QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY
IONUT CIOCAN-FONTANINE AND BUMSIG KIM

ABSTRACT. We state a wall-crossing formula for the virtual classes of e-stable quasimaps to
GIT quotients and prove it for complete intersections in projective space, with no positivity
restrictions on their first Chern class. As a consequence, the wall-crossing formula relating
the genus g descendant Gromov-Witten potential and the genus g e-quasimap descendant
potential is established. For the quintic threefold, our results may be interpreted as giving
a rigorous and geometric interpretation of the holomorphic limit of the BCOV B-model
partition function of the mirror family.
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1. INTRODUCTION

1.1. Overview. Let W be a complex affine variety acted upon by a reductive algebraic group
G. Fix a character 8 of G for which the induced G-action on the 6-semistable locus W** is
free. For the quasiprojective target W/yG and a rational number € > 0, or for ¢ = 0+, the
notion of e-stable quasimaps to W /)G was introduced in [10], inspired by [25] 26] 6]. They
are in fact suitable maps from curves to the stack quotient [W/G]. The Deligne-Mumford
moduli stack Q5 (W /sG, ) of e-stable quasimaps of type (g, k, 8) is proper over C if W/, G
is projective. Here g, k, and 3 are respectively the genus of the domain curve, the number
of markings, and the numerical class 8 € Homg(Pic([W/G]|,Z)) of the quasimaps. If W has
at worst lci singularities and W is smooth (as always assumed in this paper), the moduli
stacks carry canonical virtual fundamental classes. There are evaluation maps ev; to W/, G,
as well as cotangent psi-classes 1; at the j-th marking. Hence, we may define descendant
e-quasimap invariants

k

(1.1.1) (et Yo = / [T e

Q5 W/ G.B)"" 521

for v, € A*(W/yG)q and a; € Z>(. Here and for the rest of the paper, the Chow cohomology

A*(Y)g of a Deligne-Mumford stack Y is the algebra A*(Y 4 Y')q of bivariant classes, see
[15, §17.3] and [29, §5).

There is a wall-and-chamber structure on the space Q¢ of stability parameters. Assuming
for simplicity (g, k) # (0,0), the walls are at e = 1/n with n € N and the moduli spaces stay
constant in each chamber (%H, %] For ¢ € (1, 00), they parametrize exactly stable maps to
W/eG. A conjectural wall-crossing formula for the invariants of semi-positive targets was
stated in the paper [8], and was proved for semi-positive (quasiprojective) toric quotients by
localization techniques. In this paper we propose a geometric wall-crossing formula at the
level of virtual classes and without any positivity restrictions (which, as we show, implies the
above mentioned semi-positive numerical wall-crossing, see Corollary . The main result
of the paper is a proof of the virtual class wall-crossing formula for complete intersections in
projective spaces.

The wall-crossing formula has important applications to Mirror Symmetry for Calabi-Yau
threefolds at higher genus. This is explained in §I.5 the main point being that, assuming
the Mirror Conjecture, the genus ¢ partition function of quasimap theory for the e = 0+
stability of a Calabi-Yau threefold is precisely equal to (the holomorphic limit of) the B-
model partition function of the mirror Calabi-Yau family, introduced in string theory by

Bershadsky, Cecotti, Ooguri, and Vafa.

1.2. Geometric wall-crossing. To state the wall-crossing formula, we recall some facts
from quasimap theory and fix some notation.
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The monoid Eff(W, G, ) of -effective numerical classes is the submonoid of the additive
group Homgz (Pic([W/G],Z) consisting of classes represented by 6 quasimaps (possibly with
disconnected domain curves). The Novikov ring of the theory is

Qllgl =4 > asd’ | as€Qy,

Eff(W,G,0)

the g-adic completion of the semigroup ring Q[Eff(W, G, 0)].

The GIT set-up gives (see [7, §3.1] for details) a natural morphism i : [W/G] — [C™+1/C*]
for some m € Z,, inducing a closed immersion i : W/yG < P and also a morphism
(denoted by the same letter)

i 0 Q5 (WG, B) = Q5 (P™,d(B)),

where d(3) := i.(8) € Hom(Pic([C™*/C*]),Z) = Z.

Fix a positive rational number €y such that 1/¢¢ is an integer and let e, > g9 > ¢_ be
rational numbers in the two adjacent stability chambers separated by the wall 9. There is
a morphism

¢: QP d(B)) = Qg (P™,d(B))
which contracts rational tails of degree 1/g, see [28§].

Let A denote a finite index set of cardinality 1,2,3,... Consider splittings 8 = [y +
> aea Ba into O-effective numerical classes such that d(3,) = 1/ for all @ € A. There is a
natural morphism

ba Qs a(P™,d(Bo)) — Qg i(P™, d(B))
which trades the markings in A for base points of length 1/¢¢ ([7, §3.2]).

Finally, recall from [I0, §7] and [7, §5] that for every triple (W, G,#), with associated
quotient X = W/yG, there is a corresponding small I-function, denoted Ign,(q,z). The
precise definition we will use in this paper is Definition 5.1.1 in [7], specialized at ¢ = 0+
and t = 0.

The small /-function lies in a certain completion A*(X)g|[q]]{{1/2, z}} of Laurent series
in 1/z. (Here z may be viewed as a formal variable of degree one, though it is more natural
to interpret z as the generator of the C*-equivariant cohomology Af.(Spec(C)).) It can be
explicitly calculated for many targets. For abelian quotients, that is, for toric varieties and
for complete intersections in them, the small /-function is precisely the cohomology-valued
hypergeometric series introduced by Givental [18] (up to exponential factors). Closed formu-
las for I, in many examples with nonabelian G (e.g., complete intersections in flag varieties,
but many others as well) can also be written down using the so-called abelian/nonabelian
correspondence, see [4, [5, [T, 12].

Consider the expansion

1i(q)

Lin(q,2) = O(1/2%) + — Io(q) + T_1(q)z + T a(q)2* + ...
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and set
(2L (g, 2) = 2]+ = D(q) + (Io(q) — 1)z + T1(q)2" + ...

In general [z/,(q,z) — 2|+ is a power series in (g, z), but each g-coefficient is a polynomial
in z. For each 0 # 5 € Eff(W, G, 0), let

pa(2) € A"(X)ol?]

denote the coefficient of ¢° in [21,(q,z) — 2]4+. By easy dimension counting, ps(z) is ho-
mogeneous of degree 1 + 3(Kpy/q)). Here 2z has degree one, the Chow cohomology classes
are given their usual degrees, and Kyy/g = — det(Tw) € Pic®(W) = Pic([W/G]) is the
canonical line bundle of the quotient stack.

We are now ready to state the wall-crossing for virtual classes.

Conjecture 1.1. There is an equality

1] Qy i (X, B — e [QUR (X, B =
PR ppelen (Hevém(zﬂzz-wa Q3 alX, 60)]“)

‘A| 6:50+za6A Ba acA

in the Chow group A.(Qy(P™,d(8)))q-
More generally, let 61,...,0, € A*(X)g be arbitrary homogeneous cohomology classes.
Then

il k
. (H ev;d; N [QZ,‘,C(X7 5)]vir) — ¢y, <H ev}d; N [Q;}(X, 6)]vir> _

j=1 j=1

k
Z Z ﬁbA*(CA)*Z'* (H ev;d; H evntig, (2)] = —p, N [Qg oalX 50)]”)

[Al B=Bo+3>4ca Ba Jj=1 acA

(1.2.2)

in A(Qg 1 (P™, d(B)))o-

In the above statement, ca : Q% 4(P™,d(B0)) — Qg pya(P™ d(B)) is the contraction of
rational tails of degree d(/3,) = 1/¢y.

Remark 1.2. For X a semi-positive quasi-projective toric manifold, Conjecture coincides
with Theorem 4.2.1 in [§], and the result is valid for any GIT presentation of X, see [8|,
§5.9.2]. In fact, the localization argument of [8] extends with little effort to prove for
all toric manifolds (i.e., no positivity restriction), offering the first evidence for the validity
of Conjecture [[.1] We will treat this extension elsewhere.
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1.3. Numerical consequences. In this subsection we assume that (W, G, ) is a triple for
which Conjecture holds. We work with arbitrary stability parameters ¢ € Q- U {0+}
and will write € = oo for all parameters in the Gromov-Witten chamber (1, 00).

Consider a formal power series in one variable ¥,

t(¢) =ty + t1) + toh? + P 4 ...,

with coefficients t; € A*(X)q general Chow cohomology classes.
The genus g, e-descendent potential of X is

. ¢’ .
Fg (Q7 t(w» = Z F(t(%)? t(lbg), e 't(wk»g,k,ﬁ?
(B,k)

the sum over all pairs (3, k) for which the corresponding moduli spaces exist. If we choose
a basis {7,} in A*(X)q and write ¢; = Zj tiv;, 1= 0,1,2,..., then F;(q,t()) is a formal
power series in the infinitely many variables ¢;;, whose Taylor coefficients are the e-quasimap
invariants (1.1.1). In particular, F° is the generating series for all descendent genus g
Gromov-Witten invariants of X.

