaps to
GIT quotients and prove it for complete intersections in projective space, with no positivity
restrictions on their first Chern class. As a consequence, the wall-crossing formula relating
the genus g descendant Gromov-Witten potential and the genus g ε-quasimap descendant
potential is established. For the quintic threefold, our results may be interpreted as giving
a rigorous and geometric interpretation of the holomorphic limit of the BCOV B-model
partition function of the mirror family.
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1. Introduction

1.1. Overview. LetW be a complex affine variety acted upon by a reductive algebraic group
G. Fix a character θ of G for which the induced G-action on the θ-semistable locus W ss is
free. For the quasiprojective target W//θG and a rational number ε > 0, or for ε = 0+, the
notion of ε-stable quasimaps to W//θG was introduced in [10], inspired by [25, 26, 6]. They
are in fact suitable maps from curves to the stack quotient [W/G]. The Deligne-Mumford
moduli stack Qε

g,k(W//θG, β) of ε-stable quasimaps of type (g, k, β) is proper over C if W//θG
is projective. Here g, k, and β are respectively the genus of the domain curve, the number
of markings, and the numerical class β ∈ HomZ(Pic([W/G],Z)) of the quasimaps. If W has
at worst lci singularities and W ss is smooth (as always assumed in this paper), the moduli
stacks carry canonical virtual fundamental classes. There are evaluation maps evj to W//θG,
as well as cotangent psi-classes ψj at the j-th marking. Hence, we may define descendant
ε-quasimap invariants

(1.1.1) 〈γ1ψ
a1
1 , . . . , γkψ

ak
k 〉

ε
g,k,β =

∫
[Qεg,k(W//θG,β)]vir

k∏
j=1

ψ
aj
j ev

∗
jγj

for γi ∈ A∗(W//θG)Q and ai ∈ Z≥0. Here and for the rest of the paper, the Chow cohomology

A∗(Y )Q of a Deligne-Mumford stack Y is the algebra A∗(Y
id→ Y )Q of bivariant classes, see

[15, §17.3] and [29, §5].
There is a wall-and-chamber structure on the space Q>0 of stability parameters. Assuming

for simplicity (g, k) 6= (0, 0), the walls are at ε = 1/n with n ∈ N and the moduli spaces stay
constant in each chamber ( 1

n+1
, 1
n
]. For ε ∈ (1,∞), they parametrize exactly stable maps to

W//θG. A conjectural wall-crossing formula for the invariants of semi-positive targets was
stated in the paper [8], and was proved for semi-positive (quasiprojective) toric quotients by
localization techniques. In this paper we propose a geometric wall-crossing formula at the
level of virtual classes and without any positivity restrictions (which, as we show, implies the
above mentioned semi-positive numerical wall-crossing, see Corollary 1.5). The main result
of the paper is a proof of the virtual class wall-crossing formula for complete intersections in
projective spaces.

The wall-crossing formula has important applications to Mirror Symmetry for Calabi-Yau
threefolds at higher genus. This is explained in §1.5, the main point being that, assuming
the Mirror Conjecture, the genus g partition function of quasimap theory for the ε = 0+
stability of a Calabi-Yau threefold is precisely equal to (the holomorphic limit of) the B-
model partition function of the mirror Calabi-Yau family, introduced in string theory by
Bershadsky, Cecotti, Ooguri, and Vafa.

1.2. Geometric wall-crossing. To state the wall-crossing formula, we recall some facts
from quasimap theory and fix some notation.
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The monoid Eff(W,G, θ) of θ-effective numerical classes is the submonoid of the additive
group HomZ(Pic([W/G],Z) consisting of classes represented by θ quasimaps (possibly with
disconnected domain curves). The Novikov ring of the theory is

Q[[q]] :=

 ∑
Eff(W,G,θ)

aβq
β | aβ ∈ Q

 ,

the q-adic completion of the semigroup ring Q[Eff(W,G, θ)].
The GIT set-up gives (see [7, §3.1] for details) a natural morphism i : [W/G]→ [Cm+1/C∗]

for some m ∈ Z+, inducing a closed immersion i : W//θG ↪→ Pm and also a morphism
(denoted by the same letter)

i : Qε
g,k(W//θG, β)→ Qε

g,k(Pm, d(β)),

where d(β) := i∗(β) ∈ Hom(Pic([Cm+1/C∗]),Z) ∼= Z.
Fix a positive rational number ε0 such that 1/ε0 is an integer and let ε+ > ε0 ≥ ε− be

rational numbers in the two adjacent stability chambers separated by the wall ε0. There is
a morphism

c : Q
ε+
g,k(P

m, d(β))→ Q
ε−
g,k(P

m, d(β))

which contracts rational tails of degree 1/ε0, see [28].
Let A denote a finite index set of cardinality 1, 2, 3, . . . Consider splittings β = β0 +∑
a∈A βa into θ-effective numerical classes such that d(βa) = 1/ε0 for all a ∈ A. There is a

natural morphism
bA : Q

ε−
g,k+A(Pm, d(β0))→ Q

ε−
g,k(P

m, d(β))

which trades the markings in A for base points of length 1/ε0 ([7, §3.2]).
Finally, recall from [10, §7] and [7, §5] that for every triple (W,G, θ), with associated

quotient X = W//θG, there is a corresponding small I-function, denoted Ism(q, z). The
precise definition we will use in this paper is Definition 5.1.1 in [7], specialized at ε = 0+
and t = 0.

The small I-function lies in a certain completion A∗(X)Q[[q]]{{1/z, z}} of Laurent series
in 1/z. (Here z may be viewed as a formal variable of degree one, though it is more natural
to interpret z as the generator of the C∗-equivariant cohomology A∗C∗(Spec(C)).) It can be
explicitly calculated for many targets. For abelian quotients, that is, for toric varieties and
for complete intersections in them, the small I-function is precisely the cohomology-valued
hypergeometric series introduced by Givental [18] (up to exponential factors). Closed formu-
las for Ism in many examples with nonabelian G (e.g., complete intersections in flag varieties,
but many others as well) can also be written down using the so-called abelian/nonabelian
correspondence, see [4, 5, 11, 12].

Consider the expansion

Ism(q, z) = O(1/z2) +
I1(q)

z
+ I0(q) + I−1(q)z + I−2(q)z2 + . . .
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and set

[zIsm(q, z)− z]+ := I1(q) + (I0(q)− 1)z + I−1(q)z2 + . . .

In general [zIsm(q, z)− z]+ is a power series in (q, z), but each q-coefficient is a polynomial
in z. For each 0 6= β ∈ Eff(W,G, θ), let

µβ(z) ∈ A∗(X)Q[z]

denote the coefficient of qβ in [zIsm(q, z) − z]+. By easy dimension counting, µβ(z) is ho-
mogeneous of degree 1 + β(K[W/G]). Here z has degree one, the Chow cohomology classes

are given their usual degrees, and K[W/G] = − det(TW ) ∈ PicG(W ) = Pic([W/G]) is the
canonical line bundle of the quotient stack.

We are now ready to state the wall-crossing for virtual classes.

Conjecture 1.1. There is an equality

i∗[Q
ε−
g,k(X, β)]vir − c∗i∗[Qε+

g,k(X, β)]vir =∑
|A|

∑
β=β0+

∑
a∈A βa

1

|A|!
bA∗(cA)∗i∗

(∏
a∈A

ev∗aµβa(z)|z=−ψa ∩ [Q
ε+
g,k+A(X, β0)]vir

)
(1.2.1)

in the Chow group A∗(Q
ε−
g,k(Pm, d(β)))Q.

More generally, let δ1, . . . , δk ∈ A∗(X)Q be arbitrary homogeneous cohomology classes.
Then

i∗

(
k∏
j=1

ev∗j δj ∩ [Q
ε−
g,k(X, β)]vir

)
− c∗i∗

(
k∏
j=1

ev∗j δj ∩ [Q
ε+
g,k(X, β)]vir

)
=

∑
|A|

∑
β=β0+

∑
a∈A βa

1

|A|!
bA∗(cA)∗i∗

(
k∏
j=1

ev∗j δj
∏
a∈A

ev∗aµβa(z)|z=−ψa ∩ [Q
ε+
g,k+A(X, β0)]vir

)(1.2.2)

in A∗(Q
ε−
g,k(Pm, d(β)))Q.

In the above statement, cA : Q
ε+
g,k+A(Pm, d(β0)) → Q

ε−
g,k+A(Pm, d(β0)) is the contraction of

rational tails of degree d(βa) = 1/ε0.

Remark 1.2. For X a semi-positive quasi-projective toric manifold, Conjecture 1.1 coincides
with Theorem 4.2.1 in [8], and the result is valid for any GIT presentation of X, see [8,
§5.9.2]. In fact, the localization argument of [8] extends with little effort to prove (1.2.2) for
all toric manifolds (i.e., no positivity restriction), offering the first evidence for the validity
of Conjecture 1.1. We will treat this extension elsewhere.
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1.3. Numerical consequences. In this subsection we assume that (W,G, θ) is a triple for
which Conjecture 1.1 holds. We work with arbitrary stability parameters ε ∈ Q>0 ∪ {0+}
and will write ε =∞ for all parameters in the Gromov-Witten chamber (1,∞).

Consider a formal power series in one variable ψ,

t(ψ) := t0 + t1ψ + t2ψ
2 + t3ψ

3 + . . . ,

with coefficients tj ∈ A∗(X)Q general Chow cohomology classes.
The genus g, ε-descendent potential of X is

F ε
g (q, t(ψ)) :=

∑
(β,k)

qβ

k!
〈t(ψ1), t(ψ2), . . . t(ψk)〉εg,k,β,

the sum over all pairs (β, k) for which the corresponding moduli spaces exist. If we choose
a basis {γj} in A∗(X)Q and write ti =

∑
j tijγj, i = 0, 1, 2, . . . , then F ε

g (q, t(ψ)) is a formal
power series in the infinitely many variables tij, whose Taylor coefficients are the ε-quasimap
invariants (1.1.1). In particular, F∞g is the generating series for all descendent genus g
Gromov-Witten invariants of X.

1.3.1. Wall-crossing from Gromov-Witten invariants to ε-quasimap invariants. Let Jεsm(q, z)
be the small J-function of X ([7, Definition 5.1.1], specialized at t = 0). With this notation,
Ism = J0+

sm . Let

[zJεsm − z]+ := Jε1(q) + (Jε0(q)− 1)z + Jε−1(q)z2 + ...

This is explicit for all ε, since it is a q-truncation of the corresponding expression for the
small I-function:

[zJεsm(q, z)− z]+ = [zIsm(q, z)− z]+ (mod aε),

with aε the ideal in the Novikov ring generated by {qβ | β(Lθ) >
1
ε
}.

Corollary 1.3. For any ε ≥ 0+, and any g ≥ 1,

F ε
g (q, t(ψ)) = F∞g

(
q, t(ψ) + [zJεsm(q)− z]+

∣∣
z=−ψ

)
.

Further, in genus g = 0 the same relation holds after discarding from F∞0 (q, t(ψ)) the terms
corresponding to pairs (β, k) for which Qε

0,k(X, β) is not defined.

Proof. The ψ-classes at the markings 1, . . . , k pull-back under the maps bA, c, cA, and i.
Applying the virtual class wall-crossing (1.2.2) in Conjecture 1.1 successively for the walls
from 1 to ε (and using the projection formula) gives the equality of the Taylor coefficients
of the two sides in the claimed equality. �

Remark 1.4. (i) The formula in Corollary 1.3 is equivalent to

F ε
g

(
q, t(ψ)− [zJεsm(q)− z]+

∣∣
z=−ψ

)
= F∞g (q, t(ψ)).
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(ii) Assuming only the formula (1.2.1) from Conjecture 1.1 gives the weaker equality

F ε
g (q, t̄(ψ)) = F∞g

(
q, t̄(ψ) + [zJεsm(q)− z]+

∣∣
z=−ψ

)
,

with t̄(ψ) the restriction of t(ψ) to the subring i∗A∗(Pm)Q ⊂ A∗(X)Q.

1.3.2. Semi-positive targets. Recall that a triple (W,G, θ) is called semi-positive if

β(detTW ) = β(−K[W/G]) ≥ 0

for every β ∈ Eff(W,G, θ). For such targets we have

[zJεsm(q)− z]+ = Jε1(q) + (Jε0(q)− 1)z,

since deg(µβ(z)) ≤ 1 for all β. The wall-crossing formula of Corollary 1.3 becomes

(1.3.1) F ε
g (q, t(ψ)) = F∞g (q, t(ψ) + Jε1(q)− (Jε0(q)− 1)ψ) .

In fact, equation (1.3.1) is equivalent to the wall-crossing formula conjectured in [8, Conjec-
ture 1.2.1]:

Corollary 1.5. For a semi-positive triple (W,G, θ) we have

(1.3.2) (Jε0)2g−2

(
δ1
g

(
χtop(X)

24
log Jε0(q)

)
+ F ε

g (q, t(ψ))

)
= F∞g

(
q,

t(ψ) + Jε1(q)

Jε0(q)

)
,

where χtop(X) denotes the topological Euler characteristic and δ1
g is the Kronecker delta. (In

genus g = 0 we use the same convention as in Corollary 1.3.)

Proof. Using the dilaton equation for Gromov-Witten invariants in the right-hand side of
(1.3.1) to remove the insertions (Jε0(q)− 1)ψ produces exactly (1.3.2). The additional term

δ1
g

(
χtop(X)

24
log Jε0(q)

)
appears due to the failure of the dilaton equation for M1,1(X, 0) =

M1,1 ×X. Namely, since the virtual class is

[M1,1(X, 0)]vir = (1⊗ cdimX(TX)− ψ ⊗ cdimX−1(TX)) ∩ [M1,1 ×X],

we have

〈ψ〉∞1,1,0 =

∫
M1,1×X

ψ ⊗ cdimX(TX) =
1

24
χtop(X),

while the dilaton equation would formally predict 〈ψ〉∞1,1,0 = 0. �

1.4. Complete intersections in projective space. The main result of the paper is a
proof of Conjecture 1.1 for projective complete intersections. In fact, we will prove the
following slightly strengthened version.

Let V be the affine space of dimension n+1 with the standard diagonal G := C∗-action and
linearization θ = idC∗ . Let W be a complete intersection of r ≤ n homogeneous hypersurfaces
in V . Then X := W//θG. is the corresponding projective complete intersection in P(V ) (and
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W is the affine cone over X). Assume that the hypersurfaces are general, so that X is
smooth. We take X ↪→ P(V ) as our embedding i. In this case, the induced

i : Qε
g,k(X, d) −→ Qε

g,k(P(V ), d)

are also embeddings. The maps that replace markings by base-points, as well as the contrac-
tion maps, respect these embeddings, i.e., given a wall ε = 1/da and ε+ > ε ≥ ε− nearby,
we have restrictions

bA : Q
ε+
g,k+A(X, dA0 ) −→ Q

ε+
g,k(X, d),

where dA0 = d− |A|da, and

c : Q
ε+
g,k(X, d) −→ Q

ε−
g,k(X, d).

Theorem 1.6. There is an equality

[Q
ε−
g,k(X, d)]vir − c∗[Qε+

g,k(X, d)]vir =∑
|A|

1

|A|!
(bA)∗(cA)∗

(∏
a∈A

ev∗aµda(z)|z=−ψa ∩ [Q
ε+
g,k+A(X, dA0 )]vir

)
in the Chow group A∗(Q

ε−
g,k(X, d))Q.

Since Theorem 1.6 implies the formula (1.2.2), the relations between ε-quasimap invariants
and Gromov-Witten invariants in Corollaries 1.3 and 1.5 hold for nonsingular complete
intersections X ⊂ Pn of codimension r ≤ n.

Let l1, l2, . . . , lr be the degrees of the hypersurfaces whose intersection is X. The small
I-function of X is given by the well-known formula (see [17])

I(q, z) = 1 +
∑
d≥1

qd
∏r

i=1

∏lid
j=1(liH + jz)∏d

j=1(H + jz)n+1
,

where H denotes the restriction to X of the hyperplane class on Pn.
If
∑r

i=1 li ≥ n+2, so that X is a variety of general type, we do not know of any simplifica-
tion of the wall-crossing formula in Corollary 1.3. Note that even in genus g = 0 our result
is new.

If X is Fano or Calabi-Yau, more precise statements can be made.
The case

∑r
i=1 li ≤ n − 1 of complete intersections which are Fano of index at least two

is the simplest, since Jε0(q) = 1 and Jε1(q) = 0 for all ε ≥ 0+. We conclude the following
ε-independence result.

Corollary 1.7. The quasimap invariants of a projective complete intersection with
∑

i li ≤
n− 1 are independent of ε.

In the Fano of index one case,
∑r

i=1 li = n, we have Jε0(q) = 1 and Jε1(q) = q(
∏r

i=1 li!)1
for all 0+ ≤ ε ≤ 1.
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Corollary 1.8. For a projective complete intersection with
∑

i li = n and for 0+ ≤ ε ≤ 1
we have

F ε
g (t(ψ)) = F∞g (t(ψ) + q(

r∏
i=1

li!)1).

In particular, if (g, n) 6= (0, 1), (0, 2), then the primary invariants are again ε-independent:

〈γ1, . . . γn〉εg,n,β = 〈γ1, . . . γn〉∞g,n,β.

The second equality in Corollary 1.8 is a consequence of the string equation in Gromov-
Witten theory.