1.3.1. Wall-crossing from Gromov- Witten invariants to e-quasimap invariants. Let J¢, (g, 2)
be the small J-function of X (7, Definition 5.1.1], specialized at t = 0). With this notation,
Iy = JOF. Let
(25 = 2l = Ji(@) + (J(@) = Dz + J5 ()" + ..

This is explicit for all €, since it is a g-truncation of the corresponding expression for the
small I-function:

[250(0,2) = 2] = [2Ln(g, 2) — 2] (mod a.),
with a. the ideal in the Novikov ring generated by {¢° | B(Lg) > 1}.

Corollary 1.3. For any € > 0+, and any g > 1,

Fi(a,6(0) = F5° (0,40) + [25,(0) = 21|, ).

Further, in genus g = 0 the same relation holds after discarding from F§°(q,t(1))) the terms
corresponding to pairs (B, k) for which Qf (X, B) is not defined.

Proof. The 1)-classes at the markings 1,...,k pull-back under the maps b4, ¢, ca, and 1.
Applying the virtual class wall-crossing in Conjecture successively for the walls
from 1 to e (and using the projection formula) gives the equality of the Taylor coefficients
of the two sides in the claimed equality. 0

Remark 1.4. (i) The formula in Corollary [1.3]is equivalent to
Fy (4,600 = (25, (@) = 2|, ) = (g, t(®)).
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(#7) Assuming only the formula ([1.2.1)) from Conjecture gives the weaker equality

Fi(a,8(0) = 5 (0.80) + [2T5(0) = 214 ], ) -
with t(¢) the restriction of t(¢)) to the subring * A*(P™)qg C A*(X)q.
1.3.2. Semi-positive targets. Recall that a triple (W, G, ) is called semi-positive if

B(det Tw) = B(—Kwyq)) = 0
for every g € Eff(W, G, ). For such targets we have
(220(0) — 214 = J2(@) + (Ji(a) — 1),

since deg(ps(2)) <1 for all . The wall-crossing formula of Corollary [1.3] becomes
(1.3.1) FE(q,60)) = F2 (0,6(6) + T2 (0) — (i) — 1)

In fact, equation ([1.3.1)) is equivalent to the wall-crossing formula conjectured in [8, Conjec-
ture 1.2.1]:

Corollary 1.5. For a semi-positive triple (W, G, 0) we have

s e (0 (22 g i) + Filaew)) = e (o LA

where Xop(X) denotes the topological Euler characteristic and 5; is the Kronecker delta. (In
genus g = 0 we use the same convention as in Corollary )

Proof. Using the dilaton equation for Gromov-Witten invariants in the right-hand side of
(1.3.1) to remove the insertions (J§(g) — 1)y produces exactly (1.3.2]). The additional term

1 top (X)
0g (X5

HM x X. Namely, since the virtual class is

[M11(X,0)]"" = (1 ® cgimx(Tx) — ¥ @ camx—1(Tx)) N [M11 x X],

log J§ (q)) appears due to the failure of the dilaton equation for MM(X ,0) =

we have
o 1
o= [ ¥ cumx(Tx) = 5rxmX).
M171><X
while the dilaton equation would formally predict ()% o = 0. O

1.4. Complete intersections in projective space. The main result of the paper is a
proof of Conjecture for projective complete intersections. In fact, we will prove the
following slightly strengthened version.

Let V be the affine space of dimension n+1 with the standard diagonal G := C*-action and
linearization # = id¢«. Let W be a complete intersection of » < n homogeneous hypersurfaces
in V. Then X := W/yG. is the corresponding projective complete intersection in P(V') (and
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W is the affine cone over X). Assume that the hypersurfaces are general, so that X is
smooth. We take X — P(V') as our embedding . In this case, the induced

2 Q5 (X d) — Q5 (B(V), d)

are also embeddings. The maps that replace markings by base-points, as well as the contrac-
tion maps, respect these embeddings, i.e., given a wall ¢ = 1/d, and e, > ¢ > ¢_ nearby,
we have restrictions

ba Qg k-i—A(Xv d(?) — Q;E(Xv d)7
where d' = d — | Ald,, and
Theorem 1.6. There is an equality
[Q;_k(X LD = QR (X, )] =

Z ’A|‘ (H eva:uda Ya [Qg k+A<X dO )]Vlr)

|A] acA
in the Chow group A.(Q, (X, d))qg.

Since Theoremm 1.6{implies the formula ((1.2.2)), the relations between e-quasimap invariants
and Gromov-Witten invariants in Corollarles 3| and [I.5] hold for nonsingular complete
intersections X C P" of codimension r < n.

Let ly,ls,...,1. be the degrees of the hypersurfaces whose intersection is X. The small
I-function of X is given by the well-known formula (see [17])

s T T+ )
=~ T Gy

where H denotes the restriction to X of the hyperplane class on P".

If Y7, i > n+2, so that X is a variety of general type, we do not know of any simplifica-
tion of the wall-crossing formula in Corollary [1.3] Note that even in genus g = 0 our result
is new.

If X is Fano or Calabi-Yau, more precise statements can be made.

The case Z;l l; < n —1 of complete intersections which are Fano of index at least two
is the simplest, since J5(q) = 1 and J{(q) = 0 for all ¢ > 0+. We conclude the following
e-independence result.

I(q,z)

Corollary 1.7. The quasimap invariants of a projective complete intersection with Y. l; <
n — 1 are independent of €.

In the Fano of index one case, >.._, l; = n, we have J5(¢) = 1 and Ji(q) = ¢([[;_, L)1
for all 0+ < e < 1.
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Corollary 1.8. For a projective complete intersection with ) . l; = n and for 0+ < e <1
we have

Fi(t(v)) = F(6(v) + (] [ 1D 1)
=1
In particular, if (g,n) # (0,1), (0,2), then the primary invariants are again e-independent:
<717 cee 771);,71,,8 = <’yla SR 7ﬂ>3?n,5'

The second equality in Corollary is a consequence of the string equation in Gromov-
Witten theory.
The most interesting is the Calabi-Yau case ) ._, l; = n + 1, for which

s = Y ol

0<d<i
r ld d
(g) = allizy (lid)! L 1
0= 3 AU (3w
1§d§% i=1 k=1 =1

For every ¢ and every d, the virtual dimension of the moduli space @ x (X, d) is equal to
(dim X — 3)(1 — g) + k. We split the discussion according to the genus.

1.4.1. Genus zero. The wall-crossing formula (1.3.2) at ¢ = 0 for a Calabi-Yau complete
intersection is proved in [8, §3] using Dubrovin-type reconstruction arguments and results
from [7]. Here we just note that the new proof in this paper does not use the torus action
on P".

1.4.2. Genus one. When g = 1, the virtual dimension is independent of the dimension of X.
Consider the unpointed case k = 0, i.e. the specialization of (1.3.2) at g = 1, and t(¢») = 0.
Separating the d = 0 contributions and applying the divisor equation in the Gromov-Witten
side gives

Corollary 1.9. For a Calabi-Yau complete intersection X C P"

1
(1.4.1) 5 Xtep () 10g 5 + > ()00 =
d>1
1 [ J Ji
- 5 —-Cdim X — lTX+ lep(/ _5)<>Oo :
24 JO ; d[line] ‘]O b

When ¢ = 0+, the formula (1.4.1)) answers a question raised first in [25] §10.2]. Note that
the unpointed genus one (0+)-invariants { )9F 0.0 have been recently calculated by Kim and
Lho ([21]) in terms of the small I-function. Combining 21, Theorem 1.1] with Corollary [1.9)

gives new proofs for the main results on genus one Gromov-Witten invariants of X from [30]
and [27].
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1.4.3. Higher genus. If g > 2 and dim X > 4, the virtual classes (hence the invariants) vanish
by dimension considerations. We restrict to the case of unpointed invariants of Calabi-Yau
threefolds. The invariants for d = 0 are the same for all stability conditions and are given

by the formula
e _ (=1 | Bag| [Bag—2| 1
<>g,0,0_ 2 XtOP( ) 2g 29_2 <2g_2>‘7
with Bsy,, Bay—o the Bernoulli numbers, see [16], [14].

Corollary 1.10. For a Calabi- Yau threefold complete intersection in P™, g > 2 and € > 0+,

e vag2 [ (1) |Bog| | Bag—a| 1
Jo(q)Qg 2 (TXtOP(X> 2gg 2gg_2 29 ' +Z gO,d =

d>1
(—1)7 | Bog| | Bag— 2\ 1 / Ji
op (X E — S

1.5. Relation with Mirror Symmetry. In this subsection we let X be the quintic hyper-
surface in P* and consider the asymptotic stability condition ¢ = 0+. (The same analysis
will apply to the (0+)-theory of any Calabi-Yau threefold for which Conjecture holds.)
Fix a genus g > 1. In their landmark paper [2], Bershadsky, Cecotti, Ooguri, and Vafa
studied the string theory B-model of a Calabi-Yau threefold and in particular they proposed a
method to calculate the genus g Gromov-Witten potential of the quintic (with no insertions)
via Mirror Symmetry. Namely, let Ff (q¢) be the holomorphic limit of the genus g partition
function of the B-model associated to the mirror family of the quintic, where ¢ is the coor-

dinate around the large complex structure point. Let the mirror map be @ = gexp( Iif ggg;)

where

(5d)! N
q>:1+zqddl5’ sz > -
d>1 ’ d>1 j=d+1 J

Then the genus g > 2 Mirror Conjecture of [2] for the quintic threefold is the equality
(1.5.1) L) Fl (@) =>_ Q" )0

d>0

Hence Corollary says precisely that the quasimap partition function F g0+|t:0(q) is equal
to ]—"f(q), with no mirror map involved. Similarly, Corollary gives the same equality in
genus g = 1. In other words, our results in this paper can be viewed as giving a mathe-
matically rigorous and geometrically meaningful definition of the holomorphic limit of the
B-model partition function.

The B-model partition function of the mirror quintic has been studied extensively in the
Physics literature. It is expected to have modular properties and to satisfy a recursion in
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g, determined up to a holomorphic function f,(g), the so-called “holomorphic ambiguity”.
The ambiguity has been fixed up to genus ¢ = 51 in [20] and this is by far the most
efficient computational method for predicting (via the conjectural mirror formula (1.5.1f)) the
higher genus Gromov-Witten invariants of the quintic. We speculate that the holomorphic
ambiguity f,(¢) has an intrinsic meaning in quasimap theory. It would be very interesting
to determine if this is indeed the case.

1.6. Final remarks. While the proof of Theorem we give here is quite involved, it turns
out to be also robust. For example, it extends easily to the case of complete intersections
in products of projective spaces. It also applies to proving a wall-crossing formula for the
virtual classes of quasimap moduli spaces (with same stability parameter ¢ = 0+ and target
a complete intersection X C [[P"™) when one usual marking is changed to an infinitesimally
weighted marking. To keep this paper from becoming excessively long, we defer the details
of these developments to future writings.

1.7. Acknowledgments. 1.C.-F. was partially supported by the NSF grants DMS-1305004
and DMS-1601771. B.K. is supported by the KIAS individual grant MG016403. In addition,
[.C-F. thanks KIAS for financial support, excellent working conditions, and an inspiring
research environment during visits when a large part of this project was completed. We
deeply thanks the anonymous referee for valuable suggestions to improve the readability of
the paper.

2. VIRTUAL CLASSES FOR MODULI OF QUASIMAPS

2.1. Overview. In this section we give a concrete description of the virtual class of a moduli
space of quasimaps to a complete intersection in projective space. This is accomplished by
embedding the moduli space into a smooth stack and intersecting the normal cone for this
embedding with the zero section of an appropriate vector bundle. This description will be
crucially used in the proof of Theorem given in section [3] The construction is uniform
for all discrete parameters g, k,d and e, but requires the existence of the moduli space of
stable curves, so it doesn’t apply directly to the unpointed elliptic case (g, k) = (1,0). An
appropriate modification, sufficient for completing the proof of Theorem in this case as
well, will be discussed in §3.7

2.2. Set-up and conventions. From now on we let G = C*. Let V be an n+ 1-dimensional
G-representation (n > 1), with weight vector (1,...,1). Let C. be an r-dimensional G-

representation with positive weight vector [= (L1, ..., 1) (I; > 0,Vj). Assume we are given
a G-equivariant map

p=®i1pi:V—>Ch
such that the closed subscheme W := »~1(0) is smooth away from 0 € V' and of dimension
dimW =n+1—r > 0. We linearize the G action on V by the character 6 of weight 1.
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The GIT quotient X := W/,G is a nonsingular complete intersection of type (ly,...,1.) in
P* =V /G, with p; its homogeneous equations.
Recall that the inclusion i : X C P(V) induces an embedding

i Z,k(Xv d) — Q;,k(P(V)a d)
for all € > 0+.
We also make the following conventions:
e M, denotes the Deligne-Mumford stack of k-pointed stable curves of genus g, while

9N, . denotes the Artin stack of prestable k-pointed curves of genus g.

° %unék denotes the moduli stack of principal G-bundles on k-pointed prestable
curves of genus ¢g. It is a smooth Artin stack of pure dimension and decomposes
as [[,ez %ungG’lfd, according to the degrees of the principal bundles. There are natu-
ral forgetful morphisms

£ e(P(V),d) — %ung’fd — My

e The universal families of curves on various moduli stacks are denoted by €, usually
with decorations recording the discrete data. For example,

/

€ €
Q:g,k,d Q:97k Q:g,k,d’

. |

ok (X, d) —= My ~— Qg (P(V ® CY), d).

We will abuse notation and denote always by 7 the projection from the universal
curve to the base.

We will represent quasimaps to a projective space P(V') as tuples

((Cop1y-- k), L)

with L a line bundle on C' and u a section of L&V (as in [6]). Quasimaps to X C P(V') will
then be such tuples for which the components w1, . .., ugm v of u (once a basis of V' is chosen)
satisfy the homogeneous equations of X. The base-points of the quasimap are the points
of C where all the u;’s vanish and the length ¢(z) at a point x € C' is the common order
of vanishing. Given € € Q-, recall that the definition of e-stability requires the following
conditions be satisfied:

(1) the base-points are away from nodes and markings;
(2) el(x) <1 for all z € C
(3) the line bundle we(py + -+ -+ + pr) ® LF is ample.
For ¢ = 0+ condition (2) is empty and is discarded, while condition (3) translates into the

absence of rational tails in C' and the strict positivity of deg L on rational bridges (rational
components of C' containing exactly two special points).
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Finally, recall that the theory of virtual classes was first developed by Li and Tian in [24],
and by Behrend and Fantechi in [I]. In this paper we use the formalism of [I].

2.3. Twisting line bundles. Fix (g,k) # (1,0).
For each ¢ > 0+ we construct a line bundle .Z. on the universal curve

ord — Q5 x(P(V),d)
as follows.
When g = 0, we take the trivial line bundle .Z, = O.
When g > 1 and g + k > 2, the moduli stack M, exists and we have the diagram
.
Coka Lo
|
™ Ez { ™
L

c fte ==
g,k(X7 d) - M!Lk

with ft., ft: the stabilisation morphisms and »3; the sections of 7 corresponding to the k
markings. The logarithmic relative dualising sheaf wjoy 1= wr(X1+... %) on €y, is m-ample
and we choose a positive integer p such that wl@;g is m-relatively very ample. We also choose
a very ample line bundle on the (projective!) coarse moduli of M, and denote by J# its
pull-back to the stack M, ;. Now set

M = Lﬁ;*<ﬂ*% R wih).

log
Lemma 2.1. The line bundles 4. satisfy the following properties:

(i) Ife > &', then M. = & M., where ¢ is the induced contraction morphism on universal
curves in the diagram

€ c e
Q k,d Q: k,d

l |

siB(V), d) —— Q5 (P(V), d)
(ii) For every geometric fiber C' of € ; ; — Q5 ,.(P(V),d) we have
Hl(C,f ® ‘%E‘C> = 07

where £ denotes the universal line bundle associated to the universal principal G-
bundle on the universal curve.

Proof. Part (i) is obvious from the definition, since C' and ¢ are compatible with the forgetful
stabilisation maps. For part (ii), notice that deg.Z is nonnegative on every component of
every geometric fiber C' and by stability it is strictly positive on every rational component
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with at most two special points. On the other hand, by construction .#. has vanishing H'!
on the stabilization of C' and is trivial on rational tails and rational bridges. The required
vanishing follows. 0

Choose once and for all global sections {7y, ..., 7y} giving a basis of ['(&, 4, 75 @ w%’),
and hence an embedding

h:€,, — P(CY).

Let s5 := ftE*Tj of . be the induced sections of .Z., determining the map h. := ho ft., with
M. = hiOpcny(1). When the parameter ¢ is understood we will drop it from the notation
and write simply .# and s; for the twisting line bundle and its sections. Furthermore, we
will use the same notations when considering the restriction of the set-up in this subsection
to the moduli spaces Q5 ; (X, d) via the embedding i.

Note that the degree of .# on the fibers of the universal curve is a constant positive integer
d_4 depending only on (g, k), but not on d, or on the dimension of P(V').

2.4. Perfect obstruction theory of Q¢ ,(X,d). Fix (g,k) # (1,0) and € > 0+. Consider
the line bundle .#" := .2 ® . on the universal curve &, , over Q¢ ,(X,d). There is a
commuting diagram with exact rows

(2.4.1) 0—>$®V%@§Vzl$’®vﬂ»,@—>o
@z‘d%l l@i,jslfld% Lf
@i,jsl-i ‘
0— @, L —> @y (L) —— 2 0.