The most interesting is the Calabi-Yau case
∑r

i=1 li = n+ 1, for which

Jε0(q) =
∑

0≤d≤ 1
ε

qd
∏r

i=1(lid)!

d!n+1
,

Jε1(q) = H
∑

1≤d≤ 1
ε

qd
∏r

i=1(lid)!

d!n+1

(
r∑
i=1

lid∑
k=1

li
k
− (n+ 1)

d∑
k=1

1

k

)
.

For every ε and every d, the virtual dimension of the moduli space Qε
g,k(X, d) is equal to

(dimX − 3)(1− g) + k. We split the discussion according to the genus.

1.4.1. Genus zero. The wall-crossing formula (1.3.2) at g = 0 for a Calabi-Yau complete
intersection is proved in [8, §3] using Dubrovin-type reconstruction arguments and results
from [7]. Here we just note that the new proof in this paper does not use the torus action
on Pn.

1.4.2. Genus one. When g = 1, the virtual dimension is independent of the dimension of X.
Consider the unpointed case k = 0, i.e. the specialization of (1.3.2) at g = 1, and t(ψ) = 0.
Separating the d = 0 contributions and applying the divisor equation in the Gromov-Witten
side gives

Corollary 1.9. For a Calabi-Yau complete intersection X ⊂ Pn

1

24
χtop(X) log Jε0 +

∑
d≥1

qd〈 〉ε1,0,d =(1.4.1)

− 1

24

∫
X

Jε1
Jε0
cdimX−1(TX) +

∑
d≥1

qd exp

(∫
d[line]

Jε1
Jε0

)
〈 〉∞1,0,d.

When ε = 0+, the formula (1.4.1) answers a question raised first in [25, §10.2]. Note that
the unpointed genus one (0+)-invariants 〈 〉0+

1,0,d have been recently calculated by Kim and
Lho ([21]) in terms of the small I-function. Combining [21, Theorem 1.1] with Corollary 1.9
gives new proofs for the main results on genus one Gromov-Witten invariants of X from [30]
and [27].



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 9

1.4.3. Higher genus. If g ≥ 2 and dimX ≥ 4, the virtual classes (hence the invariants) vanish
by dimension considerations. We restrict to the case of unpointed invariants of Calabi-Yau
threefolds. The invariants for d = 0 are the same for all stability conditions and are given
by the formula

〈 〉εg,0,0 =
(−1)g

2
χtop(X)

|B2g|
2g

|B2g−2|
2g − 2

1

(2g − 2)!
,

with B2g, B2g−2 the Bernoulli numbers, see [16], [14].

Corollary 1.10. For a Calabi-Yau threefold complete intersection in Pn, g ≥ 2 and ε ≥ 0+,

Jε0(q)2g−2

(
(−1)g

2
χtop(X)

|B2g|
2g

|B2g−2|
2g − 2

1

(2g − 2)!
+
∑
d≥1

qd〈 〉εg,0,d

)
=

(−1)g

2
χtop(X)

|B2g|
2g

|B2g−2|
2g − 2

1

(2g − 2)!
+
∑
d≥1

qd exp

(∫
d[line]

Jε1
Jε0

)
〈 〉∞g,0,d.

1.5. Relation with Mirror Symmetry. In this subsection we let X be the quintic hyper-
surface in P4 and consider the asymptotic stability condition ε = 0+. (The same analysis
will apply to the (0+)-theory of any Calabi-Yau threefold for which Conjecture 1.1 holds.)

Fix a genus g ≥ 1. In their landmark paper [2], Bershadsky, Cecotti, Ooguri, and Vafa
studied the string theory B-model of a Calabi-Yau threefold and in particular they proposed a
method to calculate the genus g Gromov-Witten potential of the quintic (with no insertions)
via Mirror Symmetry. Namely, let FBg (q) be the holomorphic limit of the genus g partition
function of the B-model associated to the mirror family of the quintic, where q is the coor-

dinate around the large complex structure point. Let the mirror map be Q = q exp( 1
H
I1(q)
I0(q)

),

where

I0(q) = 1 +
∑
d≥1

qd
(5d)!

d!5
, I1(q) = H

∑
d≥1

qd
(5d)!

(d!)5

(
5d∑

j=d+1

1

j

)
.

Then the genus g ≥ 2 Mirror Conjecture of [2] for the quintic threefold is the equality

(1.5.1) I0(q)2g−2FBg (q) =
∑
d≥0

Qd〈 〉∞g,0,d.

Hence Corollary 1.10 says precisely that the quasimap partition function F 0+
g |t=0(q) is equal

to FBg (q), with no mirror map involved. Similarly, Corollary 1.9 gives the same equality in
genus g = 1. In other words, our results in this paper can be viewed as giving a mathe-
matically rigorous and geometrically meaningful definition of the holomorphic limit of the
B-model partition function.

The B-model partition function of the mirror quintic has been studied extensively in the
Physics literature. It is expected to have modular properties and to satisfy a recursion in
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g, determined up to a holomorphic function fg(q), the so-called “holomorphic ambiguity”.
The ambiguity has been fixed up to genus g = 51 in [20] and this is by far the most
efficient computational method for predicting (via the conjectural mirror formula (1.5.1)) the
higher genus Gromov-Witten invariants of the quintic. We speculate that the holomorphic
ambiguity fg(q) has an intrinsic meaning in quasimap theory. It would be very interesting
to determine if this is indeed the case.

1.6. Final remarks. While the proof of Theorem 1.6 we give here is quite involved, it turns
out to be also robust. For example, it extends easily to the case of complete intersections
in products of projective spaces. It also applies to proving a wall-crossing formula for the
virtual classes of quasimap moduli spaces (with same stability parameter ε = 0+ and target
a complete intersection X ⊂

∏
Pni) when one usual marking is changed to an infinitesimally

weighted marking. To keep this paper from becoming excessively long, we defer the details
of these developments to future writings.

1.7. Acknowledgments. I.C.-F. was partially supported by the NSF grants DMS-1305004
and DMS-1601771. B.K. is supported by the KIAS individual grant MG016403. In addition,
I.C-F. thanks KIAS for financial support, excellent working conditions, and an inspiring
research environment during visits when a large part of this project was completed. We
deeply thanks the anonymous referee for valuable suggestions to improve the readability of
the paper.

2. Virtual classes for moduli of quasimaps

2.1. Overview. In this section we give a concrete description of the virtual class of a moduli
space of quasimaps to a complete intersection in projective space. This is accomplished by
embedding the moduli space into a smooth stack and intersecting the normal cone for this
embedding with the zero section of an appropriate vector bundle. This description will be
crucially used in the proof of Theorem 1.6 given in section 3. The construction is uniform
for all discrete parameters g, k, d and ε, but requires the existence of the moduli space of
stable curves, so it doesn’t apply directly to the unpointed elliptic case (g, k) = (1, 0). An
appropriate modification, sufficient for completing the proof of Theorem 1.6 in this case as
well, will be discussed in §3.7.

2.2. Set-up and conventions. From now on we let G = C∗. Let V be an n+1-dimensional
G-representation (n ≥ 1), with weight vector (1, ..., 1). Let Cr

~l
be an r-dimensional G-

representation with positive weight vector ~l := (l1, ..., lr) (lj > 0, ∀j). Assume we are given
a G-equivariant map

ϕ = ⊕ri=1ϕi : V → Cr
~l

such that the closed subscheme W := ϕ−1(0) is smooth away from 0 ∈ V and of dimension
dimW = n + 1 − r > 0. We linearize the G action on V by the character θ of weight 1.
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The GIT quotient X := W//θG is a nonsingular complete intersection of type (l1, ..., lr) in
Pn = V//θG, with ϕi its homogeneous equations.

Recall that the inclusion i : X ⊂ P(V ) induces an embedding

i : Qε
g,k(X, d) ↪→ Qε

g,k(P(V ), d)

for all ε ≥ 0+.
We also make the following conventions:

• M g,k denotes the Deligne-Mumford stack of k-pointed stable curves of genus g, while
Mg,k denotes the Artin stack of prestable k-pointed curves of genus g.

• Bung,kG denotes the moduli stack of principal G-bundles on k-pointed prestable
curves of genus g. It is a smooth Artin stack of pure dimension and decomposes
as
∐

d∈ZBun
g,k
G,d, according to the degrees of the principal bundles. There are natu-

ral forgetful morphisms

Qε
g,k(P(V ), d) −→ Bung,kG,d −→Mg,k.

• The universal families of curves on various moduli stacks are denoted by C, usually
with decorations recording the discrete data. For example,

Cεg,k,d
//

��

Cg,k

��

Cε
′

g,k,d′
oo

��

Qε
g,k(X, d) // M g,k Qε′

g,k(P(V ⊗ CN), d′).oo

We will abuse notation and denote always by π the projection from the universal
curve to the base.

We will represent quasimaps to a projective space P(V ) as tuples

((C, p1, . . . , pk), L, u)

with L a line bundle on C and u a section of L⊗V (as in [6]). Quasimaps to X ⊂ P(V ) will
then be such tuples for which the components u1, . . . , udimV of u (once a basis of V is chosen)
satisfy the homogeneous equations of X. The base-points of the quasimap are the points
of C where all the ui’s vanish and the length `(x) at a point x ∈ C is the common order
of vanishing. Given ε ∈ Q>0, recall that the definition of ε-stability requires the following
conditions be satisfied:

(1) the base-points are away from nodes and markings;
(2) ε`(x) ≤ 1 for all x ∈ C;
(3) the line bundle ωC(p1 + · · ·+ pk)⊗ Lε is ample.

For ε = 0+ condition (2) is empty and is discarded, while condition (3) translates into the
absence of rational tails in C and the strict positivity of degL on rational bridges (rational
components of C containing exactly two special points).
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Finally, recall that the theory of virtual classes was first developed by Li and Tian in [24],
and by Behrend and Fantechi in [1]. In this paper we use the formalism of [1].

2.3. Twisting line bundles. Fix (g, k) 6= (1, 0).
For each ε ≥ 0+ we construct a line bundle Mε on the universal curve

Cεg,k,d −→ Qε
g,k(P(V ), d)

as follows.
When g = 0, we take the trivial line bundle Mε = O.
When g ≥ 1 and g + k ≥ 2, the moduli stack M g,k exists and we have the diagram

Cεg,k,d
f̃tε //

π

��

Cg,k

π
��

Qε
g,k(X, d)

ftε // M g,k

Σi

EE

with ftε, f̃ tε the stabilisation morphisms and Σi the sections of π corresponding to the k
markings. The logarithmic relative dualising sheaf ωlog := ωπ(Σ1 + . . .Σk) on Cg,k is π-ample
and we choose a positive integer p such that ω⊗plog is π-relatively very ample. We also choose

a very ample line bundle on the (projective!) coarse moduli of M g,k and denote by H its
pull-back to the stack M g,k. Now set

Mε := f̃ tε
∗
(π∗H ⊗ ω⊗plog).

Lemma 2.1. The line bundles Mε satisfy the following properties:

(i) If ε > ε′, then Mε = c̃∗Mε′, where c̃ is the induced contraction morphism on universal
curves in the diagram

Cεg,k,d

��

c̃ // Cε
′

g,k,d

��

Qε
g,k(P(V ), d)

c // Qε′

g,k(P(V ), d)

(ii) For every geometric fiber C of Cεg,k,d → Qε
g,k(P(V ), d) we have

H1(C,L ⊗Mε|C) = 0,

where L denotes the universal line bundle associated to the universal principal G-
bundle on the universal curve.

Proof. Part (i) is obvious from the definition, since C and c̃ are compatible with the forgetful
stabilisation maps. For part (ii), notice that deg L is nonnegative on every component of
every geometric fiber C and by stability it is strictly positive on every rational component
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with at most two special points. On the other hand, by construction Mε has vanishing H1

on the stabilization of C and is trivial on rational tails and rational bridges. The required
vanishing follows. �

Choose once and for all global sections {τ1, . . . , τN} giving a basis of Γ(Cg,k, π
∗H ⊗ ω⊗plog),

and hence an embedding

h : Cg,k −→ P(CN).

Let sεj := f̃ tε
∗
τj of Mε be the induced sections of Mε, determining the map hε := h◦f̃ tε, with

Mε = h∗εOP(CN )(1). When the parameter ε is understood we will drop it from the notation
and write simply M and sj for the twisting line bundle and its sections. Furthermore, we
will use the same notations when considering the restriction of the set-up in this subsection
to the moduli spaces Qε

g,k(X, d) via the embedding i.
Note that the degree of M on the fibers of the universal curve is a constant positive integer

dM depending only on (g, k), but not on d, or on the dimension of P(V ).

2.4. Perfect obstruction theory of Qε
g,k(X, d). Fix (g, k) 6= (1, 0) and ε ≥ 0+. Consider

the line bundle L ′ := L ⊗M on the universal curve Cεg,k,d over Qε
g,k(X, d). There is a

commuting diagram with exact rows

(2.4.1) 0 // L ⊗ V
⊕jsj //

⊕idϕi
��

⊕Nj=1L
′ ⊗ V

⊕i,js
li−1
j dϕi

��

α0 // P //

f

��

0

0 // ⊕ri=1L
li
⊕i,js

li
j // ⊕i,j(L ′)li α1

// Q // 0.

The top row is obtained by puling-back the tautological sequence

(2.4.2) 0 −→ OP(CN )(−1) −→ OP(CN ) ⊗ CN −→ Q −→ 0

via hε : Cεg,k,d −→ P(CN) and tensoring with L ′ ⊗ V . The bottom row comes from (2.4.2)

similarly, by taking the direct sum of its pull-backs via gli ◦ hε, tensored with (L ′)li , where
gli : P(CN) −→ P(CN) is the degree li map [t1 : · · · : tN ] 7→ [tli1 : · · · : tliN ]. In particular, P
and Q are vector bundles.

The components dϕi of the vertical homomorphism on the left are given as follows. Let
∆ ⊂ Cεg,k,d be an open substack. After choosing coordinates (x0, . . . xn) on V , we may
write ϕi as a homogeneous polynomial of degree li and a local section v of L ⊗ V on ∆ as
v = (v0, . . . vn). Then we put

dϕi(v) = ∇ϕi(u|∆) · v =
n∑

m=0

∂ϕi
∂xm

(u|∆)vm,
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where u = (u0, . . . , un) is the universal section of L ⊗ V on Cεg,k. Similarly, for fixed i and j
and a local section v′ = (v′0, . . . v

′
n) of L ′ ⊗ V ,

sli−1
j dϕi(v

′) =
n∑

m=0

∂ϕi
∂xm

(u⊗ sj|∆)v′m =
n∑

m=0

sli−1
j |∆

∂ϕi
∂xm

(u|∆)v′m.

Viewing (2.4.1) as an exact sequence of two-term complexes, it follows that the two-
term vertical complex on the left in (2.4.1) is quasi-isomorphic to the shifted mapping cone
A• := Cone(α)[−1] of the homomorphism α = (α0, α1). Denote

R := ⊕i,j(L ′)li .

Define a coherent sheaf E (in fact, a vector bundle) by the exact sequence

0→ E →P ⊕R → Q → 0,(2.4.3)

where P ⊕R → Q is given by (x, y) 7→ f(x)− α1(y). Then A• is quasi-isomorphic to

⊕Nj=1L
′ ⊗ V → E .(2.4.4)

On the other hand, if
ρ : Prin(L )×G W → Cεg,k,d

denotes the universal W -fiber bundle with Prin(L ) the principal G-bundle associated to L
and we view u as the universal section of ρ, then the pull-back u∗Tρ of the relative tangent
complex of ρ coincides with the two-term complex L ⊗ V → ⊕ri=1L

li on the left of (2.4.1).
We conclude that u∗Tρ is quasi-isomorphic to (2.4.4) at amplitude [0, 1].

Part (ii) of Lemma 2.1 gives the vanishing R1π∗L ′ = 0. This in turn implies that
R1π∗P = R1π∗Q = 0. Since the derived push-forward of u∗Tρ has amplitude in [0, 1] by
[10, Theorem 4.5.2], the same is true for the derived push-forward of the shifted mapping
cone A•. Hence the map π∗(P ⊕R)→ π∗Q is surjective and then R1π∗E = 0 from (2.4.3).
It follows that

(2.4.5) Eε
d := π∗E

is a locally free sheaf on Qε
g,k(X, d) and we obtain a perfect complex

⊕Nj=1π∗L
′ ⊗ V → Eε

d,(2.4.6)

whose dual represents the canonical perfect obstruction theory

(R•π∗u
∗Tρ)∨

for Qε
g,k(X, d) relative to Bung,kG . We have proved the following result.

Proposition 2.2. The virtual fundamental class of Qε
g,k(X, β) is

[Qε
g,k(X, d)]vir = 0!

Eεd
([Cε])

where Cε ⊂ Eε
d denotes the Behrend-Fantechi obstruction cone, see [1], associated to the

relative perfect obstruction theory given by (2.4.6).
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2.5. An embedding of Qε
g,k(X, d) into a smooth stack. Set

d′ := d+ dM = d+ deg(M |C).

Consider the moduli stack Qε
g,k(P(V ⊗ CN), d′), with universal curve Cεg,k,d′ . By a slight

abuse, denote also by M the twisting line bundle on Cεg,k,d′ (defined by the construction in

§2.3, as the pull-back of π∗H ⊗ ω⊗plog on Cg,k by the stabilization morphism).

Definition 2.3. Define U ε
d′ ⊂ Qε

g,k(P(V ⊗ CN), d′) as the open substack consisting of the
ε-stable quasimaps

((C, p1, ..., pk), L
′, u′)

to P(V ⊗ CN) such that H1(C,L′) = 0.

Note that U ε
d′ is the complement of the support of the coherent sheaf R1π∗L ′, so it is

indeed an open substack.