The top row is obtained by puling-back the tautological sequence
(242) 0— OP(CN)(—l) — OIP’((CN) ® CN — Q — 0

via he : €, ; — P(CY) and tensoring with 2’ ® V. The bottom row comes from
similarly, by taking the direct sum of its pull-backs via g;, o h., tensored with (#”)% where
g, : P(CN) — P(CV) is the degree I; map [ty : -+~ : ty] +— [t -+ : t%]. In particular, &
and 2 are vector bundles.

The components dp; of the vertical homomorphism on the left are given as follows. Let
A C &, , be an open substack. After choosing coordinates (xo,...x,) on V, we may
write ; as a homogeneous polynomial of degree [; and a local section v of Z ® V on A as
v = (vg,...v,). Then we put

doi(v) = Vpilula) v =D 2 (ula)on,
m=0 m
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where u = (uq, . .., u,) is the universal section of £ ® V' on & ;.- Similarly, for fixed ¢ and j
and a local section v/ = (v}, ...v),) of '@V,

- ~ Jp; ~ o1, Opi
S dp () = 3 (4 ® syl a )0, = 3l 1’Aaf INES
m=0 m "

Viewing (2.4.1) as an exact sequence of two-term complexes, it follows that the two-
term vertical complex on the left in (2.4.1)) is quasi-isomorphic to the shifted mapping cone
A® := Cone(a)[—1] of the homomorphism « = (ag, a1). Denote

R = i (L)
Define a coherent sheaf & (in fact, a vector bundle) by the exact sequence
(2.4.3) 0= PO Xx— 2 —0,
where & @ # — 2 is given by (z,y) — f(x) — ai(y). Then A® is quasi-isomorphic to
(2.4.4) LV = &,
On the other hand, if

m=0

p:Prin(ZL) xgW — &, ,
denotes the universal W-fiber bundle with Prin(.£) the principal G-bundle associated to &
and we view u as the universal section of p, then the pull-back u*T, of the relative tangent
complex of p coincides with the two-term complex £ @ V — @7_, . Z" on the left of .
We conclude that «*T, is quasi-isomorphic to (2.4.4]) at amplitude [0, 1].

Part (i¢) of Lemma gives the vanishing R'm,.#" = 0. This in turn implies that
R'1,.%? = R'm.2 = 0. Since the derived push-forward of «*T, has amplitude in [0, 1] by
[10, Theorem 4.5.2], the same is true for the derived push-forward of the shifted mapping
cone A*. Hence the map 7, (2 & XZ) — 7.2 is surjective and then R'7,& = 0 from (2.4.3)).
It follows that

(2.4.5) ES =&
is a locally free sheaf on @ , (X, d) and we obtain a perfect complex
(2.4.6) oL @V — E,
whose dual represents the canonical perfect obstruction theory
(R*m,u*T,)"

for €5, « (X, d) relative to %un‘gk. We have proved the following result.
Proposition 2.2. The virtual fundamental class of Q5 (X, B) is

Q5.1 (X, D" = 0= ([C2])

where C. C E5 denotes the Behrend-Fantechi obstruction cone, see [1], associated to the
relative perfect obstruction theory given by (2.4.0)).
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2.5. An embedding of Q% ,(X,d) into a smooth stack. Set
d:=d+d,=d+deg(A|c).

Consider the moduli stack Q5 ,(P(V ® CY),d'), with universal curve €, ,. By a slight
abuse, denote also by .# the twisting line bundle on € ; (defined by the construction in
, as the pull-back of 7*7 ® wfig on €, by the stabilization morphism).

Definition 2.3. Define U C Q5 . (P(V @ CV),d') as the open substack consisting of the
e-stable quasimaps

((C,p1y oy pr), L' 0)
to P(V @ CN) such that H*(C, L") = 0.

Note that U5 is the complement of the support of the coherent sheaf R'm,. %’ so it is
indeed an open substack.

Lemma 2.4. The stack Uj is a separated DM-stack of finite type, smooth and of pure
dimension over %un‘ék, and hence over My 1. In particular, firing a locally-closed substack

of %unék parametrizing prestable curves with fized topological type, together with line bundles
of given degrees on the components, produces a corresponding locally-closed substack of U3
with the same codimension.

Proof. The separatedness and finite type properties follow from the corresponding ones for

cx(P(V ®CY),d). By definition, the quasimaps in Uj are unobstructed, which gives the
smoothness and the pure dimensionality. (In fact, Uj is also irreducible, since it is the
smooth locus in the “main component” of Q5 ,(P(V @ CV),d’). Irreducibility of the “main

component” follows from the connectedness of M, ,(P(V @ CV),d’), proven in [22].) O

Let m : &, » — Ug be the universal curve and let " be the universal line bundle of
m-relative degree d’ on € ; ,. By the very definition of Ug, the sheaf 7,2 is locally free.
Put

L=L" oM,

and consider the diagram of vector bundles on &,

(2.5.1) 0—= 2oV 1ol #aV —
l@j(@idw)
@i,jsé'i

00— L — @, (L) P 0.
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As before, the exact rows are obtained from the tautological exact sequence (2.4.2) on P(CV)
via pull-backs, tensoring with appropriate line bundles, and taking direct sums. The com-
ponents of the map between the middle terms (for fixed 7 and j) are given by

n
0p;
/ Iy 1 / / /
d@i(vg‘m . -an> = D ((%‘07 - 'an)’A)Ujma
m=0 m
where
!/ !/ / /! / / !/
(2.5.2) u = (ulo, e ’uln, UQo, oo ,uzn’ oo ’uNo, o e ,/U/Nn>
3 3 : N / € / ! / /
is the universal global section of ©;Z, 2" @ V on & ; , and (vig, ..., V1, Ungs - -+ Uny)

is a local section of @;V:li”' ® V over an open A C & ; ;.
Let us denote

Ay = @é‘v:lgl QV, Xy = @j‘\]zl(g/)lia v = B -
The tautological section 7¢ of 7,27} induces a natural section 0% of the vector bundle
P:i/ = Ty 4@5/
on Uj. On the other hand, we also have the section 0% of the vector bundle
(81’ = W*e%;
whose (i, j)-component is given by o;(u), ..., u},). Set
(2.5.3) 0° = (0%,0%) € HY(US, P5 @ RS).

Because the exactness of the rows of is preserved for any base change, it follows
immediately that the zero locus of the section o° is identified with the stack Qg ,(X,d).
Thus, we have an explicit embedding of szk(X ,d) in the smooth stack UjJ,, summarized in
the diagram

(2.5.4) = B R,
Y

| o
§4 (X d) = ()71 (0) 5 U
\ \Lsmooth
Bun%.
Over ;k(X ,d), the diagram restricts to the diagram . Denoting by .# the
ideal sheaf of the closed substack Qf (X, d) in Uy and setting
(2.5.5) F, =P, ® Ry =77 &Ky,

we obtain the commuting diagram of coherent sheaves
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V; Vv
(2.5.6) (Fg,lQ;k(X,d)) — (E3)Y (W*% g/IQ;k(Xd))

Ny |

2
I|I QUg,/%un%k ‘Q;k(X,d) g

where the existence of the surjection (E5)Y — .#/.#? follows from a standard deformation
theory calculation.

The square in the diagram ([2.5.6]) is precisely the map of complexes from the obstruction
theory (12.4.6)) to the two-term truncation of the relative cotangent complex LQ;,k (X.d)/Bunls*

The indicated equality (m,.27;)" = Q. jmungyt follows from the definition of Uj and the
d’

identification of (R*r,.7;)" with the relative obstruction theory over Bun%” for PV

CN), d'), see [6, §5.3]. Here .’ denotes, by abusing notation, also the universal line bundle
on the universal curve on Q¢ , (P(V @ CV), d').

Lemma 2.5. The relative normal cone Csz(X,d)/Uj, for the embedding in (2.5.4]) coincides
with the obstruction cone C. C Ej.

Proof. First, we have by definition

€

C.=Cy, X[BS/T v Fas

Ufl//%un*(é
where Cj, is the relative intrinsic normal cone of @5, (X, d) over Bun&' (see [1]) and
[E5/T, 5,/%%2;«] denotes the stack quotient. Since Cin = [Cq:  (x.0)v5 /T, 5//%uné,k], the

Lemma follows. O

Proposition 2.2] and Lemma [2.5] imply the following concrete description of the virtual
classes of moduli spaces of e-stable quasimaps to X.