Lemma 2.4. The stack U ε
d′ is a separated DM-stack of finite type, smooth and of pure

dimension over Bung,kG , and hence over Mg,k. In particular, fixing a locally-closed substack

of Bung,kG parametrizing prestable curves with fixed topological type, together with line bundles
of given degrees on the components, produces a corresponding locally-closed substack of U ε

d′

with the same codimension.

Proof. The separatedness and finite type properties follow from the corresponding ones for
Qε
g,k(P(V ⊗ CN), d′). By definition, the quasimaps in U ε

d′ are unobstructed, which gives the
smoothness and the pure dimensionality. (In fact, U ε

d′ is also irreducible, since it is the
smooth locus in the “main component” of Qε

g,k(P(V ⊗ CN), d′). Irreducibility of the “main

component” follows from the connectedness of M g,k(P(V ⊗ CN), d′), proven in [22].) �

Let π : Cεg,k,d′ → U ε
d′ be the universal curve and let L ′ be the universal line bundle of

π-relative degree d′ on Cεg,k,d′ . By the very definition of U ε
d′ , the sheaf π∗L ′ is locally free.

Put

L := L ′ ⊗M−1,

and consider the diagram of vector bundles on Cεg,k,d′

(2.5.1) 0 // L ⊗ V
⊕jsj // ⊕Nj=1L

′ ⊗ V //

⊕j(⊕idϕi)
��

Pε
d′

// 0

0 // ⊕ri=1L
li
⊕i,js

li
j // ⊕i,j(L ′)li // Qε

d′
// 0.
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As before, the exact rows are obtained from the tautological exact sequence (2.4.2) on P(CN)
via pull-backs, tensoring with appropriate line bundles, and taking direct sums. The com-
ponents of the map between the middle terms (for fixed i and j) are given by

dϕi(v
′
j0, . . . v

′
jn) =

n∑
m=0

∂ϕi
∂xm

((u′j0, . . . u
′
jn)|∆)v′jm,

where

(2.5.2) u′ = (u′10, . . . , u
′
1n, u

′
20, . . . , u

′
2n, . . . , u

′
N0, . . . , u

′
Nn)

is the universal global section of ⊕Nj=1L
′ ⊗ V on Cεg,k,d′ and (v′10, . . . , v

′
1n, . . . , v

′
N0, . . . , v

′
Nn)

is a local section of ⊕Nj=1L
′ ⊗ V over an open ∆ ⊂ Cεg,k,d′ .

Let us denote

A ε
d′ := ⊕Nj=1L

′ ⊗ V, Rε
i,d′ := ⊕Nj=1(L ′)li , Rε

d′ := ⊕ri=1R
ε
i,d′ .

The tautological section τ ε of π∗A ε
d′ induces a natural section σεP of the vector bundle

P ε
d′ := π∗P

ε
d′

on U ε
d′ . On the other hand, we also have the section σεR of the vector bundle

Rε
d′ := π∗R

ε
d′

whose (i, j)-component is given by ϕi(u
′
j0, . . . , u

′
jn). Set

(2.5.3) σε := (σεP , σ
ε
R) ∈ H0(U ε

d′ , P
ε
d′ ⊕Rε

d′).

Because the exactness of the rows of (2.5.1) is preserved for any base change, it follows
immediately that the zero locus of the section σε is identified with the stack Qε

g,k(X, d).
Thus, we have an explicit embedding of Qε

g,k(X, d) in the smooth stack U ε
d′ , summarized in

the diagram

(2.5.4) P ε
d′ ⊕Rε

d′

��
Qε
g,k(X, d) ∼= (σε)−1(0) �

� closed //

))RRR
RRR

RRR
RRR

RR
U ε
d′

smooth
��

σε

YY

Bung,kG .

Over Qε
g,k(X, d), the diagram (2.5.1) restricts to the diagram (2.4.1). Denoting by I the

ideal sheaf of the closed substack Qε
g,k(X, d) in U ε

d′ and setting

(2.5.5) F ε
d′ := P ε

d′ ⊕Rε
d′ = π∗P

ε
d′ ⊕ π∗Rε

d′ ,

we obtain the commuting diagram of coherent sheaves
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(2.5.6)
(
F ε
d′|Qεg,k(X,d)

)∨
(σε)∨ && &&LL

LLL
LLL

LLL

// (Eε
d)
∨

��

//
(
π∗A ε

d′ |Qεg,k(X,d)

)∨
=

��
I /I 2 // ΩUε

d′/Bun
g,k
G
|Qεg,k(X,d) ,

where the existence of the surjection (Eε
d)
∨ � I /I 2 follows from a standard deformation

theory calculation.
The square in the diagram (2.5.6) is precisely the map of complexes from the obstruction

theory (2.4.6) to the two-term truncation of the relative cotangent complex LQεg,k(X,d)/Bung,kG
.

The indicated equality (π∗A ε
d′)
∨ = ΩUε

d′/Bun
g,k
G

follows from the definition of U ε
d′ and the

identification of (R•π∗A ε
d′)
∨ with the relative obstruction theory over Bung,kG for Qε

g,k(P(V ⊗
CN), d′), see [6, §5.3]. Here L ′ denotes, by abusing notation, also the universal line bundle
on the universal curve on Qε

g,k(P(V ⊗ CN), d′).

Lemma 2.5. The relative normal cone CQεg,k(X,d)/Uε
d′

for the embedding in (2.5.4) coincides

with the obstruction cone Cε ⊂ Eε
d.

Proof. First, we have by definition

Cε = Cin ×[Eεd/TUε
d′
/Bun

g,k
G

] E
ε
d,

where Cin is the relative intrinsic normal cone of Qε
g,k(X, d) over Bung,kG (see [1]) and

[Eε
d/TUε

d′/Bun
g,k
G

] denotes the stack quotient. Since Cin = [CQεg,k(X,d)/Uε
d′
/TUε

d′/Bun
g,k
G

], the

Lemma follows. �

Proposition 2.2 and Lemma 2.5 imply the following concrete description of the virtual
classes of moduli spaces of ε-stable quasimaps to X.

Corollary 2.6.

[Qε
g,k(X, d)]vir = 0!

Eεd
([CQεg,k(X,d)/Uε

d′
]).

Remark 2.7. Recall that in genus zero we take a trivial twisting line bundle M , so in this
case U ε

d′ = Qε
0,k(P(V ), d) and the construction reduces to the known realization of Qε

g,k(X, d)

as the zero locus of a section of the bundle ⊕iπ∗(L )li on Qε
0,k(P(V ), d). This bundle has

“correct” rank d
∑

i li + r, hence its refined top Chern class gives [Qε
g,k(X, d)]vir. However,

for g ≥ 1 the rank of the bundle F ε
d′ = π∗Pε

d′ ⊕ π∗Rε
d′ is larger than the virtual codimension

of Qε
g,k(X, d) in U ε

d′ , so the virtual class is not the refined top Chern class.
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3. Proof of Theorem 1.6

3.1. Overview. Adapting an idea of Bertram from [3], we consider a one-parameter degen-
eration of the diagram (2.5.4) which is obtained via a refinement of MacPherson’s Graph
Construction. The proof of Theorem 1.6 will then follow by analyzing the central fiber limit
of the virtual cycle [Q+

g,k(X, d)]vir in this degeneration.

3.2. Boundary strata. Let ε0 be a wall, so that m := 1/ε0 is a positive integer. Let
ε+ > ε0 ≥ ε− be stability parameters separated only by the single wall ε0. Fix the numerical
data (g, k, d). We will denote by Q±g,k(X, d), U±d′ etc. the moduli spaces corresponding to the
stability parameters ε±. The contraction morphisms with the abused notation

c : Q+
g,k(X, d) −→ Q−g,k(X, d), c : U+

d′ −→ U−d′

contract precisely the rational tails of degree m.
The evaluation maps at the markings will be denoted by êvj for Qε

g,k(P(V ⊗ CN), d′) and
for its open substack U ε

d′ , while we reserve the notation evj for the evaluation maps on
Qε
g,k(P(V ), d) and on Qε

g,k(X, d).

For a finite index set A, with |A| = 1, 2, ..., [ d
m

] we associate to each a ∈ A the integer
da = m and set

(3.2.1) d0 = dA0 := d−
∑
a∈A

da = d− |A|m ≥ 0.

Denote

DA := U+
k+A,d′0

×P(V⊗CN )A

∏
a∈A

Q+
0,a(P(V ⊗ CN), da),

D̃A := U+
k+A,d′0

×P(V⊗CN )A

∏
a∈A

C+
0,a,da

,

where C+
0,a,da

→ Q+
0,a(P(V ⊗ CN), da) is the universal curve, the notations U±k+A,d′0

are the

obvious ones, and the fiber products are made via (êva)a∈A on the left and
∏

a∈A êva on
the right. The easiest way to describe the evaluation map êva : C+

0,a,da
→ P(V ⊗ CN) is

by identifying C+
0,a,da

with the moduli stack Q+
0,a|1(P(V ⊗ CN), da) which parametrizes ε+-

stable quasimaps of degree da from rational curves with one marking a of weight 1 and one
additional marking of weight 0+, see [9] for more on these moduli stacks.

We will need an alternative description of these boundary strata which takes into account
the twisting line bundles M .
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Consider the diagram of universal curves

(3.2.2) C+
g,k,d′

π
$$I

II
II

II
II

//

c̃
++

h+

%%
c∗C−g,k,d′

��

// C−g,k,d′

π

��

h− // P(CN)

U+
d′

c // U−d′

with cartesian square and the maps h± given by the sections s1, . . . sN ∈ Γ(C−g,k,d′ ,M−), so
that M± = (h±)∗(OP(CN )(1)). For each a ∈ A we obtain maps

(3.2.3) h±a : U±k+A,d′0
−→ P(CN)

as the compositions

h−a : U−k+A,d′0

Σa // C−g,k+A,d′0

b̃A // C−g,k,d′
h− // P(CN),

h+
a : U+

k+A,d′0

cA // U−k+A,d′0

h−a // P(CN).

Here Σa is the section corresponding to the marking a ∈ A, b̃A is the map that trades each
marking in A for a base-point of length da, and cA is the contraction of rational tails of
degree da. There is a natural identification

(3.2.4) DA
∼= U+

k+A,d′0
×(P(V⊗CN )×P(CN ))A

∏
a∈A

(Q+
0,a(P(V ⊗ CN), da)× P(CN)),

where the fiber product is now done using ((êva, h
+
a ))a∈A on the left and

∏
a∈A(êva× idP(CN ))

on the right. Similarly,

D̃A
∼= U+

k+A,d′0
×(P(V⊗CN )×P(CN ))A

∏
a∈A

(C+
0,a,da

× P(CN)).

We have the following commuting diagram of canonical morphisms:

(3.2.5) U+
d′

c // U−d′

DA

prA

��

PrA //

νA

OO

U+
k+A,d′0

cA // U−k+A,d′0

bA

OO

∏
a∈A(Q+

0,a(P(V ⊗ CN), da)× P(CN)),
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where bA denotes the morphism which trades the markings A for base points of length
da. The two projections prA and PrA are those coming from the fiber product description
(3.2.4) of DA. The map νA has degree |A|! and sends DA onto the boundary stratum of U+

d′

generically parametrizing (unobstructed) ε+-stable quasimaps to P(V ⊗ CN) whose domain
curves have exactly |A| unordered rational tails of degree da. In particular, for A = {a} the
map ν{a} is an embedding of D{a} as a boundary divisor.

The contractions c, cA are isomorphisms over the (nonempty) loci of quasimaps with
irreducible domain curves. By Lemma 2.4, the complements of these loci have positive
codimension and we conclude that c, cA are birational morphisms and hence degree 1 maps.

We finally introduce one more piece of notation. Let pa denote the Cartier divisor on the
universal curve C±g,k+{a},d′0

of the moduli spaces U±k+{a},d′0
which is the image of the section

Σa corresponding to the marking a. Similarly, we have the Cartier divisor ptaila on the uni-
versal curve C+

0,a,da
× P(CN) of Q+

0,a(P(V ⊗ CN), da) × P(CN) defined by the image of the

section Σtail,a corresponding to the marking a. As usual, O(pa), respectively O(ptaila ), will
stand for the associated line bundles; and Opa , respectively Optaila

will stand for the coher-
ent sheaves Σa∗Σ

∗
aO, Σtail,a∗Σ

∗
tail,aO on the universal curves. Then Σ∗aO(−pa), respectively

Σ∗tail,aO(−ptaila ), is identified with the line bundle with first Chern class ψa on U±k+A,d′0
, re-

spectively ψtaila on Q+
0,a(P(V ⊗CN), da)×P(CN). Abusing notation, we will write O(ψa) and

O(ψtaila ) for these line bundles, and O(−ψa), O(−ψtaila ) for their duals.

3.3. MacPherson’s Graph Construction. For easy notation, for A = {a} in (3.2.5) we
write Da, Pra, ca, ba, etc instead of D{a}, Pr{a} c{a} b{a}, etc. Let π : C±g,k,d′ → U±d′ be the

universal curve and denote by c̃ the contraction morphism from C+
g,k,d′ to C−g,k,d′ , which is an

isomorphism outside the divisor D̃a. Hence L ′
+
∼= c̃∗L ′

−(−daD̃a). Here the coefficient −da
is obtained by the consideration of deg L ′

+|Ca = da, degOCa(Ca) = −1 for the contracted
rational tail Ca on the fiber curve of π over a general closed point of Da. It follows that for
every l ≥ 1 there are homomorphisms

(L ′
+)l ∼= c̃∗(L ′

−)l(−ldaD̃a)→ c̃∗(L ′
−)l

of line bundles on C+
g,k,d′ .

In particular, taking l = 1 and using the top line of the diagram (2.5.1) gives a map
P+

d′ −→ c̃∗(P−
d′ ). Applying π∗ we obtain homomorphisms

ΦP :P+
d′ −→ c∗P−d′ , ΦR : R+

d′ −→ c∗R−d′ ,

Φ = (ΦP ,ΦR) : F+
d′ −→ c∗F−d′

of vector bundles on U+
d′ , which are isomorphisms outside Da. We have used here the

canonical isomorphisms π∗c̃
∗R−d′

∼= c∗π∗R
−
d′ and π∗c̃

∗P−
d′
∼= c∗π∗P

−
d′ obtained by applying to

(3.2.2) the base-change followed by the projection formula.
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Consider the Grassmann bundle over U+
d′

Gr := Gr(F+
d′ ⊕ c

∗F−d′ ) := Grass(rd, F
+
d′ ⊕ c

∗F−d′ ),

with rd = rank(F+
d′ ). Let η : Gr → U+

d′ be the projection and denote by ζ the tautological
subbundle of rank rd in η∗(F+

d′ ⊕ c∗F
−
d′ ).

The map η × id has a section

v : U+
d′ × A1 −→ Gr× A1, v(y, λ) = (y, graph(λ(Φ)y), λ).

Define the closed substack

Γ := Im(v) ⊂ Gr× P1

as the stack-theoretic closure of the image of v. As U+
d′ is nonsingular and irreducible, Γ is

also irreducible, of dimension equal to 1 + dimU+
d′ .

In fact, if we consider the “component” Grassmann bundles

GrP := Gr(P+
d′ ⊕ c

∗P−d′ ) := Grass(rP , P
+
d′ ⊕ c

∗P−d′ ),

GrR := Gr(R+
d′ ⊕ c

∗R−d′) := Grass(rR, R
+
d′ ⊕ c

∗R−d′),

with projections ηP , ηR and tautological subbundles ζP , ζR, then there is a natural inclusion

GrP ×U+
d′

GrR ⊂ Gr

such that ζ restricts to ζP � ζR and the inclusion of Γ in Gr×P1 factors through (GrP ×U+
d′

GrR)× P1.
For λ ∈ P1 = A1 ∪ {λ = ∞} denote by Γλ the fiber of the projection Γ → P1. When

λ ∈ A1, under the identifications vλ : U+
d′

∼=−→ Γλ, we have

v∗λζ = Im(F+
d′

(id,λΦ)−→ F+
d′ ⊕ c

∗F−d′ ).

In particular, at λ = 0 we have v∗0ζ = F+
d′ ⊕ {0}.

At λ = ∞ the fiber breaks into components encoding the degeneracy of the map Φ,
as in [15, Example 18.1.6]. First of all, there is a distinguished component Γ∞,dist which
has multiplicity one and projects birationally to U+

d′ , while ζ|Γ∞,dist = {0} ⊕ c∗F−d′ . All
other components of Γ∞ come with some multiplicities and project into Da under η. Their
description is our next task. The analysis is similar to the one in the proof of [3, Lemma
4.4], where a related genus zero case is treated. In our situation there are complications due
to the twisting by M , but also slight simplifications, due to the fact that c only contracts
rational tails of fixed degree da, which therefore do not interfere with each other.
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3.3.1. Description of Γ∞. For each ja ≥ 1 consider the P1-bundle over Da

Pja := P
(
pr∗aO(jaψ

tail
a )⊕ Pr∗aO(−jaψa)

)
and their fiber product

PjA :=
∏
a∈A

Pja|DA

over DA.

Theorem 3.1. Let jA be the multi-index (ja)a∈A with each ja in the range 1 ≤ ja ≤
max{da, dali | i = 1, ..., r} and let mjA :=

∏
a∈A ja. For each jA, there exists a map αjA :

PjA → Gr, described below, satisfying that

(3.3.1) [Γ∞] = [Γ∞,dist] +
∑

(A,jA)

mjA [Γ∞,jA ] = [Γ∞,dist] +
∑

(A,jA)

mjA

|A|!
(αjA)∗[PjA ]

in the Chow group A∗(Gr)Q. Here Γ∞,jA is the image stack of αjA. Furthermore Γ∞,jA
projects to DA under the projection map η : Gr→ U+

d′ .