Corollary 2.6.
Q5 (X, D" = 0= ([Cae , (x.01/05])-

Remark 2.7. Recall that in genus zero we take a trivial twisting line bundle ., so in this
case Uj = @ ,(P(V), d) and the construction reduces to the known realization of Q5 , (X, d)
as the zero locus of a section of the bundle @;m,(£)" on Qf (P(V),d). This bundle has
“correct” rank d ), l; 4 r, hence its refined top Chern class gives [QF (X, d)]"". However,
for g > 1 the rank of the bundle Fj = 7.2 ® m,. %y is larger than the virtual codimension
of Q5 (X, d) in Ug, so the virtual class is not the refined top Chern class.
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3. PROOF OF THEOREM

3.1. Overview. Adapting an idea of Bertram from [3], we consider a one-parameter degen-
eration of the diagram ([2.5.4]) which is obtained via a refinement of MacPherson’s Graph
Construction. The proof of Theorem will then follow by analyzing the central fiber limit
of the virtual cycle [Q/, (X, d)]"™ in this degeneration.

3.2. Boundary strata. Let gy be a wall, so that m := 1/g is a positive integer. Let
€4 > gp > €_ be stability parameters separated only by the single wall . Fix the numerical
data (g, k,d). We will denote by Q;k(X, d), UE etc. the moduli spaces corresponding to the
stability parameters €. The contraction morphisms with the abused notation

c:Q (X, d) — Q (X,d), c¢:Uy — Uy

contract precisely the rational tails of degree m.

The evaluation maps at the markings will be denoted by €v; for Q¢ . (P(V @ C),d') and
for its open substack Uj, while we reserve the notation ev; for the evaluation maps on

cx(P(V),d) and on Q5 (X, d).

For a finite index set A, with |A] = 1,2, ..., [£] we associate to each a € A the integer
d, = m and set

(3.2.1) do=dif :=d = d,=d—|Am>0.

a€A

Denote

Dy = UILA,% Xp(veCN)4 H Q&a(P(V ® CN)’ da),
acA

N . 77+ +
Dy = Uk+A,d’0 XP(VRCN)A H €0,a,da7
a€cA

where €7, . — Qg ,(P(V ® CV),d,) is the universal curve, the notations U,ir aa, 8re the
obvious ones, and the fiber products are made via (€v,)qeq on the left and ] ., €v, on
the right. The easiest way to describe the evaluation map ev,, : (’:(J{’ ad, = PV ® CV) is
by identifying QE{ ad, With the moduli stack Qaf au(P(V ® CY),d,) which parametrizes -
stable quasimaps of degree d, from rational curves with one marking a of weight 1 and one
additional marking of weight 0+, see [9] for more on these moduli stacks.

We will need an alternative description of these boundary strata which takes into account
the twisting line bundles .Z .
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Consider the diagram of universal curves

(322) Q:;:kyd/ I C*Q:_;k,d/ I Q:g_,k‘,d/ I P(CN)

b

Uy

with cartesian square and the maps hy given by the sections sq,...sy € F(C;k’d,, M), SO
that #Z. = (h+)*(Opcn)(1)). For each a € A we obtain maps

(3.2.3) he :Uia o P(C™)
as the compositions
_ — a BA h_
ha Uk—l—A,dE) €g,k+A,d6 Q:g k,d’ IED(CN)’
c _ ha
ha Uk+A,d6 = Uina ~-P(C")

Here ¥, is the section corresponding to the marking a € A, by is the map that trades each
marking in A for a base-point of length d,, and c4 is the contraction of rational tails of
degree d,. There is a natural identification

(3.2.4) Da = U, 4 g X (Bech) <pch)A [[@:.(V ©CY),d,) x B(CY)),
a€A

where the fiber product is now done using ((€va, h}))aca on the left and [, 4 (€vq X idpcny)
on the right. Similarly,

Da 2 U, g % vacmyxrens [ [(€5a, < P(CY)).
acA

We have the following commuting diagram of canonical morphisms:

(& —
(3.2.5) U; U,
VA Tb,q
Pry + cA _
Dy U k+A,dj T YkrAd)
PT4

[Toea(Q0.(P(V @ CY), da) x P(CY)),
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where b, denotes the morphism which trades the markings A for base points of length
d,. The two projections pr, and Pr, are those coming from the fiber product description
(3.2.4) of D4. The map v4 has degree |A|! and sends D4 onto the boundary stratum of U}
generically parametrizing (unobstructed) e-stable quasimaps to P(V @ C) whose domain
curves have exactly |A| unordered rational tails of degree d,. In particular, for A = {a} the
map vy, is an embedding of Dy, as a boundary divisor.

The contractions ¢, ¢4 are isomorphisms over the (nonempty) loci of quasimaps with
irreducible domain curves. By Lemma [2.4 the complements of these loci have positive
codimension and we conclude that ¢, c4 are birational morphisms and hence degree 1 maps.

We finally introduce one more piece of notation. Let p, denote the Cartier divisor on the
universal curve Qlik {ahd of the moduli spaces Ui (a}d] which is the image of the section

¥, corresponding to the marking a. Similarly, we have the Cartier divisor p!*® on the uni-

versal curve &5, x P(CY) of Qg ,(P(V ® CV),d,) x P(CV) defined by the image of the
section Y4 corresponding to the marking a. As usual, O(p,), respectively O(plal), will
stand for the associated line bundles; and O,,, respectively O will stand for the coher-
ent sheaves ¥q.X50, SigiaxDy5,,O on the universal curves. Then X;O(—p,), respectively
Yt O(—=p), is identified with the line bundle with first Chern class 1, on U,;Er Ay Te
spectively 9% on Qg ,(P(V ® CY), d,) x P(CY). Abusing notation, we will write O(1),) and

Oyt for these line bundles, and O(—1,), O(—i) for their duals.

3.3. MacPherson’s Graph Construction. For easy notation, for A = {a} in we
write Dg, Pr,, ¢4, ba, etc instead of Dy.y, Prisy cfa) bfay, etc. Let 7 : Q:;t,k,d’ — Uy be the
universal curve and denote by ¢ the contraction morphism from @;,ﬁ o 10 €y, which is an
isomorphism outside the divisor D,. Hence & o =oZ (—daf)a). Here the coefficient —d,,
is obtained by the consideration of deg.Z||c, = dq, degOc,(C,) = —1 for the contracted
rational tail C, on the fiber curve of m over a general closed point of D,. It follows that for
every [ > 1 there are homomorphisms

(Z) =& (L) (<l Do) — & (L)

of line bundles on Q; fd'
In particular, taking [ = 1 and using the top line of the diagram (2.5.1)) gives a map
DL — & (P,). Applying 7. we obtain homomorphisms
Op Py — P, ®r:R, — Ry,
b = ((I)p,(I)R) : Fj,_ — C*Fd_,
of vector bundles on U}, which are isomorphisms outside D,. We have used here the

canonical isomorphisms 7.6*%,, = c¢*m,.%, and m.c* ¥, = c*r, &, obtained by applying to
(3.2.2)) the base-change followed by the projection formula.
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Consider the Grassmann bundle over Uy,
Gr := Gr(Fj & ¢'Fy) := Grass(rq, Fjf ® ¢'Fy),

with ry = rank(F}}). Let n : Gr — U} be the projection and denote by ¢ the tautological
subbundle of rank rq in n*(E} @& *F).
The map 7 x id has a section

v:Uf x A" — Gr x A, wv(y, \) = (y, graph(A\(@),), \).

Define the closed substack
I :=Im(v) C Gr x P*

as the stack-theoretic closure of the image of v. As U} is nonsingular and irreducible, I is
also irreducible, of dimension equal to 1 + dim U7 .
In fact, if we consider the “component” Grassmann bundles

Grp := Gr(Py @® ¢*Py) := Grass(rp, P§ & ¢*Py),

Grg := Gr(R}, ® ¢*Ry) := Grass(rg, R}, ® ¢*Ry,),
with projections np, ng and tautological subbundles (p, (g, then there is a natural inclusion

Grp Xy Gryr C Gr

such that ¢ restricts to (p B (p and the inclusion of I' in Gr x P! factors through (Grp X+
(il

GI’R> x P
For A € P! = A' U {\ = oo} denote by T'y the fiber of the projection I' — P!. When

A € A, under the identifications vy : U} —s Ty, we have
vi¢ = m(FF ) B @ e Fy).

In particular, at A = 0 we have v3;¢ = Fj & {0}.

At A = oo the fiber breaks into components encoding the degeneracy of the map &,
as in [15, Example 18.1.6]. First of all, there is a distinguished component I's 45t Which
has multiplicity one and projects birationally to U, while (|r_ .. = {0} & ¢*F,. All
other components of I'y, come with some multiplicities and project into D, under . Their
description is our next task. The analysis is similar to the one in the proof of [3, Lemma
4.4], where a related genus zero case is treated. In our situation there are complications due
to the twisting by .#, but also slight simplifications, due to the fact that ¢ only contracts
rational tails of fixed degree d,, which therefore do not interfere with each other.
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3.3.1. Description of I's. For each j, > 1 consider the P!-bundle over D,
P;, =P (pr:;(’)(jal/)éail) &) PrZO(—jawa))

Pj, = HP'a|DA

a€A

and their fiber product

over D 4.