Defining αjA amounts to finding a subbundle ξjA of π∗Pν
∗
A(F+

d′ ⊕ c∗F
−
d′ ) with its rank equal

to the rank of F+
d′ . Denote by πP : PjA → DA the projection map. Then the vector

bundle ξjA will be constructed as an extension of �a∈AOPja (−1)⊗π∗PFja by π∗P(pr∗AF
+,jA+1
tail,da

⊕
Pr∗Ac

∗
AF
−,jA−1
d′0

) for some vector bundles

Fja , F+,jA+1
tail,da

, F−,jA−1
d′0

on Da,
∏
a∈A

Q+
0,a(P(V ⊗ CN), da)× P(CN), U−k+A,d′0

respectively.

The bundles pr∗aF
+,ja
tail,da

(resp. Pr∗ac
∗
aF
−,ja
d′0

) for ja will form a decreasing (resp. increasing)

filtration of the kernel sheaf of ν∗aΦ (resp. of the sheaf ν∗ac
∗F−d′ ).

3.3.2. Description of the vector bundle F+,ja+1
tail,da

on Q+
0,a(P(V ⊗ CN), da) × P(CN). Consider

first the case A = {a} of the boundary divisor Da. On the universal curve

π : C+
0,a,da

× P(CN)→ Q+
0,a(P(V ⊗ CN), da)× P(CN),

put L+ := L ′
+ �OP(CN )(−1). We have the diagram

0 // L+ ⊗ V
⊕jsj// ⊕Nj=1L

′
+ ⊗ V //

⊕j(⊕idϕi)
��

P+
tail,da

// 0

0 // ⊕ri=1L
li
+

⊕i,js
li
j // ⊕i,j(L ′

+)li // Q+
tail,da

// 0,

whose rows are obtained from the exact sequence

0→ OP(CN )(−1)→ ⊕Nj=1OP(CN ) → Q→ 0
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via pull-backs, tensoring with appropriate line bundles, and taking direct sums, as explained
in §3. Now define the vector bundles

P+
tail,da

:= π∗P
+
tail,da

, R+
tail,da

:= ⊕i,j(L ′
+)li , R+

tail,da
:= π∗R

+
tail,da

, F+
tail,da

:= P+
tail,da

⊕R+
tail,da

.

For integers ja = 1, . . . ,max{da, dali | i = 1, ..., r}, we have the subbundles

(3.3.2) P+,ja
tail,da

:= π∗(P
+
tail,da

(−japtaila )),

(3.3.3) R+,ja
tail,da

:= π∗(R
+
tail,da

(−japtaila ))

of vector bundles P+
tail,da

, R+
tail,da

respectively. They are vector bundles on Q+
0,a(P(V ⊗

CN), da)× P(CN). We also put

P+,0
tail,da

:= P+
tail,da

, R+,0
tail,da

:= R+
tail,da

, F+,0
tail,da

:= F+
tail,da

.

Note that P+,ja
tail,da

= 0 if ja > da, and that (L ′
+)li does not contribute to R+,ja

tail,da
if ja > lida.

Hence the quotients of the decreasing filtrations given by (3.3.2) and (3.3.3) are

0→ P+,ja+1
tail,da

→ P+,ja
tail,da

→ P
ja
tail ⊗O(jaψ

tail
a )→ 0,

0→ R+,ja+1
tail,da

→ R+,ja
tail,da

→ R
ja
tail ⊗O(jaψ

tail
a )→ 0,

where we put for each 0 ≤ ja ≤ max{da, lida | i = 1, ..., r}

P
ja
tail :=

{
(eva × idP(CN ))

∗ ((OP(V⊗CN )(1)⊗ V ) �Q
)
, if ja ≤ da

0, if ja > da

and

R
ja
tail := ⊕ri=1R

ja
i,tail,

R
ja
i,tail :=

{
(eva × idP(CN ))

∗ (OP(V⊗CN )(li) �⊕Nj=1OP(CN )

)
, if ja ≤ lida

0, if ja > lida
.

Alternatively, when they are not set to zero,

P
ja
tail = π∗(P

+
tail,da

⊗Optaila
), R

ja
tail = π∗(R

+
tail,da

⊗Optaila
).

Taking the direct sums

F+,ja
tail,da

:= P+,ja
tail,da

⊕R+,ja
tail,da

, F
ja
tail := P

ja
tail ⊕ R

ja
tail

gives a filtration of the vector bundle F+
tail,da

on Q+
0,a(P(V ⊗CN), da)×P(CN), with quotients

F
ja
tail ⊗O(jaψ

tail
a ). The pull-back ν∗aF

+
d′ can be written as the extension

0 // pr∗aF
+,1
tail,da

// ν∗aF
+
d′

res // Pr∗aF
+
d′0

// 0 .(3.3.4)
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3.3.3. Description of the vector bundle F−,ja−1
d′0

on U−k+{a},d′0
. Let F±bA,d′0

denote the vector

bundles on U±k+A,d′0
defined as in (2.5.5), but using the twisting line bundles M± induced

from C−g,k,d′ (and hence from M g,k) via pull-back by

b̃A : C−g,k+A,d′0
−→ C−g,k,d′ .

The homomorphism Φ factors when pulled-back to DA as

ν∗AF
+
d′

res // Pr∗AF
+
bA,d

′
0

generic. isom // Pr∗Ac
∗
AF
−
bA,d

′
0

� � // Pr∗Ac
∗
Ab
∗
AF
−
d′ = ν∗Ac

∗F−d′ .

Here the first map res is given by the restriction of sections to the non-contracted parts of
the universal curve. The middle arrow is the pull-back by PrA of the map Φ on U+

k+A,d′0
and

is therefore an isomorphism generically on DA. The third map is induced from the canon-
ical injections on the universal curve L ′

−,d′0
→ L ′

−,d′0
(
∑

a dapa) = b̃∗AL ′
−,d′ and (L ′

−,d′0
)li →

(L ′
−,d′0

)li(
∑

a lidapa) = b̃∗A(L ′
−,d′)

li .

Consider the codomain Pr∗ac
∗
ab
∗
aF
−
d′ of Φ|Da and the square diagram of universal curves

C−g,k+{a},d′0
//

π

��

C−g,k,d′

��
U−k+{a},d′0 ba

// U−k,d′ .

In the bundle b∗aF
−
d′ on U−k+{a},d′0

we have the increasing filtrations

P−,0d′0
⊂ P−,1d′0

⊂ · · · ⊂ P−,dad′0
= b∗aP

−
d′ ,

R−,0d′0
⊂ R−,1d′0

⊂ · · · ⊂ R
−,maxi{dali}
d′0

= b∗aR
−
d′

induced via the subbundles

P−,jad′0
:= π∗

(
P−

d′0
(japa)

)
∩ b∗aP−d′ , ja = 0, 1, . . . , da,

R−,jad′0
:= π∗

(
R−d′0

(japa)
)
∩ b∗aR−d′ , ja = 0, 1, . . . ,maxi{lida}.

Here we use the natural injections P−
d′0

(japa) → P−
d′0

(dapa) ∼= b̃∗aP
−
d′ for ja ≤ da and

R−i,d′0
(japa)→ R−i,d′0

(lidapa) ∼= b̃∗aR
−
i,d′ for ja ≤ lida. The quotients are

0→ P−,ja−1
d′0

→ P−,jad′0
→ P−,ja ⊗O(−jaψa)→ 0,

0→ R−,ja−1
d′0

→ R−,jad′0
→ R−,ja ⊗O(−jaψa)→ 0.
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where we put for each 0 ≤ ja ≤ max{da, lida | i = 1, ..., r}

P−,ja :=

{
π∗(P

−
d′0
⊗Opa), if ja ≤ da

0, if ja > da
,(3.3.5)

and
R−,ja := ⊕ri=1R

−,ja
i ,

R
−,ja
i :=

{
π∗(⊕Nj=1(L ′

−)li ⊗Opa), if ja ≤ lida
0, if ja > lida

.(3.3.6)

Setting
F−,jad′0

:= P−,jad′0
⊕R−,jad′0

gives an increasing filtration of the vector bundle b∗aF
−
d′ on U−k+{a},d′0

with quotients F−,ja ⊗
O(−jaψa) and F−,ja := P−,ja ⊕ R−,ja .

3.3.4. Description of αja : Pja → Gr. For each ja ≥ 1 recall the P1-bundle over Da

Pja := P
(
pr∗aO(jaψ

tail
a )⊕ Pr∗aO(−jaψa)

)
,

with projection πP : Pja −→ Da. Consider the tautological sequence

0 −→ OPja (−1) −→ π∗P
(
pr∗aO(jaψ

tail
a )⊕ Pr∗aO(−jaψa)

)
−→ OPja (1) −→ 0.

Now define the extension ξjaP as the vector bundle uniquely fitting in the commuting
diagram with exact columns

0 0

OPja (−1)⊗ π∗PPja
� � //

OO

π∗P
(
(pr∗aO(jaψ

tail
a )⊕ Pr∗aO(−jaψa))⊗ Pja

)
OO

ξjaP

OO

� � // π∗P

(
pr∗aP

+,ja
tail,da

⊕ Pr∗ac
∗
aP
−,ja
d′0

)
OO

π∗P

(
pr∗aP

+,ja+1
tail,da

⊕ Pr∗ac
∗
aP
−,ja−1
d′0

)
//

=
//

OO

π∗P

(
pr∗aP

+,ja+1
tail,da

⊕ Pr∗ac
∗
aP
−,ja−1
d′0

)
OO

0

OO

0

OO

where the horizontal arrows are injective as maps of vector bundles and

Pja := pr∗aP
ja
tail
∼= Pr∗ac

∗
aP
−,ja .
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Similarly, we define ξjaR as an extension, via

0 0

OPja (−1)⊗ π∗PRja
� � //

OO

π∗P
(
(pr∗aO(jaψ

tail
a )⊕ Pr∗aO(−jaψa))⊗ Rja

)
OO

ξjaR

OO

� � // π∗P

(
pr∗aR

+,ja
tail,da

⊕ Pr∗ac
∗
aR
−,ja
d′0

)
OO

π∗P

(
pr∗aR

+,ja+1
tail,da

⊕ Pr∗ac
∗
aR
−,ja−1
d′0

)
//

=
//

OO

π∗P

(
pr∗aR

+,ja+1
tail,da

⊕ Pr∗ac
∗
aR
−,ja−1
d′0

)
OO

0

OO

0

OO

where

Rja := pr∗aR
ja
tail
∼= Pr∗ac

∗
aR
−,ja .

Since

ξja := ξjaP ⊕ ξ
ja
R

is canonically a subbundle of π∗Pν
∗
a(F+

d′ ⊕ c∗F
−
d′ ) whose rank is equal to the rank of F+

d′ , it
gives rise to a morphism

αja : Pja −→ Gr(F+
d′ ⊕ c

∗F−d′ )

which is birational onto its image and such that ξja = α∗jaζ (respecting the decompositions
into P and R components). We will show in §3.3.6 that the image is a component of the
limit fiber Γ∞ which we denote by Γ∞,ja and which has multiplicity ja in the fiber.

3.3.5. Description of αjA : PjA → Gr and the vector bundle Fja on Da. For general A the
above analysis extends immediately, as the various rational tails may be treated indepen-
dently. Specifically, this means that we now consider a collection jA := {ja|a ∈ A} of positive
integers and define

P+,jA+1
tail,da

:= �a∈Aπ∗
(
P+

tail,da
(−(ja + 1)ptaila )

)
,

R+,jA+1
tail,da

:= �a∈Aπ∗
(
R+
tail,da

(−(ja + 1)ptaila )
)

on
∏

a∈A(Q+
0,a(P(V → CN), da)× P(CN)) and

P−,jA−1
d′0

:= π∗(P
−
d′0

(
∑
a∈A

(ja − 1)pa)) ∩ b∗AP−d ,
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R−,jA−1
d′0

:= π∗(R
−
d′0

(
∑
a∈A

(ja − 1)pa)) ∩ b∗AR−d

on U−k+A,d′0
. Further, we put

F+,jA+1
tail,da

:= P+,jA+1
tail,da

⊕R+,jA+1
tail,da

, F−,jA−1
d′0

:= P−,jA−1
d′0

⊕R−,jA−1
d′0

.

Setting

PjA :=
∏
a∈A

Pja|DA ,

where the product is fiber product over DA, we have the projection πP : PjA → DA and
extensions

0→ π∗P(pr∗AP
+,jA+1
tail,da

⊕ Pr∗Ac
∗
AP
−,jA−1
d′0

)→ ξjAP → �a∈A(OPja (−1)⊗ π∗PPja)→ 0,(3.3.7)

0→ π∗P(pr∗AR
+,jA+1
tail,da

⊕ Pr∗Ac
∗
AR
−,jA−1
d′0

)→ ξjAR → �a∈A(OPja (−1)⊗ π∗PRja)→ 0,(3.3.8)

0→ π∗P(pr∗AF
+,jA+1
tail,da

⊕ Pr∗Ac
∗
AF
−,jA−1
d′0

)→ ξjA → �a∈A(OPja (−1)⊗ π∗PFja)→ 0,(3.3.9)

with

ξjA := ξjAP ⊕ ξ
jA
R , Fja := Pja ⊕ Rja .(3.3.10)

As before, this gives a morphism αjA : PjA → Gr such that ξjA = α∗jAζ. We will show
in §3.3.6 that the image of αjA , denoted Γ∞,jA , is a component of the limit fiber, with
multiplicity mjA :=

∏
a∈A ja.

3.3.6. Proof of Theorem 3.1. The description of the components Γ∞,jA of Γ∞ supported over
DA, with their multiplicities, as well as the fact that they exhaust the special fiber, all follow
from writing explicitly the map Φ in local coordinates in an analytic (or étale) neighborhood
of a general point p of the boundary stratum DA. An explicit proof is as follows.

Choose an étale open neighborhood U of U+
d′ such that p is a closed point in the scheme

U. Let Ôp be the completion of OU,p and let C be the fiber curve of π over p. The curve C
has exactly |A|-many nodal points q. Let Ctail,q be the rational tail component of C which
meets q and let Cmain be the remained component of C so that C = ∪qCtail,q ∪ Cmain. We

may express the completion Ôq at the node as

Ôq ∼= Ôp[[xq, yq]]/(xqyq − tq)

with local defining equations xq ∈ Ôq, tq ∈ Ôp of the divisors D̃a, Da respectively.
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Consider a commuting diagram of natural Ôp-module homomorphisms

(π∗
(
P+

d′ ⊕
⊕

i R
+
i,d′

)
)p ⊗ Ôp �

�

φ1

//

Φp⊗id =:Φp̂
��

⊕q
(
P+

d′ ⊕
⊕

i R
+
i,d′

)
q
⊗ Ôq

⊕qΨq
��

(π∗

(
P+

d′ (daD̃a)⊕
⊕

i R
+
i,d′(lidaD̃a)

)
)p ⊗ Ôp �

�

φ2

// ⊕q
(
P+

d′ (daD̃a)⊕
⊕

i R
+
i,d′(lidaD̃a)

)
q
⊗ Ôq

where P+
d′ := L ′

+⊗ V ⊗Q, R+
i,d′ := ⊕Nj=1(L ′

+)li as in (2.5.1), the horizontal maps φi are the
restriction maps, and Ψq are the natural maps.

Since the horizontal restriction maps φi are injections, we will use ⊕qΨq to express Φp̂

explicitly. For this, let us choose a Ôq-basis {eq0,j}
(N−1) dimV
j=1 of P+

d′,q ⊗ Ôq and a Ôq-
basis {eqi,j}

r,N
i=1,j=1 of ⊕iR+

i,q ⊗ Ôq. With respect to this basis, we have also a basis {eq0,j ⊗
x−daq }

(N−1) dimV
j=1 of P+

d′,q ⊗ Ôq(daD̃a) ∼= P+
d′,q(daD̃a)⊗ Ôq and a basis {eqi,j ⊗ x−lidaq }r,Ni=1,j=1 of

⊕iR+
i,q ⊗ Ôq(lidaD̃a) ∼= ⊕iR+

i,q(lidaD̃a)⊗ Ôq. With respect to these bases, the right vertical

map Ψq is the component-wise multiplication by xdaq , x
l1d1
q , ..., xlrdrq .

Let k(p) be the residue field of Op and let ēq0,j, ē
q
i,j be the restrictions in (P+

d′⊕
⊕

i R
+
i,d′)q⊗

Ôq ⊗ k(p) of eq0,j, e
q
i,j respectively. Choose also a k(p)-basis Bmain of H0(Cmain, (P

+
d′ ⊕⊕

i R
+
i,d′)|Cmain(−

∑
q q)) by taking the union of some bases of H0(Cmain,P

+
d′ |Cmain(−

∑
q q)),

H0(Cmain,R
+
i,d′ |Cmain(−

∑
q q)), ∀i. Consider the following subset

(3.3.11)

{⊕qsq}s∈Bmain ∪
⋃
q

{ēq0,j, yqē
q
0,j, ..., y

da
q ē

q
0,j}

(N−1) dimV
j=1 ∪

⋃
q

{ēqi,j, yqē
q
i,j, ..., y

lida
q ēqi,j}

r,N
i=1,j=1

of ⊕q(P+
d′ ⊕

⊕
i R

+
i,d′)q ⊗ Ôq ⊗ k(p). Here sq denotes the stalk of s at q ∈ Cmain. Note that

(3.3.11) is a k(p)-basis of the subspace H0(C, (P+
d′ ⊕

⊕
i R

+
i,d′)|C). Extend this k(p)-basis

(3.3.11) to a basis of (π∗(P
+
d′ ⊕

⊕
i R

+
i,d′))p ⊗ Ôp as a Ôp-module,

(3.3.12)

{⊕qs̃q}s∈Bmain ∪
⋃
q

{eq0,j, yqe
q
0,j, ..., y

da
q e

q
0,j}

(N−1) dimV
j=1 ∪

⋃
q

{eqi,j, yqe
q
i,j, ..., y

lida
q eqi,j}

r,N
i=1,j=1

where s̃ ∈ π∗(P+
d′ ⊕

⊕
i R

+
i,d′)⊗ Ôp is an extension of s.