Theorem 3.1. Let ja be the multi-index (j,)aca with each j, in the range 1 < j, <

max{dy, dol; |1 = 1,...,r} and let mj, = [[,caJa. For each ja, there exists a map o, :
P;, = Gr, described below, satisfying that
(331) [Foo] = oodzst + Z mjA ,]A = oodzst + Z |A|' ]A]

(Ai.]A) 7]14

in the Chow group A.(Gr)g. Here I'sj, is the image stack of o,. Furthermore ' ;,
projects to D4 under the projection map n: Gr — U

Defining «;, amounts to finding a subbundle &4 of 7314 (Ff & ¢*F,,) with its rank equal
to the rank of F;. Denote by mp : P;, — Dy the projection map. Then the vector
bundle &4 will be constructed as an extension of Hae4Op,, (—1) @ mpF/* by 75 (pr AF;;{*;:I ®

Pric AF 7471 for some vector bundles
Fla Ft:i?z:l Fy Ja=t on D, H Qi (P(V®CY),d,) x P(CY), Uiaa, respectively.
acA

The bundles pr*Ft:j‘zl (resp. PriciF, ’j“) for j, will form a decreasing (resp. increasing)
filtration of the kernel sheaf of v;® (resp. of the sheaf vic*F,).

3.3.2. Description of the vector bundle Ft;’l](jfl on Qf,(P(V ® CY),d,) x P(CY). Consider
first the case A = {a} of the boundary divisor D,. On the universal curve

T € a0 X P(CY) = Q5 ,(P(V © CY),d,) x P(CY),
put Z, = 2 W Opcny(—1). We have the diagram

0—= 2, 0V 2N 2@V — P —0

l@g (@zdSDz)
@i,j L

0— 8, L — % @, (L) —— 2,

tail,dq O’

whose rows are obtained from the exact sequence

0— OP((CN)(—l) — @;VZIOP((CN) - Q=0
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via pull-backs, tensoring with appropriate line bundles, and taking direct sums, as explained
in §3. Now define the vector bundles

+ o + + N (2N o + + . pt +
I tail,dg “ TP tail,dg %)miz,da = Diy ($+) ) Rtm‘l,da = W*%)taiz,dav sz‘l,da = Ptm’l,da ® Rtail,da'

For integers j, = 1,...,max{d,,d,l; |i = 1,...,r}, we have the subbundles

(332) Prail, = 7P a, (—3u?™))
(3:33) R, = (P, (—Jali™))

of vector bundles Pt:ihda, R;;il’da respectively. They are vector bundles on Qafa(IP’(V ®
CN),d,) x P(CY). We also put

+0 . p+ +0 . p+ +0 . o+
P =P R = Rmﬂ’da, F =F

tail,dg * tail,dg > tail,dg tail,dg * tail,dg*

Note that P;Z?lj‘jja = 0if j, > d,, and that (.Z])" does not contribute to R;;%“da if j, > lid,.

Hence the quotients of the decreasing filtrations given by (13.3.2) and ([3.3.3)) are

+,Ja+1 +,Ja Ja . tail
0= P — Peany, = Praa ® O(ja™") — 0,

+ja+1 +ja Ja . tail
0 — Ri'a, — Rigila, = Rian ® O(athg") — 0,

where we put for each 0 < j, < max{d,,lid,|i=1,....,r}

pia_._ (evq X idpcv))* ((Opecy)(1) @ V)R Q) , if j, < d,
tail Y
0, if jo >d,
and
Rini = @;:11{33@1»

ja L (eva X id]p((cN))* (O]P’(V@CN)(ZZ') X @leOP(Cw)) y if ja S lida
i,tail * 0, if ja > lida

Alternatively, when they are not set to zero,

ja _ + X ja
Pioit = T (P tail,dy @ Opga”), R

tail — T* (’%:z_zil,da ® Opfﬁ”)-
Taking the direct sums
+7 ‘a Pp— +7 ‘ﬂ‘ +7 ‘ﬂ‘ 'a Pp— ‘a ‘a
F"taiida T ‘Ptaig,da D Rtaijl,da7 Fiail T Pgail D Rgail
gives a filtration of the vector bundle Filia, on Qi ,(P(VOCY),d,) x P(CY), with quotients
Fo. ® O(ja0th). The pull-back v} F; can be written as the extension

(3.3.4) 0 ——= i Figig, — vaFy —==PriFj —=0.
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3.3.3. Description of the vector bundle ch)’j“_l on Uy - Let FbiA a denote the vector
bundles on U,i Ad defined as in (2.5.5)), but using the twisting line bundles .#Z* induced

from &€, (and hence from M, ) via pull-back by
bA : C;k+A,d6 — Q:;,k7d/'
The homomorphism & factors when pulled-back to D4 as

generic. isom

Prich F,-

x [+ Tes * + * ok 1ok — Lk k[
vaky HPTAFbA,dg bA,d6(—>PrACAbAFd’ = Vi Fy

Here the first map res is given by the restriction of sections to the non-contracted parts of
the universal curve. The middle arrow is the pull-back by Pr4 of the map ® on U ,j A and

is therefore an isomorphism generically on D4. The third map is induced from the canon-
ical injections on the universal curve 2’ o = " @ (20 dapa) = b3.Z" 4 and (L7 dé)li —

("‘Zi,dé)li(za lidapa> = B*A(Zi’d/yi.

Consider the codomain Pr)cibi F, of ®|p, and the square diagram of universal curves

Q:;k—&-{a},d{) g,k,d’
I;—i-{a},d() ba k:d’ .
In the bundle 07 F, on U\ , we have the increasing filtrations
)
770 771 77da S -
Pd6 CP{) C'.‘deg _bZPd/7
—,0 -1 —max;{dal;} 7% p—
Rd/o CRd6 C..‘CRdG _baRd’
induced via the subbundles

Pyt = (P (apa) ) OV0aPis Ga = 0,1, do,

R;éj“ =T, (‘%‘;6 (japa)> NO,R,, jo=0,1,... max;{l;d,}.

Here we use the natural injections Bz?)(japa) — '@J()(dapa) = EZ@J, for j, < d, and
(@;dg (JaPa) — %;%(lidapa) > by g for jo < lid,. The quotients are

0= Py = Pyt = P79 @ O(—jatha) — 0,

0= R, ' = R,7 = R @ O(—jatha) = 0.
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where we put for each 0 < j, < max{d,, lid,|i=1,....,r}

_ T.(P, ®0,,), ifj, <d
0. p e .= d Pa /s a a
(8:3.5) { ’ 0, ifj,>d, ’
and ' ‘
R*:Ja = EB;:lR‘;’ja?
e (@ (L)@ 0O,,), if ju <lid,
(3.3.6) R, ._{ 0 i) Ld
Setting

—ida . —sJa —.Ja

Fdéa =By © Ry

gives an increasing filtration of the vector bundle by F;, on U, (a}.d! with quotients F~7e ®
. : . b

O(—Jatbs) and FI¢ := P—de @ R~ e,

3.3.4. Description of aj, : P;, — Gr. For each j, > 1 recall the P'-bundle over D,

Pj, := P (pr;0at™) © ProO(=jatba))
with projection mp : P;, — D,. Consider the tautological sequence
0 — Op,, (1) — mp (priO(jus™) ® PriO(—jaths)) — Op,. (1) — 0.

Now define the extension ff;‘l as the vector bundle uniquely fitting in the commuting
diagram with exact columns

Opja <_1) ® ﬂ-])Ik"PjaC—> Wﬁk” ((przo(ja¢2ail) S5 PTZO(—ja¢a)) & Pja)

533“( p (prZPJ“j“ D Pr*c*P_’j“>

tail,d, a~-a d6

* * ptijatl * ok D—Ja—1 * * D+iJatl * % D—sJa—1
Tp <praP S2) PraCaP% = Tp praPtail,da D PracaP%

tail,dg

0 0
where the horizontal arrows are injective as maps of vector bundles and

Ja . — *pla o~ * *p—iJa
P/e := pr P,o., = Pric P,
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Similarly, we define £}y as an extension, via

0 0

Op,, (—1) ® mpRI* ————— 75 ((pr; O (juti"™) & PryO(—jatha)) ® B*)

Jac * x D+Ja * % P Ja
1§ Tp (praRmil,da 2 PracaRd6 >

* * pHJat1 * _x p—Ja—1 * x p+.Ja+1 * _x p—Ja—1
N —_— N
p <praRmzz,da S5 PracaRdé = Tp PraRmu,da @ PraCaRdé

| |

0 0

where
R/* := priR])%, = PriciR™7e.
Since
g =& o &y

is canonically a subbundle of mpvi(F} @ ¢*F,; ) whose rank is equal to the rank of Fjf, it
gives rise to a morphism

aj, : Pj, — Gr(Fy & c'Fy)
which is birational onto its image and such that &« = ; ¢ (respecting the decompositions
into P and R components). We will show in §3.3.6| that the image is a component of the
limit fiber I's which we denote by ' j, and which has multiplicity j, in the fiber.

3.3.5. Description of a;, : P;j, — Gr and the vector bundle F/« on D,. For general A the
above analysis extends immediately, as the various rational tails may be treated indepen-
dently. Specifically, this means that we now consider a collection j4 := {j.|a € A} of positive
integers and define

Pl = Bueam. (P 0, (~Ua + Dp™)
R;ﬁf‘djl = Haeam. (%;;il’da(_(ja + 1)pzaiz))
on [[,ea(Qa(P(V — CV), dy) x P(CY)) and

Py = m( P (GG — Dpa)) N0 PY

a€A
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Ry = m Ay (DG — 1)pa)) N03 Ry

acA
on U,;+A7d6. Further, we put
Ft‘th-‘rl — P+7jA+1 ® R+7jA+1 F—/JA—l = P—/JA—l D R—/JA—l'
ail,dg, tail,d, tail,dg dg dy dy
Setting

]P)jA = H]P)'a|DA>

a€A

where the product is fiber product over Dy, we have the projection mp : P;, — D4 and
extensions

(33.7) 0= mp(pri Pl @ PriciPp ) = &5 = Baea(Os,, (—1) @ m5P) — 0,

(33.8) 0= mp(pri Rk @ PrichR ™) = & = Baca(Op,, (—1) ® mR*) — 0,

Ja

(33.9) 0= mp(priFia @ PrichF, /") = &4 = Baea(Op,, (—1) @ 73F*) — 0,

Ja
with
(3.3.10) Ea = er @ g, Flo .= Ple @RI

As before, this gives a morphism «;, : P;, — Gr such that &4 = aj,¢. We will show
in §3.3.6 that the image of «;,, denoted I'y ;,, is a component of the limit fiber, with

multiplicity m;, := [[,c4 Ja-

3.3.6. Proof of Theorem|[3.1. The description of the components I'y ;, of Iy, supported over
D 4, with their multiplicities, as well as the fact that they exhaust the special fiber, all follow
from writing explicitly the map @ in local coordinates in an analytic (or étale) neighborhood
of a general point p of the boundary stratum D,. An explicit proof is as follows.

Choose an étale open neighborhood U of U} such that p is a closed point in the scheme
U. Let @p be the completion of Oy, and let C' be the fiber curve of 7 over p. The curve C
has exactly |A|]-many nodal points ¢q. Let Ci,;, be the rational tail component of C' which
meets ¢ and let C,qin, be the remained component of C' so that C' = UyClgir g U Crrgin. We
may express the completion @q at the node as

@q = @pqua Yall/ (Tqyq — t4)

with local defining equations z, € @q, ty € @p of the divisors D,, D, respectively.
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Consider a commuting diagram of natural @p—module homomorphisms

(7 (P4 @ B, % y))p ® Oy ©, (75 @@, %), © 0,

<I>p®idl::¢’,; i@qwq

A

(7. (23(daDa) & B, %4 (1idaDa) ) ) © Op—— &, (24 (duDa) & B, 2y (liduDa)) © O,

q

where 2} .= 2 @V ®Q, Zf, = ®L,(L])" as in ([2.5.1)), the horizontal maps ¢; are the
restriction maps, and ¥, are the natural maps.

Since the horizontal restrlctlon maps ¢; are injections, we will use ®,¥, to express (bﬁ
explicitly. For this, let us choose a O,-basis {ef J}(N DAmV-of gt . ® O, and a O
basis {e”}Z =1 of &, @ O,. With respect to this basis, we have also a basis {ef; ®

:E_da}(N 1)dimV f@; ® (9 (doD,) = yi;7q(daDa) ® O, and a basis {el , @a b da N of

q j=1 i=1,j
D%, ® O,(l;d,Dy) = @; Ay (lidg D,) ® O,. With respect to these bases, the right vertical

map ‘I/ is the component-wise multiplication by xq , flldl, vy @ l dr

Let k( ) be the residue field of O, and let €f ;, €] ; be the restrlctlons in (2, 6@, % 4),®
@q ® k(p) of ef;, €], respectively. Choose also a k(p)-basis Bynain of H(Crngin, (25, @
D Z; 1) Crain (— -4 1)) by taking the union of some bases of H*(Ciains P |Cpain (— 224 1))
H(Crnains Z' 4 |Cppain (= 224 1)), Vi. Consider the following subset
(3.3.11)

— — 0 = N—-1)dimV - - o = r,N
{D45q}seBmain U U{eg,ja yqeg,jv . ,y;l 68,J}§-:1 ) U U{B?,Jw yqeg,jv . ayéd q i=1,j=1
q q

of ©(Py © D, %, y)g @ O, @ k(p). Here s, denotes the stalk of s at ¢ € Cpnain. Note that
(3.3.11)) is a k(p)-basis of the subspace H(C, (2, ® @, Z;'y)|c). Extend this k(p)-basis
(3.3.11) to a basis of (m.(Py © @, Z;1))y @ 0, as a O,-module,

(3.3.12)

z q q do ¢ V(N=1)dimV q q lid r,N
{D43¢}seBmain U U{eo,j7yq60,j7 "'7yqa€0,j}j:1 U {ei,j7yqez‘,j7‘ S Yq € rim1 =1
q q

where 5 € T.(Z; © @, Z;'y) @ O, is an extension of s.
Let lo = 1 and let I(s) = ly for s € Byain if s comes from 25 |c, .. (— 2200, l(s)=1iif s
comes from #; ¢, (— 22, @) Choose also a basis of (7( P} (d Do) DD, %1ty (lida Da)))p®

main (
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O, which is expressed via ¢ as

(3313) {@ng}selgmain
_ — — — N-1)dimV
U Uq{xga(eg,j ® Lq da) 953“ 1(683' ® Lq da)? s eq QT d“)}§—1 :
) _ I N
U Uq{l{;da(eg,j ® J”q da )7 f]da 1( g,j ® Iq lzda)7 ) 1] ® CL’ . da)};zl,jzl'

The map A®; sends

DySq — BgAS,, and yg el /\tl€ ld“ k(e;{j ® x;lid‘l), i=0,1,....mk=0,1,...,l;d,;Vj
so that with respect to the @p—bases and , A®; is a diagonal matrix with
entries \’s, )\tk k=0,1,..,max;— {l:d.}.

Now accordlng to the fate of )\tk k=20,1,..., as A = oo and t, — 0 Vg, the cycle class
[I'w] can be easily identified yleldmg the decomposition - for each A. Namely, for the
node ¢ corresponding to a, if )\tja goes to a nonzero number w, € C for some j,, then the
limit of graph(A®) in the region is the point Point(j,, w,).eca in Gr|, corresponding to the
direct sum of the following three subspaces (i), (i), (i)

(4) FtZ{%:rl’prA(p) = Daca Di;j <yqa+1 3]7 s quidaég,j> - FJ‘M
(i1) FdOJA ‘PTAOCA(p) =H° (Crnain Py | Conin (— Za daq))®

Dix1 H(Crnains Zi | Coain (— 220 1ila) ) ®

Baca S (2 (el © 2 10), o2y OE @ 0 ) C ¢l
(111) Baca Dijyleer; @wezld (el x_l da) C prAFtle‘?ia b @ PrjchF_,O’“ lp-

It is clear that there is a natural correspondence between the irreducible components of I',
and Point(jq, 1)aca Vja. Denote by ' ;, the component corresponding to Point(j,, 1)aca-
The intersection multiplicity of I'o N {\ = oo} at ' j, is m;, = [][,c 4 Ja according to the
equations tg“ =0, Va € A in the open affine coordinate ring of Gr around Point(ja, 1)aca-

3.3.7. Remark. Denoting by e the Euler class, [15, Example 18.1.6] gives

(3.3.14) e(F)N[US —e(cF)n[U] = ) TZ“T (e, )+ (e(€) N [Foo,ja])-
(Aja)

For g = 0, when no twisting occurs, U3 reduces to Qik(P(V), d), while F¥ = 7, (@_,.ZL").
After applying c,, the left-hand side of (3.3.14]) becomes precisely

et [Qg (X, d)]™ — [ Qg i (X, d)]*™
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On the other hand, it is not too difficult to showf]that the right-hand side can be written in
the form

Z ﬁ(b/l)*(CA)*i* <H eV’ i, (2) 2= —y, N [QSTHA(X, dOA)]Vir) 7

acA
for some polynomial Chow cohomology class pg,(2) € A*(X)g[z]. Combined with the iden-
tification of p4, in below, this proves for X the weaker equality (1.2.1) in Conjecture

[I.T]in genus zero.