Let l0 = 1 and let l(s) = l0 for s ∈ Bmain if s comes from P+
d′ |Cmain(−

∑
q q), l(s) = li if s

comes from R+
i,d′|Cmain(−

∑
q q). Choose also a basis of (π∗(P

+
d′ (daD̃a)⊕

⊕
i R

+
i,d′(lidaD̃a)))p⊗
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Ôp which is expressed via φ2 as

{⊕qs̃q}s∈Bmain(3.3.13)

∪
⋃
q{xdaq (eq0,j ⊗ x−daq ), xda−1

q (eq0,j ⊗ x−daq ), ..., eq0,j ⊗ x−daq )}(N−1) dimV
j=1

∪
⋃
q{xlidaq (eqi,j ⊗ x−daq ), xlida−1

q (eqi,j ⊗ x−lidaq ), ..., eqi,j ⊗ x−lidaq )}r,Ni=1,j=1.

The map λΦp̂ sends

⊕qs̃q 7→ ⊕qλs̃q, and ykq e
q
i,j 7→ λtkqx

lida−k
q (eqi,j ⊗ x−lidaq ), i = 0, 1, ..., r; k = 0, 1, ..., lida; ∀j

so that with respect to the Ôp-bases (3.3.12) and (3.3.13), λΦp̂ is a diagonal matrix with
entries λ’s, λtkq , k = 0, 1, ...,maxi=0,...,r{lida}.

Now according to the fate of λtkq , k = 0, 1, ..., as λ → ∞ and tq → 0 ∀q, the cycle class
[Γ∞] can be easily identified yielding the decomposition (3.3.1) for each A. Namely, for the
node q corresponding to a, if λtjaq goes to a nonzero number wa ∈ C for some ja, then the
limit of graph(λΦ) in the region is the point Point(ja, wa)a∈A in Gr|p corresponding to the
direct sum of the following three subspaces (i), (ii), (iii)

(i)F+,jA+1
tail,da

|prA(p) = ⊕a∈A ⊕i,j 〈yja+1
q ēqi,j, ..., y

lida
q ēqi,j〉 ⊂ F+

d′ |p;
(ii)F−,jA−1

d′0
|PrA◦cA(p) = H0(Cmain,P

−
d′ |Cmain(−

∑
a daq))⊕

⊕i≥1H
0(Cmain,R

−
i,d′|Cmain(−

∑
a lidaq))⊕

⊕a∈A ⊕i,j 〈xlidaq (ēqi,j ⊗ x−lidaq ), ..., x
lida−(ja−1)
q (ēqi,j ⊗ x−lidaq )〉 ⊂ c∗F−d′ |p;

(iii) ⊕a∈A ⊕i,jyjaq ē
q
i,j ⊕waxlida−jaq (ēqi,j ⊗ x−lidaq ) ⊂ pr∗AF

+,jA
tail,da

|p ⊕ Pr∗Ac
∗
AF
−,jA
d′0
|p.

It is clear that there is a natural correspondence between the irreducible components of Γ∞
and Point(ja, 1)a∈A ∀jA. Denote by Γ∞,jA the component corresponding to Point(ja, 1)a∈A.
The intersection multiplicity of Γ∞ ∩ {λ =∞} at Γ∞,jA is mjA :=

∏
a∈A ja according to the

equations tjaq = 0, ∀a ∈ A in the open affine coordinate ring of Gr around Point(ja, 1)a∈A.

3.3.7. Remark. Denoting by e the Euler class, [15, Example 18.1.6] gives

(3.3.14) e(F+
d′ ) ∩ [U+

d′ ]− e(c∗F−d′ ) ∩ [U+
d′ ] =

∑
(A,jA)

mjA

|A|!
(η|Γ∞,jA )∗(e(ζ) ∩ [Γ∞,jA ]).

For g = 0, when no twisting occurs, U±d′ reduces to Q±0,k(P(V ), d), while F±d′ = π∗(⊕ri=1L
li
± ).

After applying c∗, the left-hand side of (3.3.14) becomes precisely

c∗i∗[Q
+
0,k(X, d)]vir − i∗[Q−0,k(X, d)]vir.
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On the other hand, it is not too difficult to show1 that the right-hand side can be written in
the form ∑

A

1

|A|!
(bA)∗(cA)∗i∗

(∏
a∈A

ev∗aµda(z)|z=−ψa ∩ [Q+
0,k+A(X, dA0 )]vir

)
,

for some polynomial Chow cohomology class µda(z) ∈ A∗(X)Q[z]. Combined with the iden-
tification of µda in §3.6 below, this proves for X the weaker equality (1.2.1) in Conjecture
1.1 in genus zero.

3.4. A refinement of the graph construction. The equality (3.3.14) may be viewed as a
degeneration formula for the top Chern class of the vector bundle F+

d′ on U±d′ . As a main step
in our proof of Theorem 1.6, we establish in this subsection a refined degeneration formula
which relates the Gysin pull-backs 0!

Eεd
([CQεg,k(X,d)/Uε

d′
]) of the normal cones from Corollary

2.6.

3.4.1. Deformation of the embedding (2.5.4). The map Φ fits in the following commuting
diagram

F+
d′

Φ // c∗F−d′
// F−d′

U+
d′ =

//

σ+

OO

U+
d′ c

//

c∗(σ−)

OO

U−d′

σ−

OO

with σ± the canonical sections (2.5.3). Recall that the zero locus of σ±, call it Y ±, is
identified with Q±g,k(X, d). Denote by Z = Zg,k,d the zero locus of c∗(σ−) = Φ ◦ σ+; in other

words, Z = c−1(Q−g,k(X, d)). Observe that there is a closed embedding Y + ↪→ Z.

Remark 3.2. If we restrict c further to Y + ⊂ Z, the resulting map coincides with the
contraction c : Y + → Y − induced from the natural embeddingX ⊂ P(V ) and the contraction
c : Q+

g,k(P(V ), d) → Q−g,k(P(V ), d). This follows from the fact that the twisting line bundle
M is trivial on the rational tails.

It turns out that it is better to consider the deformation of Z induced by the family
Γ→ P1. To this end, consider the universal quotient bundle Υ on Gr, so that

0→ ζ → η∗(F+
d′ ⊕ c

∗F−d′ )→ Υ→ 0.

is exact. As before, we also consider the universal quotient bundles ΥP on GrP and ΥR on
GrR. We will use the same notations for the induced vector bundles on Γ.

The section η∗(σ+, c∗σ−) of η∗(F+
d′ ⊕ c∗F

−
d′ ) induces a section

σ ∈ H0(Γ,Υ)

of Υ on Γ, via composition with the projection.

1The argument is a considerably simplified version of the proof of Theorem 3.8 in §3.5 below.
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Let

Γ0 := σ−1(0) ⊂ Γ ⊂ Gr× P1.

be the zero locus of σ.
As before, let Γ0

λ denote the fiber of Γ0 over λ ∈ P1. For λ 6= 1,∞, under the isomorphism
vλ : U+

d′ ×{λ} → Γλ, the section σ corresponds to the section (1− λ)c∗σ− of F−d′ . Hence, for
λ /∈ {1,∞}, we get that Γ0

λ is isomorphic to Z.
The fiber over 1 ∈ A1 is the entire U+

d′ , so from now on we will consider the families Γ and
Γ0 only over P1 \ {1} (but will keep the same notation).

The fiber over ∞ ∈ P1 decomposes in the Chow group as

[Γ0
∞] = [Γ0

∞,dist] +
∑

(A,jA)

mjA [Γ0
∞,jA ],

with Γ0
∞,dist := Γ∞,dist ×Γ Γ0 and Γ0

∞,jA := Γ∞,jA ×Γ Γ0.

Note that on Γ∞,dist = U+
d′ the quotient bundle Υ is equal to η∗F+

d′ ⊕{0} and σ = (σ+, 0),
hence Γ0

∞,dist is identified with Q+
g,k(X, d), embedded as in (2.5.4).

3.4.2. Deformation of the obstruction theory. The normal cone CΓ0/Γ is a subcone of Υ|Γ0 .
We claim that, possibly after a birational modification of the fiber Γ∞, it actually sits inside
a subbundle Υ0 of the “correct” rank.

Recall the twisting line bundle M on the universal curve C±g,k,d′ of U±d′ introduced in the

beginning of §2.5 and recall sj the sections f̃ t
∗
±τj of M where f̃ t± : C±g,k,d′ → Cg,k is the

stabilization map; see §2.3 for the definition of τj. Here Cg,k is the universal curve over M g,k.
On the universal curve C+

g,k,d′ over U+
d′ , there is a vector bundle monomorphism

P+
d′ ↪→P+

d′,big := L ′
+ ⊗M ⊗ V ⊗ C(N2 )

induced from the homomorphism

⊕jL ′
+ ⊗ V →P+

d′,big, (vj)
N
j=1 7→ ⊕j1>j2(sj1vj2 − sj2vj1).

Similarly there are vector bundle monomorphisms

P−
d′ ↪→P−

d′,big := L ′
− ⊗M ⊗ V ⊗ C(N2 );

Q±d′ ↪→ Q±d′,big := ⊕i(L ′
± ⊗M )li ⊗ C(N2 ).

We replace the stack Γ by the closed substack Γnew of the product Grnew×P1 defined via
the MacPherson graph construction, where Grnew is now the fibered product over U+

d′ of the
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various Grassmann bundles:

Grnew =Gr(π∗P
+
d′ ⊕ c

∗π∗P
−
d′ )×U+

d′
Gr(π∗R

+
d′ ⊕ c

∗π∗R
−
d′)(3.4.1)

×U+
d′

Gr(⊕jπ∗L ′
+ ⊗ V

⊕
⊕jc∗π∗L ′

− ⊗ V )×U+
d′

Gr(π∗Q
+
d′ ⊕ c

∗π∗Q
−
d′)

×U+
d′

Gr(π∗P
+
d′,big ⊕ c

∗π∗P
−
d′,big)×U+

d′
Gr(π∗Q

+
d′,big ⊕ c

∗π∗Q
−
d′,big).

The projection onto the first two factors induces a birational morphism p12 : Γnew → Γ,
which is an isomorphism outside ∞ ∈ P1.

Denote by Υ⊕jL ′⊗V ,ΥPbig
,ΥR ,ΥQbig

, ... the universal quotient bundles on Γnew ⊂ Grnew×
P1 obtained via pull-back from the third, the fifth, the second, the sixth, ... factor of Grnew

respectively. Similarly, denote by ζ⊕jL ′⊗V , ..., the universal subbundles on Γnew. Recall that
ΥP and ΥR come with the sections σP and σR, the components of the section σ of

Υ = ΥP ⊕ΥR

(see §3.4.1). We set

Γnew,0 = σ−1(0).

As in the case when we had only the fibered product of the first two relative Grassman-
nians, for each jA there is a natural morphism

αnewjA
: PjA −→ Grnew × {∞},

which has generic degree |A|! to the image and such that the relation (3.3.1) still holds for the
new special fiber (in other words, the birational modification p12 : Γnew → Γ does not intro-
duce additional components over ∞ ∈ P1). These morphisms are obtained by constructing
extensions analogous to (3.3.7) and (3.3.8) for the remaining four factors in (3.4.1). We have
αjA = p12 ◦ αnewjA

. Our proof of Theorem 1.6 will eventually reduce to intersection-theoretic
computations performed after transfering everything to the PjA ’s. Hence it is harmless to
drop from now on the superscript “new” from the notations for Gr, Γ, Γ etc.

We are now ready to construct the required vector bundle Υ. Define two homomorphisms

dϕ±,big : P±
d′,big → Q±d′,big, (vj1,j2) 7→ ⊕i ⊕j1>j2 ∇ϕi(sj1u′j2) · vj1,j2 .

where ⊕ju′j is the universal sections of ⊕jπ∗L ′
± ⊗ V as in (2.5.2).

On Γ, there is a natural diagram

Υ⊕jL ′⊗V
//

��

ΥPbig

π∗dϕbig
��

ΥR
// ΥQbig

(3.4.2)

which is not necessarily commutative. Here π∗dϕbig is the homomorphism induced from
dϕ±,big via push-forward. The remaining three arrows are all constructed by the same
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procedure. For example, the top horizontal homomorphism is obtained as follows. The
composition of natural maps

ζ⊕jL ′⊗V → η∗(π∗P
+
d′ ⊕ c

∗π∗P
−
d′ )→ η∗(π∗P

+
d′,big ⊕ c

∗π∗P
−
d′,big)→ ΥPbig

vanishes on Γ \ Γ∞ and hence vanishes on the closure Γ.
Let η̃ denote the composition of natural maps Γ→ Gr× (P1 \ {1})→ U+

d′ .

Lemma 3.3. The following hold.

(1) The zero locus of the P -component σP of σ is contained in the zero locus of η̃∗σ−P
(see (2.5.3) for the definition of σ−P ).

(2) (σ+
P )−1(0) = Q+

g,k(P(V ), d) = (c∗σ−P )−1(0)

(3) The diagram (3.4.2) becomes commutative when it is restricted to σ−1
P (0).

Proof. (1) Consider the homomorphism of locally free sheaves

(η∗P+
d′ ⊕ η

∗c∗P−d′ ) �OP1\{1} → η∗c∗P−d′ � (OP1(1))|P1\{1}, (v+, v−) 7→ λ0Φ(v+)− λ1v
−,

where λ0, λ1 denote homogeneous coordinates of P1. Since ζ|Γ is contained in the kernel of
the above homomorphism, there is a map ΥP → η∗c∗P−d′ � (OP1(1))|P1\{1}, under which the
section σP goes to (λ0 − λ1)c∗σ−P . Therefore the zero locus of σP is contained in the zero
locus of η̃∗σ−P .

(2) The first equality is clear. The second equality is the claim

Q+
g,k(P(V ), d) = c−1(Q−g,k(P(V ), d)).

The claim is obvious since for a T -family of ε+-stable quasimaps to P(V ⊗ CN), it is a T -
family of ε+-stable quasimaps to P(V ) if and only if the family restricted to every geometric
point of the test scheme T is a ε+-stable quasimaps to P(V ).

(3) The diagram (3.4.2) is by definition induced, by the pullback η̃∗, from the diagram of
homomorphisms of locally free sheaves on U+

d′

π∗ ⊕j L ′
+ ⊗ V ⊕ c∗π∗(⊕jL ′

− ⊗ V ) //

��

π∗P
+
big ⊕ c∗π∗P

−
big

π∗dϕ+,big⊕c∗π∗dϕ−,big
��

π∗R
+
d′ ⊕ c∗π∗R

−
d′

// π∗Q
+
big ⊕ c∗π∗Q

−
big.

(3.4.3)

The diagram (3.4.3) is commutative on the zero locus Q+
g,k(P(V ), d) of the section σ+

P since
the difference of the clockwise path and the counterclockwise path in each ±-component

⊕i
(
∇ϕi(sj1u′j2) · (sj1vj2 − sj2vj1)− (slij1∇ϕi(u

′
j2

) · vj2 − s
li
j2
∇ϕi(u′j1) · vj1)

)
= ⊕i

(
−∇ϕi(sj1u′j2) · sj2vj1 +∇ϕi(sj2u′j1) · sj2vj1

)
vanishes for the universal section (u′j)j of ⊕jL ′

± ⊗ V with the vanishing condition sj1u
′
j2
−

sj2u
′
j1

= 0. Hence it is enough to show that the zero locus of σP contained in Γ×U+
d′

(σ+
P )−1(0).

This follows from (1) and (2) above. �
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In particular, the diagram (3.4.2) commutes when restricted to Γ0. Since the horizontal
maps factor through ΥP and ΥQ, it follows that on Γ0 we have the commuting diagram

Υ⊕jL ′⊗V |Γ0 //

��

ΥP |Γ0

fΥ

��
ΥR |Γ0

α1,Υ // ΥQ|Γ0 ,

where fΥ = π∗dϕbig|ΥP |Γ0 . The map of vector bundles

γ : (Υ = ΥP ⊕ΥR)|Γ0 → ΥQ|Γ0 , γ(x, y) = fΥ(x)− α1,Υ(y)

is surjective since it is so at each closed point of Γ (this needs to be checked at points on
the special fiber Γ∞, where it follows by pulling-back to the appropriate PjA and using the
description of the three universal quotient bundles as extensions, as in e.g. (3.5.11) below).
Define the required vector bundle on Γ to be

Υ0 := ker γ.

Lemma 3.4. The normal cone CΓ0/Γ is a subcone of Υ0.

Proof. Let IΓ0 denote the defining ideal sheaf of the closed substack Γ0 of Γ. We will check
that the induced homomorphism (ΥQ)|∨Γ0 → IΓ0/I 2

Γ0 is identically zero. For this consider
the commuting diagram

(ΥQbig
)∨ //

��

Υ∨

��

// IΓ0� _

��
η̃∗(π∗Q

+
d′,big ⊕ c∗π∗Q

−
d′,big)

∨ // η̃∗(F+
d′ ⊕ c∗F

−
d′ )
∨ // OΓ,

where η̃ denotes the composition Γ → Gr × (P1 \ {1}) → U+
d′ . By the above commuting

diagram and the surjection (ΥQbig
)|∨Γ0 � (ΥQ)|∨Γ0 , it is enough to show that the composition

of the bottom arrows lands in I 2
Γ0 . On the other hand η̃∗Im(σ+∨

P ) ⊂ IΓ0 by Lemma 3.3 (1).
Here we view the dual σ+∨

P of σ+
P as the cosection σ+∨

P : (P+
d′ )
∨ → OU+

d′
. Hence by Lemma 3.3

(2) it is enough to check that the composition comp of (π∗Q
±
d′,big)

∨ → (F±d′ )
∨ → OU±

d′
lands

in (Imσ±∨P )2. This is easy to check as follows. Recalling the definition of σ±R , σ±P in (2.5.3),
note that, for δ ∈ (π∗Q

±
d′,big)

∨

comp(δ) = 〈δ,⊕i ⊕j1>j2 ∇ϕi(sj1u′j2) · (sj1u′j2 − sj2u
′
j1

)− (ϕi(sj1u
′
j2

)− ϕi(sj2u′j1))〉
∈ (Imσ±∨P )2.

Here the last line is due to the Taylor expansion of the last term ϕi(sj2u
′
j1

) in the first line:

ϕi(sj2u
′
j1

) = ϕi(sj1u
′
j2

) +∇ϕi(sj1u′j2) · (sj2u′j1 − sj1u
′
j2

)

modulo the square of the ideal Imσ±∨P generated by sj2u
′
j1
− sj1u′j2 . �
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By construction, on the fiber Γ0
0 := Γ0 ×Γ Γ0 we have

Υ0|Γ0
0

= c∗E−d ,

while on the distinguished component Γ0
∞,dist := Γ0 ×Γ Γ∞,dist over λ =∞,

Υ0|Γ0
∞,dist

= E+
d ,

with E±d as defined in (2.4.5).

3.4.3. Refined degeneration formula. Consider the diagram, whose squares are all cartesian,

λ

λ
��

GrZoo

��

Γ0
λ

ιλoo //

��

CΓ0/Γ|λ

��

// λ

λ
��

P1 \ {1} GrZ × (P1 \ {1})oo Γ0
ι

oo //

��

CΓ0/Γ

��

// P1 \ {1}

Γ0 0 // Υ0

where GrZ denotes the relative Grassmannian Gr restricted to Z, with projection η|Z :
GrZ → Z.

Lemma 3.5. In A∗(Z)Q we have the equality

(η|Z)∗(ι0)∗0
!
Υ0|

Γ0
0

([CΓ0
0/Γ0

])− (η|Z)∗(ι∞)∗(0
!
Υ0|

Γ0
∞,dist

([Cdist])) =(3.4.4) ∑
(A,jA)

mjA(η|Z)∗(ι∞)∗(0
!
Υ0|

Γ0
∞,jA

([CjA ])),

where Cdist is the normal cone CΓ0
∞,dist/Γ∞,dist

and CjA is the normal cone CΓ0
∞,jA

/Γ∞,jA
.

Proof. By Theorem 6.2.(a) and Theorem 6.4 in [15] (as extended to DM-stacks in [29]), we
have

λ!ι∗0
![CΓ0/Γ] = (ιλ)∗λ

!0![CΓ0/Γ] = (ιλ)∗0
!λ![CΓ0/Γ].(3.4.5)

When λ = 0,

0!λ![CΓ0/Γ] = 0!
Υ0|

Γ0
0

([CΓ0
0/Γ0

]).

By Lemma 3.6 below, when λ =∞,

0!λ![CΓ0/Γ] = 0!
Υ0|

Γ0
∞,dist

([Cdist]) +
∑

(A,jA)

mjA0!
Υ0|

Γ0
∞,jA

([CjA ]).
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The first term in (3.4.5) is independent of λ. Hence

(ι0)∗0
!
Υ0|

Γ0
0

([CΓ0
0/Γ0

]) =(ι∞)∗(0
!
Υ0|

Γ0
∞,dist

([Cdist]))

+
∑

(A,jA)

mjA(ι∞)∗(0
!
Υ0|

Γ0
∞,jA

([CjA ]))

in A∗(GrZ)Q. Pushing forward to Z we get (3.4.4). �

To state Lemma 3.6 used in the above proof, we set up some notation first. Recall from
[23, p. 489] that for a local embedding X → Y of algebraic stacks of finite type over the
base field, one has the normal cone CX/Y to X in Y and also the deformation of normal
cone, denoted M◦

X (Y). This is a stack with a morphism to P1 such that the general fiber is
isomorphic to Y and the special fiber at t = 0 ∈ P1 is isomorphic to CX/Y . If X is a closed
substack in Y , the deformation can be obtained as in [15, Chapter 5], by constructing

MX (Y) := BlX×{0}Y × P1

and setting

M◦
X (Y) := MX (Y) \BlX×{0}Y × {0}.

Now form the commuting diagram, whose squares are all cartesian

CΓ0
∞/Γ∞

��

� �

j
// CΓ0/Γ|λ=∞

��

// CΓ0/Γ

��

// t = 0

v0

��
M◦

Γ0
∞

(Γ∞) �
� i

closed
// M◦

Γ0(Γ)|λ=∞ //

��

M◦
Γ0(Γ)

��

// P1

λ =∞ // P1 \ {1}.

Lemma 3.6. The equalities

∞![CΓ0/Γ] = j∗[CΓ0
∞/Γ∞ ] = [Cdist] +

∑
A,jA

mjA [CjA ]

hold in A∗(CΓ0/Γ|λ=∞)Q.

Proof. The equality ∞![CΓ0/Γ] = j∗[CΓ0
∞/Γ∞ ] is a consequence of the definition of Gysin

maps, their commutativity, and their compatibility with proper push-forward, as follows:

∞![CΓ0/Γ] =∞!v!
0[M◦

Γ0(Γ)] = v!
0∞![M◦

Γ0(Γ)] = v!
0[M◦

Γ0(Γ)|∞]

=v!
0[Γ∞ × (P1 − {t = 0})] = v!

0i∗[M
◦
Γ0
∞

(Γ∞)] = j∗v
!
0[M◦

Γ0
∞

(Γ∞)]

=j∗[CΓ0
∞/Γ∞ ].
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Here some explanation is in order. For the third equality in the above chain, note that
M◦

Γ0(Γ) is irreducible and dominant over P1 \ {1}. The closure is taken in M◦
Γ0(Γ)|∞. The

fifth equality follows by the very definition of proper push-forward.
The decomposition

j∗[CΓ0
∞/Γ∞ ] = [Cdist] +

∑
A,jA

mjA [CjA ]

is a consequence of the decomposition [Γ∞] = [Γ∞,dist]+
∑

A,jA
mjA [Γ∞,jA ] in A∗(Γ∞)Q (Theo-

rem 3.1), via the specialization to the normal cone homomorphismA∗(Γ∞)Q → A∗(CΓ0
∞/Γ∞)Q.

�

We finish this subsection by recording a basic intersection-theoretic Lemma which will be
used several times in the sequel.

Lemma 3.7. Let f : Y ′ −→ Y be a proper morphism between finite type Deligne-Mumford
stacks of the same pure dimension. Let i : X ↪→ Y be a closed embedding and form the fiber
square

X ′

��

// Y ′

f
��

X i // Y .

Let f̃ : CX ′/Y ′ −→ CX/Y be the induced map between normal cones. If f∗[Y ′] = m[Y ] for a

nonnegative rational number m, then f̃∗[CX ′/Y ′ ] = m[CX/Y ].

Proof. When Y ,X , and Y ′ are schemes, this is [29, Lemma 3.15]. For the convenience of the
reader, we give a short argument. Consider the deformations to the normal cone

MXY = BlX×{0}Y × P1, MX ′Y ′ = BlX ′×{0}Y ′ × P1.

The map φ : MX ′Y ′ −→ MXY induced by f is proper and φ∗[MX ′Y ′] = m[MXY ]. Let
v0 : {0} ↪→ P1 be the inclusion. Denoting by 1 the trivial rank one vector bundle, we have

(3.4.6) m[P(CX/Y ⊕ 1)] +m[BlXY ] = mv!
0[MXY ] = v!

0φ∗[MX ′Y ′] = (φ|t=0)∗v
!
0[MX ′Y ′],

where we have used the commutativity of Gysin maps with proper push-forward for the last
equality. Since

v!
0[MX ′Y ′] = [P(CX ′/Y ′ ⊕ 1)] + [BlX ′Y ′]

and (φ|t=0)∗[BlX ′Y ′] = m[BlXY ], we conclude from (3.4.6) that

(φ|t=0)∗[P(CX ′/Y ′ ⊕ 1)] = m[P(CX/Y ⊕ 1)].

The Lemma follows, since f̃ is the restriction to CX ′/Y ′ of φ|t=0. �
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3.5. The correcting classes µNda(z). Consider the Segre embedding

(3.5.1) Seg : P(V )× P(CN) −→ P(V ⊗ CN).

Recall the map h+
a : U+

k+A,d′0
−→ P(CN) given by the twisting line bundle M+ and its sections

s1, . . . , sN ; see (3.2.3). Viewing Q+
g,k+A(X, d0) as a substack of U+

k+A,d′0
via the embedding

(2.5.4) for the bundle F+
d′0

, we have the restriction h+
a : Q+

g,k+A(X, d0) −→ P(CN); see (3.2.1)

for notation d0 = dA0 . The two evaluation maps on Q+
g,k+A(X, d0) at markings in A are

related by

êva|Q+
g,k+A(X,d0) = Seg ◦ (eva, h

+
a );

see §3.2 for notations êva and eva.
In this subsection we prove the following weaker version of the main theorem.

Theorem 3.8. Let z be a formal variable. There exists a Chow cohomology class µNda(z) ∈
A∗(X×P(CN))Q[z], dependent on g and k only through the dependence on N , such that after
push-forward to A∗(Q

−
g,k(X, d))Q by c|Z, the equality of Lemma 3.5 becomes

[Q−g,k(X, d)]vir − c∗[Q+
g,k(X, d)]vir =(3.5.2) ∑

A

1

|A|!
(bA)∗(cA)∗

(∏
a∈A

(eva, h
+
a )∗µNda(z)|z=−ψa ∩ [Q+

g,k+A(X, dA0 )]vir

)
.

Proof. We analyze the push-forward to A∗(Q
−
g,k(X, d))Q of each term in (3.4.4) by c|Z which

will be also denoted by c for easy notation. We have also induced maps

CΓ0
0/Γ0
→ c∗CQ−g,k(X,d)/U−

d′
→ CQ−g,k(X,d)/U−

d′
,

whose composition will be denoted by cc.
The terms on the left-hand side are very easy. First, by the identifications (Γ0

0 ⊂ Γ0) =
(Z ⊂ U+

d′ ) and Υ0|Γ0
0

= c∗E−d we have

c∗(η|Z)∗(ι0)∗(0
!
Υ0|

Γ0
0

([CΓ0
0/Γ0

])) = 0!
E−d

(cc∗[CΓ0
0/Γ0

])

= 0!
E−d

([CQ−g,k(X,d)/U−
d′

])

= [Q−g,k(X, d)]vir,

where we have used standard properties of the Gysin map for the first equality, Lemma 3.7
for the second equality, and Corollary 2.6 for the third equality.

Second,

c∗(η|Z)∗(ι∞)∗0
!
Υ0|Γdist

([Cdist]) = c∗([Q
+
g,k(X, d)]vir),

again by the identifications (Γ0
∞,dist ⊂ Γ∞,dist) = (Q+

g,k(X, d) ⊂ U+
d′ ) and Υ0|Γ∞,dist = E+

d ,
together with Corollary 2.6.
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The analysis of the right-hand side of (3.4.4) is significantly more subtle, so we divide it
into several steps for clarity.

Step 1: Transferring the computation to PjA. The Segre embedding (3.5.1), together with
the inclusion i : X ↪→ P(V ), induces the embedding

iSeg : X × P(CN) ↪→ P(V ⊗ CN)× P(CN),(3.5.3)

(x, y) 7→ (Seg(i(x), y), y).

We identify X × P(CN) with its image under iSeg. Set

Q+
tail,a := (êva × idP(CN ))

−1(X × P(CN)),

a closed substack in Q+
0,a(P(V ⊗ CN), da)× P(CN), and

Q+
tail,A :=

∏
a∈A

Q+
tail,a,

so that we have the cartesian square

Q+
tail,A

//

��

∏
a∈A(Q+

0,a(P(V ⊗ CN), da)× P(CN))∏
a(êva×idP(CN )

)

��
(X × P(CN))A

∏
a iSeg // (P(V ⊗ CN)× P(CN))A.

Further, define the closed substack DX,A ⊂ DA by the cartesian square

(3.5.4) DX,A
PrA //

prA

��

Q+
g,k+A(X, d0)

((eva,h
+
a ))a∈A

��
Q+
tail,A ∏

a(êva×idP(CN )
)
// (X × P(CN))A.

where by abusing notation PrA, prA denote PrA|DX,A , pr|DX,A respectively. Note that
∏

a(êva×
idP(CN )) is a flat map (in fact, smooth) and therefore so is PrA.

Now fix the pair (A, jA) and define ZjA ⊂ PjA by the cartesian square

(3.5.5) ZjA

αjA
��

// PjA
αjA
��

Γ0
∞,jA

// Γ∞,jA .

ZjA is the zero locus of the section α∗jAσ ∈ H0(PjA , α∗jAΥ). The restriction to ZjA of the
projection πP : PjA −→ DA factors through DX,A.
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We assemble everything in the commuting diagram

(3.5.6) Γ0
∞,jA

(η|Z)◦ι∞ // Z
c // Q−g,k(X, d)

ZjA
πP //

αjA

OO

DX,A

prA
��

PrA //

νA

OO

Q+
g,k+A(X, d0)

((eva,h
+
a ))a∈A

��

cA // Q−g,k+A(X, d0)

bA

OO

Q+
tail,A ∏

(êva×id)
// (X × P(CN))A

with abusing notation again c = c|Z , cA = cA|Q+
g,k+A(X,d0) (this notation is justified by Remark

3.2 in §3.4.1) and νA = νA|DX,A etc.
Let

C̃jA := CZjA/PjA .(3.5.7)

By Lemma 3.7 applied to (3.5.5) and the commutativity of the Gysin map with push-forward,

0!
Υ0|

Γ0
∞,jA

([CjA ]) =
1

|A|!
(αjA)∗0

!
α∗jA

(Υ0|
Γ0
∞,jA

)([C̃jA ]),

where CjA := CΓ0
∞,jA

/Γ∞,jA
as defined in Lemma 3.5. From the diagram (3.5.6),

1

|A|!
c∗(η|Z)∗(ι∞)∗(αjA)∗(0

!
α∗jA

(Υ0|
Γ0
∞,jA

)([C̃jA ])) =

1

|A|!
(bA)∗(cA)∗(PrA)∗(πP)∗(0

!
α∗jA

(Υ0|
Γ0
∞,jA

)([C̃jA ])).

Letting Υ0
jA

denote α∗jAΥ0|Γ0
∞,jA

, it remains to show that

(3.5.8)
∑
jA

mjA(PrA)∗(πP)∗(0
!
Υ0
jA

([C̃jA ]))

has the form (∏
a∈A

(eva, h
+
a )∗µda(z)|z=−ψa

)
∩ [Q+

g,k+A(X, dA0 )]vir,

as claimed in Theorem 3.8.
Step 2: Description of ΥjA. We start by describing first

ΥjA := α∗jAΥ|Γ∞,jA(3.5.9)

on PjA . Define vector bundles G+,jA
d′ and G−,jAd′0

on DA via exact sequences

0→ pr∗AF
+,jA
tail,da

→ ν∗AF
+
d′ → G+,jA

d′ → 0,(3.5.10)
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0→ Pr∗Ac
∗
AF
−,jA
d′0
→ ν∗Ac

∗F−d′ → G−,jAd′0
→ 0.

By (3.3.9), we have an extension

0→ �a∈A(OPja (1)⊗ π∗PFja)→ ΥjA → π∗P(G+,jA
d′ ⊕G−,jAd′0

)→ 0.(3.5.11)

Further, if we let

G+,jA
tail,da

:= (�a∈Apr∗aF
+,1
tail,da

)/pr∗AF
+,jA
tail,da

,

then from (3.3.4) and (3.5.10) it follows that G+,jA
d′ fits into an extension

0→ G+,jA
tail,da

→ G+,jA
d′ → Pr∗AF

+
d′0
→ 0.(3.5.12)

Note that we may write alternatively

G−,jAd′0
=Pr∗Ac

∗
A(⊕a∈A:ja≤daπ∗(P

−
d′0
⊗O(da−ja)pa(dapa)))⊕

Pr∗Ac
∗
A(⊕a∈Aπ∗(⊕i:ja≤lidaR−i,d′0 ⊗O(lida−ja)pa(lidapa))).

and

G+,jA
tail,da

=

{
pr∗A(�a∈Aπ∗((P

+
da
⊕⊕iR+

i,da
)⊗O(ja−1)ptaila

(−ptaila ))), if ja ≤ da,
pr∗A(�a∈Aπ∗(⊕i:ja≤lidaR+

i,da
⊗O(ja−1)ptaila

(−ptaila ))), if ja > da,

from which it follows that in the K-group of vector bundles on DA

G−,jAd′0
∼
(
�a∈A ⊕dam=ja+1 (Pr∗ac

∗
aO(−mψa)⊗ Pda−m)

)
⊕(

�a∈A ⊕ri=1 ⊕
lida
m=ja+1(Pr∗ac

∗
aO(−mψa)⊗ Rlida−mi )

)
,

and

G+,jA
tail,da

∼ �a∈A
(
⊕ja−1
m=1(pr∗aO(mψtaila )⊗ Fm)

)
2

where Pda−m := Pr∗ac
∗
aP

da−m, Rlida−mi := Pr∗ac
∗
aR
−,lida−m
i (see (3.3.5), (3.3.6), (3.3.10) for the

definition of P−,da−m, R−,lida−mi , Fm respectively).
To summarize, the outer terms of the exact sequences (3.5.11) and (3.5.12) give four pieces

that combine to make ΥjA .
We now move to the description of the subbundle Υ0

jA
⊂ ΥjA|ZjA (see (3.5.8) for the

notation Υ0
jA

). For each 1 ≤ i ≤ r and 0 ≤ ja, introduce the bundles

R
ja
i,small :=

{
pr∗a(êva × idP(CN ))

∗ (OP(V⊗CN )(li) �OP(CN )(−li)
)
, if ja ≤ lida,

0, if ja > lida,

2The notation Fm is a little ambiguous, since the dependence on the marking a is not apparent anymore.
The same will happen later, e.g., with the bundles F0 in (3.5.17) below. Hopefully this will not cause any
confusion.
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on Da. We use the same notation for the restrictions of Rjai,small to the substacks DA and
DX,A of Da. Further, we set

R
ja
small := ⊕ri=1R

ja
i,small.

Note that, alternatively, we may write on DX,A

R
ja
small = pr∗A(π∗(⊕i(L+,da)

li ⊗Optaila
))

= Pr∗A(π∗(⊕i(L+,d0)li ⊗Opa)),
for ja ≤ lida. Finally, put

F
ja
small := Pja ⊕ R

ja
small.

The surjection ΥjA � π∗PPr∗AF
+
d′0

on PjA (coming from (3.5.11) and (3.5.12)) induces a

surjection Υ0
jA

� π∗PPr∗AE
+
d0

on ZjA . Define the excess bundles ΥjA,ex and Υ0
jA,ex

as the
corresponding kernels:

0 −→ ΥjA,ex −→ ΥjA −→ π∗PPr∗AF
+
d′0
−→ 0,

0 −→ Υ0
jA,ex

−→ Υ0
jA
−→ π∗PPr∗AE

+
d0
−→ 0.(3.5.13)

To complete the description of Υ0
jA

, we note that the excess bundle in turn fits into an
extension

0→ �a∈A(OPja (1)|ZjA ⊗ π
∗
PF

ja
small)→ Υ0

jA,ex
→ π∗P(G+,jA

tail,da,small
⊕G−,jAd0,small

)→ 0,(3.5.14)

with

G+,jA
tail,da,small

∼ ⊕a∈A
(
⊕ja−1
m=1(pr∗AO(mψtaila )⊗ Fmsmall)

)
,

G−,jAd0,small
∼
(
⊕a∈A ⊕dam=ja+1 (Pr∗Ac

∗
AO(−mψa)⊗ Pda−m)

)
⊕(

⊕a∈A ⊕ri=1 ⊕
lida
m=ja+1(Pr∗Ac

∗
AO(−mψa)⊗ Rlida−mi,small )

)
in the K-group of DA. For later use, we note that from the above K-group expressions it
follows that the Euler classes of these bundles have the form

e(G+,jA
tail,da,small

) = pr∗A
∏
a∈A

(êva × idP(CN ))
∗f+,ja
da

(z)|z=ψtaila
,(3.5.15)

e(G−,jAd0,small
) = Pr∗A

∏
a∈A

(eva, h
+
a )∗f−,jada

(z)|z=−ψa ,(3.5.16)

where the Chow cohomology classes

f+,ja
da

(z), f−,jada
(z) ∈ A∗(X × P(CN))Q[z] = (A∗(X)Q ⊗ A∗(P(CN))Q)[z]

are polynomials in z with coefficients which are universal expressions in Chern classes of
various tautological bundlesOX(l) onX, andOP(CN )(m) and the tautological quotient bundle

Q on P(CN).
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In the formula (3.5.16) we have used that the ψ-classes at markings in A on Q−g,k+A(X, d0)

and Q+
g,k+A(X, d0) pull-back under cA, that is, c∗Aψa = ψa.

Step 3: Deformation. The idea for computing (3.5.8) is to deform the bundle Υ0
jA

, together

with its closed subcone C̃jA (see (3.5.7) for the notation C̃jA), to the bundle Υ0
jA,ex
⊕π∗PPr∗AE

+
d0

with the closed cone π∗PPr∗ACQ+
g,k+A(X,d0)/U+

k+A,(d0,d
′
0)

(see (3.5.13) for the notation Υ0
jA,ex

).

To begin with, consider on DA the vector bundle homomorphisms

pr∗A(⊕a∈AF+
tail,da

)
⊕artaila // ⊕a∈AF0,

Pr∗AF
+
d′0

⊕ara // ⊕a∈AF0,

where rtaila and ra are given by “restricting sections at the marking a”. The resulting surjec-
tive gluing map

Pr∗AF
+
d′0
⊕ pr∗A(⊕a∈AF+

tail,da
)
⊕a(ra−rtaila )

// ⊕a∈AF0 // 0

has kernel ν∗AF
+
d′ .

Via its embedding in π∗P(ν∗AF
+
d′ ⊕Pr∗Ac

∗
AF
−
d′ ), we may view α∗jA(ζP⊕R |Γ∞,jA ) as a subbundle

α∗jA(ζP⊕R |Γ∞,jA ) ⊂ π∗P(Pr∗AF
+
d′0
⊕ pr∗A(⊕a∈AF+

tail,da
)⊕ Pr∗Ac

∗
AF
−
d′ ).

The quotient is an “unglued” version of ΥjA . Precisely, it splits as π∗PPr∗A(F+
d′0

) ⊕ ΥjA,ex,0̂
,

and there are exact sequences

0 // ΥjA,ex
// ΥjA,ex,0̂

⊕artaila // π∗P(⊕aF0) // 0

and

0 // ΥjA
// π∗PPr∗AF

+
d′0
⊕ΥjA,ex,0̂

⊕a(ra−rtaila )
// π∗P(⊕aF0) // 0(3.5.17)

on PjA
πP−→ DA. Composing the section σ : OPjA −→ ΥjA with the monomorphism in (3.5.17)

gives the section

(π∗PPr∗Aσ
+
d′0
, σex) : OPjA −→ π∗PPr∗AF

+
d′0
⊕ΥjA,ex,0̂

.

The base of our deformation will be A1 with coordinate t. Denote % : PjA × A1 −→ PjA
the projection. Define on PjA × A1 the vector bundle ker via the exact sequence

0 // ker // %∗(π∗PPr∗AF
+
d′0
⊕ΥjA,ex,0̂

)
⊕a(tra−rtaila )

// %∗π∗P(⊕aF0) // 0
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deforming (3.5.17). The section

σ̃ := (%∗π∗PPr∗Aσ
+
d′0
, t%∗σex)

of %∗(π∗PPr∗AF
+
d′0
⊕ ΥjA,ex,0̂

) factors through ker, so we will view it from now on as a section

of ker. We have the identifications

(ker |t=1, σ̃|t=1) = (ΥjA , σ)

and

(ker |t=0, σ̃|t=0) = (π∗PPr∗AF
+
d′0
⊕ΥjA,ex, (π

∗
PPr∗Aσ

+
d′0
, 0)).

Let

Z̃ := σ̃−1(0) ⊂ PjA × A1

be the zero locus and observe that we have in fact

Z̃ ⊂ PjA|DX,A × A1,

where PjA|DA is the fibered product

PjA|DX,A
πP //

� _

��

DX,A� _

��

PrA // Q+
g,k+A(X, d0)

��
PjA πP

// DA
PrA

// U+
k+A,d′0

.

The fibers of the A1-family Z̃ at t = 1 and at t = 0 are

Z̃|t=1 = ZjA , Z̃|t=0 = PjA|DX,A .

Notice that the normal cones satisfy

[CZ̃/(PjA×A
1)|t=0] = [C(PjA |DX,A )/PjA ] = π∗PPr∗A[CQ+

g,k+A(X,d0)/U+

k+A,d′0

],(3.5.18)

and

[CZ̃/(PjA×A
1)|t=1] = [C̃jA ],(3.5.19)

as desired.
The “correct” obstruction bundle Υ0

jA
also deforms. Namely, if we repeat the construction

in this step, but with the bundles P±⊕R±, F±d′ replaced by Q±, Q±d′ := π∗Q
±
d′ respectively,

we obtain an unglued version of ΥQ,jA := α∗jAΥQ|Γ∞,jA given as the extension

0 // ΥQ,jA
// π∗PPr∗AQ

+
d′0
⊕ΥQ,jA,ex,0̂

⊕a(ra−rtaila )
// π∗P(⊕aF0

Q) // 0,
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and a vector bundle kerQ on PjA × A1 defined via the deformation

0 // kerQ
// %∗(π∗PPr∗AQ

+
d′0
⊕ΥQ,jA,ex,0̂

)
⊕a(tra−rtaila )

// %∗π∗P(⊕aF0
Q) // 0.

Here F0
Q “at the marking a” is the cokernel of 0→ F0

small → F0; alternatively,

F0
Q = pr∗A(π∗(Q

+
d′a
⊗Optaila

)) = Pr∗A(π∗(Q
+
d′0
⊗Opa)).

After restricting to Z̃, there is a surjection

%∗(π∗PPr∗AF
+
d′0
⊕ΥjA,ex,0̂

) −→ %∗(π∗PPr∗AQ
+
d′0
⊕ΥQ,jA,ex,0̂

) −→ 0,

(just as in §3.4.2), making the diagram

%∗(π∗PPr∗AF
+
d′0
⊕ΥjA,ex,0̂

)

��

⊕a(tra−rtaila )
// %∗π∗P(⊕aF0) //

��

0

%∗(π∗PPr∗AQ
+
d′0
⊕ΥQ,jA,ex,0̂

)

��

⊕a(tra−rtaila )
// %∗π∗P(⊕aF0

Q)

��

// 0

0 0

commutative. We conclude that there is an induced map of vector bundles

ker −→ kerQ,

which is easily seen to be surjective at all closed points, and hence surjective. Now define

the correct obstruction bundle Υ̃ on Z̃ as the kernel:

0 −→ Υ̃ −→ ker −→ kerQ −→ 0.

At t = 1 we have

Υ̃|t=1 = Υ0
jA
,(3.5.20)

while at t = 0

Υ̃|t=0 = π∗PPr∗AE
+
d0
⊕Υ0

jA,ex
.(3.5.21)

Here Υ0
jA,ex

on PjA|DX,A is given by the same extension as in (3.5.14):

0→ �a∈A(OPja (1)⊗ π∗PF
ja
small)→ Υ0

jA,ex
→ π∗P(G+,jA

tail,da,small
⊕G−,jAd0,small

)→ 0.(3.5.22)

By a calculation similar to the one used to prove Lemma 3.4, one checks that the normal

cone CZ̃/(PjA×A
1) is a subcone of Υ̃.
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Let ι : Z̃ ↪→ PjA|DX,A × A1 denote the inclusion and consider the diagram

t

t

��

PjA|DX,Aoo

��

Z̃|t
ιtoo //

��

CZ̃/(PjA×A
1)|t

��

// t

t

��
A1 PjA|DX,A × A1oo Z̃ι

oo //

��

CZ̃/(PjA×A
1)

��

// A1

Z̃
0 // Υ̃.

The proof of Lemma 3.5 shows the equality

(ι1)∗0
!
Υ̃|t=1

([CZ̃/(PjA×A
1)|t=1]) = 0!

Υ̃|t=0
([CZ̃/(PjA×A

1)|t=0])

in the Chow group of PjA|DX,A . By (3.5.18), (3.5.19), (3.5.20), (3.5.21), the Excess Intersec-
tion Formula ([15, Theorem 6.3]), the compatibility of Gysin maps with flat pull-back, and
Corollary 2.6, this can be rewritten as

(ι1)∗0
!
Υ0
jA

([C̃jA ]) = e(Υ0
jA,ex

) ∩ π∗PPr∗A[Q+
g,k+A(X, d0)]vir,(3.5.23)

where e denotes the Euler class and π∗P, Pr∗A are the flat pull-backs.
Step 4: Final calculation. Recall the diagram from (3.5.6)

PjA|DX,A
πP

��
ZjA

πP //

ι1

77pppppppppppp
DX,A

prA
��

PrA // Q+
g,k+A(X, d0)

((eva,h
+
a ))a∈A

��
Q+
tail,A ∏

(êva×id)
// (X × P(CN))A

and that we want to compute (3.5.8). From (3.5.23) this is the same as computing∑
jA

mjA(PrA)∗(πP)∗
(
e(Υ0

jA,ex
) ∩ π∗PPr∗A[Q+

g,k+A(X, d0)]vir
)
.(3.5.24)

By (3.5.22),

e(Υ0
jA,ex

) = e(�a∈A(OPja (1)⊗ π∗PF
ja
small))e(π∗P(G+,jA

tail,da,small
))e((πP)∗(G−,jAd0,small

)).
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Set α := e(G+,jA
tail,da,small

)e(G−,jAd0,small
) ∩ Pr∗A[Q+

g,k+A(X, d0)]vir. Then (3.5.24) can be succes-
sively rewritten as∑
jA

mjA(PrA)∗
{

(πP)∗
(
e(�a∈A(OPja (1)⊗ π∗PF

ja
small)) ∩ π

∗
Pα
)}

=
∑
jA

mjA(PrA)∗
∏
a∈A

(πP)∗

rk (Fjasmall)∑
m=0

c1(OPja (1))m ∩ π∗P
(
crk (Fjasmall)−m

(Fjasmall) ∩ α
)

=
∑
jA

mjA(PrA)∗
∏
a∈A

rk (Fjasmall)∑
m=0

sm−1

(
pr∗AO(jaψ

tail
a )⊕ Pr∗AO(−jaψa)

)
crk (Fjasmall)−m

(Fjasmall) ∩ α

 ,

where sm−1 denote the Segre classes.
The Chow cohomology class

rk (Fjasmall)∑
m=0

sm−1

(
pr∗AO(jaψ

tail
a )⊕ Pr∗AO(−jaψa)

)
crk (Fjasmall)−m

(Fjasmall)

is a polynomial in Pr∗Aψa, of the form∑
b

pr∗A((êva × id)∗δb(z)|z=ψtaila
)Pr∗Aψ

b
a,

where the δb’s are themselves polynomials with coefficients given by universal expressions in
Chern classes of various tautological bundles OX(l) on X, and OP(CN )(m) and Q on P(CN).

Further, by (3.5.15), (3.5.16), the Euler classes e(G+,jA
tail,da,small

) and e(G−,jAd0,small
) appearing

in α are given respectively by the universal expressions
∏

a pr∗A(êva × id)∗f+,ja
da

(ψtaila ) and∏
a Pr∗A(eva, h

+
a )∗f−,jada

(−ψa).
Setting

γb := (êva × id)∗(δbf
+,ja
da

)(ψtaila ) ∈ A∗(Q+
tail,a)Q

and recalling that mjA =
∏

a∈A ja, we conclude that (3.5.24) has the form

∏
a∈A

maxi{lidi}∑
ja=1

ja(PrA)∗

{∑
b

pr∗A(γb)Pr∗A(ψba(eva, h
+
a )∗f−,jada

(−ψa))

}(
[Q+

g,k+A(X, d0)]vir
) .

(3.5.25)

Here (PrA)∗ : A∗(DX,A)Q −→ A∗(Q+
g,k+A(X, d0))Q denotes the Gysin map induced by the

bivariant class [PrA] corresponding to the canonical orientation of the flat proper morphism
PrA, see equation (G2) in [15, §17.4]. Applying [15, Example 17.4.1(b)] to the cartesian
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square (3.5.4) and using the projection formula for bivariant classes, equation (3.5.25) proves
Theorem 3.8, with

µNda(z) :=

maxi{lidi}∑
ja=1

ja
∑
b

(−z)bf−,jada
(z)(êva × id)∗(γb) ∈ A∗(X × P(CN))Q[z].(3.5.26)

�

We stress again that our argument shows that the formula (3.5.26) for the correcting class
µNd is universal in the following sense: it depends on g and k only through the dependence

on N of the polynomials f+,ja
da

(z), f−,jada
(z), δb(z) ∈ A∗(X × P(CN))Q[z]. This will be used in

the next subsection.

3.6. Identification of the correcting class. In this subsection we finish the proof of
Theorem 1.6 (for (g, k) 6= (1, 0)) by showing that the class (3.5.26) satisfies

µNda(z) = coefficient of qda in z(Jε−sm(z)− Jε+sm(z))⊗ 1P(CN ).(3.6.1)

Indeed, assuming (3.6.1), it follows first that the coefficient of qda in z(Jε−sm(z) − Jε+sm(z)) is
a polynomial in z (because the left-hand side is such) and then by the general asymptotic
properties of the small Jε-functions it coincides with the coefficient of qda in [zIsm(q, z)−z]+.
Second, (3.6.1) also shows that the class (eva, h

+
a )∗µNda(z) is independent of N , so that we

may replace it by ev∗aµda(z) in the formula (3.5.2). Hence Theorem 3.8 together with (3.6.1)
imply Theorem 1.6.

To prove (3.6.1), we take d = da (so that d0 = 0) and consider the graph spaces
QG±0,0,da(X). These are the moduli stacks of ε±-stable quasimaps of degree da to X, whose

domains are genus zero unpointed curves with a component which is a parametrized P1, see
[10, 7]. Similarly, we have the moduli stacks QG±0,0,da(P(V )) and QG±0,0,da(P(V ⊗CN)), which
are smooth. The ε−-stability condition implies that the domain curve must be an irreducible
parametrized P1, while ε+-stability allows in addition quasimaps with domain consisting of
one rational tail and the parametrized P1. These quasimaps have degree da on the rational
tail and are constant maps on the parametrized P1. In particular, there are identifications

QG−0,0,da(P(V )) ∼= P(Symda(C2)⊗ V ),

QG−0,0,da(P(V ⊗ CN)) ∼= P(Symda(C2)⊗ V ⊗ CN).

Recall that we have the embeddings

X × P(CN) ↪→ P(V )× P(CN) ↪→ P(V ⊗ CN)× P(CN),
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whose composition is the map iSeg from (3.5.3). The induced embeddings of graph spaces
commute with the contraction maps:

(3.6.2) QG+
0,0,da

(X)× P(CN)

c×id

��

� � // QG+
0,0,da

(P(V ⊗ CN))× P(CN)

c×id

��
QG−0,0,da(X)× P(CN) �

� // QG−0,0,da(P(V ⊗ CN))× P(CN).

The right contraction map c× id is an isomorphism outside the boundary divisor

Da
∼= (Q+

0,{a}(P(V ⊗ CN), da)× P(CN))×P(V⊗CN )×P(CN ) (QG+
0,{a},0(P(V ⊗ CN))× P(CN))

∼= (Q+
0,{a}(P(V ⊗ CN), da)× P(CN))×P(V⊗CN )×P(CN ) (P(V ⊗ CN)× P1 × P(CN)),

where QG+
0,{a},0(P(V ⊗CN)) ∼= P(V ⊗CN)×P1 is the moduli stack of ε+-stable quasimaps of

degree 0 to P(V ⊗CN), whose domains are genus zero one-pointed curves with a component
which is a parametrized P1, see [10, 7]. Let L± denote the universal line bundles of degree
da on the fibers of the universal curves over the various QG± × P(CN). Let M denote the
pull-back of OP(CN )(1) to QG± × P(CN), with the basis {t1, . . . , tN} of global sections, and
set L ′

± = L± ⊗M . With these notations (which are justified, since the line bundles are
compatible with the above embeddings), the construction of §2.4 produces the obstruction

theory (2.4.6) of QG±0,0,da(X)×P(CN) relative to the smooth, pure dimensional stack BunP1

G×
P(CN). Here BunP1

G −→ P̃1[0] is the relative Picard stack over the Fulton-MacPherson stack

P̃1[0] of unpointed rational curves with one parametrized component. The corresponding
virtual class is [QG±0,0,da(X)]vir × [P(CN)]. Note that for all universal curves, the map h to

P(CN) is just the projection.
Further, if we put

U± := QG±0,0,da(P(V ⊗ CN))× P(CN),

then the construction of §2.5 also applies to produce the vector bundles F± on U±, with
sections σ± such that (σ±)−1(0) ∼= QG+

0,0,da
(X)× P(CN). This embedding of QG+

0,0,da
(X)×

P(CN) in U± is precisely the one in (3.6.2). The diagram (2.5.6) holds as well, hence we
have the concrete description

[QG±0,0,da(X)]vir × [P(CN)] = 0!
E±(CQG±0,0,da (X)×P(CN )/U±)

as in Corollary 2.6.
From the degeneration analysis in §3.2 – §3.5, it follows that Theorem 3.8 holds in the

situation considered in this section, giving the equality

[QG−0,0,da(X)]vir × [P(CN)]− (c× id)∗([QG
+
0,0,da

(X)]vir × [P(CN)]) =(3.6.3)

(ba × id)∗((eva, h
+
a )∗µNda(−ψa) ∩ ([QG+

0,{a},0(X)]vir × [P(CN)]),
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with µNda the universal class in (3.5.26). Notice that the one-pointed, degree zero graph space
is identified with X × P1, with virtual class the usual fundamental class (for any stability
parameter ε), while the maps

eva : X × P1 × P(CN) −→ X, h+
a : X × P1 × P(CN) −→ P(CN)

are respectively the first and third projections. The class ψa is the pull-back of c1(ωP1) via
the second projection.

Now recall that graph spaces carry a C∗-action (induced by the standard action on the
parametrized domain component) for which the maps c and ba are equivariant. It is custom-
ary to denote by z the equivariant parameter for this action. In each graph space there is
a distinguished part of the C∗-fixed locus corresponding to quasimaps for which the entire
nontrivial data is concentrated over the point 0 in the parametrized domain component.
The restrictions of the maps c and ba to the fixed point locus respect the decomposition into
distinguished and non-distinguished parts. It follows that if we apply the virtual localization
formula of [19] to (3.6.3) (using the trivial action on the P(CN) factors) and discard from
both sides the localization residues at all non-distinguished fixed-point loci, we still have an
equality between the remaining distinguished residues.

In our particular case, the distinguished fixed locus in QG−0,0,da(X) × P(CN) is identified

with X × P(CN), the distinguished fixed locus in QG+
0,0,da

(X) × P(CN) is identified with

Q+
0,1(X, da)×P(CN), and the distinguished fixed locus in QG+

0,{a},0(X)×P(CN) = X ×P1×
P(CN) is X × {0} × P(CN). Moreover, the restriction of c × id to the distinguished fixed
locus is ev1× id, while ba× id, (eva, h

+
a ) are the identity map on the distinguished fixed locus.

The equality of distinguished residues of (3.6.3) becomes

coefficient of qda in (Jε−sm(z)− Jε+sm(z))⊗ 1P(CN ) =
µNda(z)

z
(3.6.4)

in A∗(X × P(CN))Q[z, z−1], proving (3.6.1). Indeed, the left-hand side is as stated by the
very definition of the small J-functions in (5.1.1) of [7], while for the right-hand side we used
that, in the right-hand side of (3.6.3), ψa|X×{0}×P(CN ) = −z, and that the equivariant normal
bundle of {0} ⊂ P1 has first Chern class z, i.e., the denominator z in the right-hand side of
(3.6.4) so that 1

z
is the distinguished residue of [QG+

0,{a},0(X)]vir × [P(CN)].

3.7. The unpointed genus 1 case. Since M1,0 is empty, we do not have the twisting line
bundles M satisfying Lemma 2.1 and which are all compatible. However, it turns out that
an appropriate modification of the set-up in §2 allows for an application of the arguments
in §3 to establish Theorem 1.6 in this case as well.

3.7.1. Set-up. By an unpointed semistable genus 1 curve we mean an unpointed prestable
genus 1 curve with no rational tails. Let Mss

1,0 denote the moduli stack of semistable genus
1 curves.
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Fix positive integers d and e. Let MN denote the moduli stack of degree e unpointed genus
1 stable maps to P(CN) with semistable domain curves. Since all line bundles of degree e on
semistable genus 1 curves are non-special, MN is a smooth (non-proper) Deligne-Mumford
stack. Denote by Css1,0 −→MN the universal curve and by

h : Css1,0 −→ P(CN)

the universal map.
Let d′ = d+ e and let Qε,unob

1,0 (P(V ⊗CN), d′) be the open substack of Qε
1,0(P(V ⊗CN), d′)

consisting of ε-stable quasimaps (C,L′, u′) with vanishing H1(C,L′). Define U ε,N
d′ as the fiber

product

Qε,unob
1,0 (P(V ⊗ CN), d′)×Mss

1,0
MN .

Here the morphism Qε,unob
1,0 (P(V ⊗ CN), d′)→Mss

1,0 is the composite of the contraction map

Qε,unob
1,0 (P(V ⊗CN), d′)→ Q0+

1,0(P(V ⊗CN), d′) and the forgetful map Q0+
1,0(P(V ⊗CN), d′)→

Mss
1,0.

Since MN is smooth over Mss
1,0 and Qε,unob

1,0 (P(V ⊗CN), d′) is smooth over Bun1,0
G , the stack

U ε,N
d′ is smooth over Bun1,0

G .

The universal curve Cε1,0,d′ over U ε,N
d′ has a semistabilization morphism ssε : Cε1,0,d′ → Css1,0

(the contraction of rational tails of universal curves), fitting into the commuting diagram

Cε1,0,d′

π
��

ssε
// Css1,0 h

//

��

P(CN)

U ε,N
d′ proj

// MN .

We set hε = h ◦ ssε : Cε1,0,d′ → P(CN) and Mε = h∗εOP(CN )(1). Further, the sections tj of

OP(CN )(1) associated to the homogeneous coordinates of P(CN) give the sections sj := h∗εtj ∈
H0(Cε1,0,d′ ,Mε), j = 1, ..., N .

3.7.2. Obstruction theory for Qε
1,0(X, d) ×Mss

1,0
MN relative to Bun1,0

G . Denote by L ′
ε the

universal line bundle on the universal curve Cε1,0,d′ of U ε,N
d′ and put Lε := L ′

ε ⊗M−1
ε .

Consider the diagram of vector bundles and OCε
1,0,d′

-linear maps, corresponding to (2.5.1),

0 // Lε ⊗ V ⊕ h∗εTP(CN )

(⊕jsj ,id)
// ⊕Nj=1L

′
ε ⊗ V ⊕ h∗εTP(CN )

//

(⊕j(⊕idϕi),0)

��

Pε
d′

// 0

0 // ⊕ri=1L
li
ε

⊕i,js
li
j // ⊕i,j(L ′

ε)
li // Qε

d′
// 0.
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Let Qε
X := Qε

1,0(X, d). As before, there is a vector bundle

P ε
d′ ⊕Rε

d′ := π∗P
ε
d′ ⊕ π∗(⊕i,j(L ′

ε)
li)

on U ε,N
d′ , with a section σε whose zero locus is naturally isomorphic to the product stack

Qε
X ×Mss

1,0
MN .

On the universal curve CεX over Qε
X×Mss

1,0
MN (associated to the universal curve of Qε

X), we
may complete the diagram above to a homomorphism of short exact sequences. In particular,
we obtain a natural homomorphism

Lε ⊗ V ⊕ h∗εTP(CN ) → ⊕ri=1L
li
ε

and an exact sequence

0→ E ε
d →Pε

d′ ⊕ (⊕i,j(L ′
ε)
li)→ Qε

d′ → 0,

defining a vector bundle E ε
d on CεX , with π∗E ε

d also locally-free.

Denote by Cσε the normal cone to Qε
X×Mss

1,0
MN in U ε,N

d′ . As before, Cσε is a closed subcone

of the vector bundle π∗E ε
d , with the embedding induced by a surjection π∗E ε

d � I /I 2, where
I is the ideal sheaf of the closed substack Qε

X ×Mss
1,0
MN .

Consider the following commuting diagram

Qε
X ×Mss

1,0
MN

� �

closed
// U ε,N

d′
//

��

MN

smooth

��
Qε,unob

1,0 (P(V ⊗ CN), d′) //

smooth
��

Mss
1,0

Bun1,0
G

and define a perfect obstruction theory E for Qε
X ×Mss

1,0
MN relative to Bun1,0

G by[
R•π∗(Lε ⊗ V ⊕ h∗εTP(CN ) → ⊕ri=1L

li
ε )
]∨

qiso∼
[
(π∗E

ε
d )∨ → (⊕Nj=1π∗L

′
ε ⊗ V ⊕ π∗h∗εTP(CN ))

∨] =: E
↓ ↓ ∼=[

I /I 2 → ΩUε,N
d′ /Bun1,0

G
|QεX×Mss

1,0
MN

]
.

The associated virtual class is, by definition,

[Qε
X ×Mss

1,0
MN ]vir := 0!

π∗Wε,d
[Cσε ].



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 53

3.7.3. Wall-crossing. We will compare the virtual classes [Q±X ×Mss
1,0
MN ]vir under the con-

traction map c : Q+
X ×Mss

1,0
MN → Q−X ×Mss

1,0
MN , where the contraction map does not do

anything on the MN factor.
The comparison can be carried out as before. Similar to (3.2.2), there is a commuting

diagram

C+
1,0,d′

π $$H
HH

HH
HH

H
//

c̃
++

ss+

$$

h+

$$
c∗C−1,0,d′

��

// C−1,0,d′

π
��

h−
++

ss−
// Css1,0 h

//

��

P(CN)

U+,N
d′ c

// U−,Nd′ proj
// MN .

First use the homomorphism Φ : P+
d′ ⊕ R

+
d′ → c∗P−d′ ⊕ c∗R

−
d′ induced from the contraction

map to perform the MacPherson graph construction. Second, deform the obstruction normal
cone of c−1(Q−X×Mss

1,0
MN) in U+,N

d′ using the induced section of the universal quotient bundle

of Gr(P+
d′ ⊕R

+
d′ ⊕ c∗P

−
d′ ⊕ c∗R

−
d′).

Repeating word for word the arguments of §3.3-3.6, we obtain the following analogue
of Theorem 3.8. Let z be a formal variable. Let the Chow cohomology class µNda(z) ∈
A∗(X × P(CN))Q[z] be given by the universal formula (3.5.26). The equality

[Q−1,0(X, d)×Mss
1,0
MN ]vir − c∗[Q+

1,0(X, d)×Mss
1,0
MN ]vir =(3.7.1) ∑

A

1

|A|!
(bA)∗(cA)∗

(∏
a∈A

(eva, h
+
a )∗µNda(z)|z=−ψa ∩ [Q+

1,A(X, dA0 )×Mss
1,0
MN ]vir

)
holds in the Chow group A∗(Q

−
1,0(X, d)×Mss

1,0
MN)Q, where

• cA is the contraction map

Q+
1,A(X, dA0 )×Mss

1,0
MN → Q−1,A(X, dA0 )×Mss

1,0
MN ,

• bA is the morphism

Q−1,A(X, dA0 )×Mss
1,0
MN → Q−1,0(X, d)×Mss

1,0
MN

which trades the markings A for base points of length da,
• the morphism h+

a : Q+
1,A(X, dA0 )×Mss

1,0
MN → P(CN) is the composite of the contraction

Q+
1,A(X, dA0 )×Mss

1,0
MN → Q−1,A(X, dA0 )×Mss

1,0
MN ,

the marking section

Σa : Q−1,A(X, dA0 )×Mss
1,0
MN → C−A,X
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of the universal curve over Q−1,A(X, dA0 ) ×Mss
1,0
MN (associated to the universal curve

of Q−1,A(X, dA0 )), the morphism

C−A,X → C−X

induced from bA, and finally h−|C−X : C−X → P(CN).

3.7.4. Relation between [Qε
X ×Mss

1,0
MN ]vir and [Qε

X ]vir. By a result of Cooper, [13], the stack

Q0+
1,0(P(V ), d) has projective coarse moduli and hence there is a morphism from the universal

curve of Q0+
1,0(P(V ), d) to P(CN) for some N such that the morphism does not contract

any irreducible component of any fiber of the universal curve. Fix such a morphism φ and
let e be the degree of a fiber curve under φ. The degree e is independent of the choice
of fiber since Q0+

1,0(P(V ), d) is connected. (In fact, Q0+
1,0(P(V ), d) is irreducible; this follows

from the connectedness of M1,0(P(V ), d) (see [22]), the surjectivity of the contraction map
M1,0(P(V ), d) → Q0+

1,0(P(V ), d), and the smoothness of Q0+
1,0(P(V ), d) (see [25]).) From now

on we work with the stack MN corresponding to these particular choices of N and e.
By the universal property of MN , upon restricting φ to the universal curve over Q0+

X , we
obtain a morphism h1,0 : Q0+

X →MN fitting in the diagram with the cartesian square

C0+
1,0

//

��

φ

,,
Css1,0

��

h
// P(CN)

Q0+
X

h1,0

33// Q0+
1,0(P(V ), d) // MN .

We also let

hε1,0 : Qε
X → Q0+

X

h1,0−→MN

denote the composition of h1,0 and the contraction Qε
X → Q0+

X .
One checks directly that there is a natural cartesian square

Qε
X

(id,hε1,0)
//

hε1,0

��

Qε
X ×Mss

1,0
MN

��
(hε1,0,id)

��
MN

∆ // MN ×Mss
1,0
MN .



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 55

In the derived category of coherent sheaves on Qε
X there is a commuting diagram

(hε1,0)∗(L∆[−1] ∼= (π∗h
∗TP(CN ))

∨) //

��

(id, hε1,0)∗E

��
LQεX/QεX×Mss

1,0
MN

[−1] // (id, hε1,0)∗LQεX×Mss
1,0
MN/Bun

1,0
G

whose mapping cone is the obstruction theory for Qε
X relative to Bun1,0

G , as in §2.4. The
functoriality result of [1, Proposition 5.10] implies the relation

∆![Qε
X ×Mss

1,0
MN ]vir = [Qε

X ]vir.(3.7.2)

Now apply ∆! to (3.7.1). Using the compatibility of the Gysin homomorphism for proper
push-forward, the commutativity of Chern classes with Gysin homomorphism, the relation
(3.7.2), and the identification of µNda(z) from §3.6, we conclude the proof of Theorem 1.6 in
the remaining case (g, k) = (1, 0).
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