3.4. A refinement of the graph construction. The equality (3.3.14) may be viewed as a
degeneration formula for the top Chern class of the vector bundle Fj; on U, di,. As a main step
in our proof of Theorem [I.6] we establish in this subsection a refined degeneration formula

which relates the Gysin pull-backs O!EZ([CQZ L(x.4)/vs,]) of the normal cones from Corollary
2.6 ’

3.4.1. Deformation of the embedding (2.5.4). The map & fits in the following commuting
diagram

[ _ _
Ff —2- ¢ F, —= F,

AT
Uy Uj —= U
with 0% the canonical sections (2.5.3). Recall that the zero locus of o*, call it Y*, is

identified with Q;k(X, d). Denote by Z = Z, 1.4 the zero locus of ¢*(¢7) = ® o o™; in other
words, Z = ¢ '(Q, (X, d)). Observe that there is a closed embedding Y+ < Z.

Remark 3.2. If we restrict ¢ further to Yt C Z, the resulting map coincides with the
contraction ¢ : Y™ — Y~ induced from the natural embedding X C P(V') and the contraction
¢:Q (P(V),d) = Q. (P(V),d). This follows from the fact that the twisting line bundle

A is trivial on the rational tails.

It turns out that it is better to consider the deformation of Z induced by the family
' — P'. To this end, consider the universal quotient bundle T on Gr, so that

0=C—=n(FfecdF,)—="T—=0.

is exact. As before, we also consider the universal quotient bundles Tp on Grp and YTy on
Grgi. We will use the same notations for the induced vector bundles on I'.
The section n*(o, c*o™) of n*(Fj @ ¢*F; ) induces a section

g€ HT,T)
of T on I', via composition with the projection.

IThe argument is a considerably simplified version of the proof of Theorem in below.
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Let
’:=5"'0)crl cGrxP.

be the zero locus of 7.

As before, let T'Y denote the fiber of T over A € P!. For A # 1, 0o, under the isomorphism
vy : Uj x {\} — Ty, the section & corresponds to the section (1 — X)c*o~ of F,. Hence, for
A ¢ {1,00}, we get that ' is isomorphic to Z.

The fiber over 1 € A! is the entire U, so from now on we will consider the families I' and
I'% only over P\ {1} (but will keep the same notation).

The fiber over co € P! decomposes in the Chow group as

[FO ] [Foo dzst] + Z Mjs [FO JA]
(Aja)

with T2, dist *= Doodist XT % and TY, a = Tooja Xr o,
Note that on T gisr = U the quotient bundle Y is equal to n*Fjy @ {0} and 7 = (¢, 0),

hence I'Y, ., is identified with Q/ (X, d), embedded as in (2.5.4).

3.4.2. Deformation of the obstruction theory. The normal cone Crop is a subcone of T|ro.
We claim that, possibly after a birational modification of the fiber I', it actually sits inside
a subbundle Y of the “correct” rank.

Recall the tw1st1ng line bundle .# on the universal curve ¢ gk Of Uz - introduced in the

beginning of §2.5( and recall s; the sections ftiTj of . A where fti : Q:;k s — Cgi is the

stabilization map; see § . for the definition of 7;. Here €, is the universal curve over M gk
On the universal curve € gk OVer U, there is a vector bundle monomorphism

Py Ph =L oMoV o)

big

induced from the homomorphism

®; LV = P,

N
Cigr (Vi) P Dgi>a (85105, — S0 )-
Similarly there are vector bundle monomorphisms

— L oMoV ecld),
= (L e M) @C>),

P, — P,

95— 95

bzg
,big

We replace the stack I" by the closed substack I'™* of the product Gr"®" x P! defined via
the MacPherson graph construction, where Gr"*" is now the fibered product over U} of the



32 IONUT CIOCAN-FONTANINE AND BUMSIG KIM

various Grassmann bundles:
(3.4.1) Gr"" =Gr(m. 2}, ® 1. P,) xy+ Gr(m.Z) & 1. %)
d/
X+ Gr(@m. 2L oV @ ®;cmL @V) xy+ Gr(m.2, & 1. 2,)
d’ d’

XU;S Gr<7r*'@c?big ® C*W*‘@J,big> XU;; Gr(ﬂ-*"@;,big @ C*Tr*"@;,big)‘
The projection onto the first two factors induces a birational morphism pis : I — T,
which is an isomorphism outside oo € P!.

Denote by Yo 219v, Y 2,,,, Y, Y 2,,,, --- the universal quotient bundles on I'"* C Gr™™ x

P! obtained via pull-back from the third, the fifth, the second, the sixth, ... factor of Gr"™*"

respectively. Similarly, denote by (g, #/gv, ..., the universal subbundles on I'"**”. Recall that
T and Y4 come with the sections Gp and G, the components of the section & of

T="T0®dTs

new

(see §3.4.1)). We set
Fnew,() — 5_1(0).

As in the case when we had only the fibered product of the first two relative Grassman-

nians, for each j4 there is a natural morphism
gt Py, — Gr' x {oo},

which has generic degree |A|! to the image and such that the relation still holds for the
new special fiber (in other words, the birational modification pyp : I'"* — I' does not intro-
duce additional components over oo € P'). These morphisms are obtained by constructing
extensions analogous to (3.3.7) and (3.3.§) for the remaining four factors in (3.4.1)). We have
aj, = prz 0 &}y’ Our proof of Theorem [1.6| will eventually reduce to intersection-theoretic
computations performed after transfering everything to the IP;,’s. Hence it is harmless to
drop from now on the superscript “new” from the notations for Gr, I, T" etc.

We are now ready to construct the required vector bundle Y. Define two homomorphisms

. + + /
doxpig: Pyvig = Larpigr Vinga) Fr @i Bjisjo Voi(sjug,) - vy js-

where @;u’; is the universal sections of @;7m..ZL ® V as in (2.5.2).
On I, there is a natural diagram

(342) T@jgl(@‘/ _— Tf@big
i iﬂ'*dﬂobig
T T 9,

which is not necessarily commutative. Here m.dyyp,, is the homomorphism induced from
dy+ pig via push-forward. The remaining three arrows are all constructed by the same
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procedure. For example, the top horizontal homomorphism is obtained as follows. The
composition of natural maps

Co,200v = N (M Py & T PY) = ' (TP i @ TPy vig) = Ly,

,big
vanishes on I" \ T'y, and hence vanishes on the closure T'.
Let 7 denote the composition of natural maps I' = Gr x (P'\ {1}) — U}.

Lemma 3.3. The following hold.
(1) The zero locus of the P-component Gp of G is contained in the zero locus of i op
(see (2.5.3) for the definition of o5 ).
(2) (05)710) = Qg (P(V),d) = (c"op)~1(0)
(3) The diagram (3.4.2) becomes commutative when it is restricted to 75" (0).
Proof. (1) Consider the homomorphism of locally free sheaves
(n*Pj () U*C*P7) Eﬂ O]Pl\{]_} — U*C*PC;, BE’ (O]}Dl(l))’ﬂml\{l}’ (’UJF,Ui) — )\O(I)(U+) — )\11)7,
where \g, A\; denote homogeneous coordinates of P!. Since (|r is contained in the kernel of
the above homomorphism, there is a map YTp — n*c*P;, B (Op1(1))|p1\{13, under which the
section Tp goes to (A\g — A1)c*op. Therefore the zero locus of p is contained in the zero
locus of %o p.
(2) The first equality is clear. The second equality is the claim

S(PV),d) = cH(Q; ,(P(V),d)).

The claim is obvious since for a T-family of e, -stable quasimaps to P(V ® C¥), it is a T-
family of e, -stable quasimaps to P(V) if and only if the family restricted to every geometric
point of the test scheme T is a e, -stable quasimaps to P(V).

(3) The diagram ({3.4.2)) is by definition induced, by the pullback 7*, from the diagram of
homomorphisms of locally free sheaves on U}

(3.4.3) T ®; LRV ® (9,2 V) — 1Py & TPy,
\L \Lﬂ*d@+7b¢g@c*7r*d¢—,big
ﬂ-*‘@;; @ C*ﬂ'*;@; W*Qé:g EB C*W*Qb;-g.

The diagram (3.4.3) is commutative on the zero locus Q. (P(V),d) of the section o7 since

the difference of the clockwise path and the counterclockwise path in each +-component
li li
i (Vei(sjuf,) - (55,05, — 85,05,) — (s Vi(ul,) - v, — 5 Vei(u),) - v5))
= @ (=Veilspul,) - sjvj + Voi(sju),) - s505)
vanishes for the universal section (u}); of ©;ZL ® V' with the vanishing condition s;,u’,

sj,u = 0. Hence it is enough to show that the zero locus of p contained in I'x 1+ (055)71(0).
d/

This follows from (1) and (2) above. O
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In particular, the diagram (3.4.2) commutes when restricted to I'V. Since the horizontal
maps factor through Y5 and T o, it follows that on I'Y we have the commuting diagram

T®j$’®v|ro — T »|ro
i ifr

oy
Y %|ro T 2|ro,

where fy = T.dppig|y 2o The map of vector bundles

Y: (T =" ®Tg)|ro = Tolro, v(z,y)= fr(z) —air(y)
is surjective since it is so at each closed point of T (this needs to be checked at points on
the special fiber I'y, where it follows by pulling-back to the appropriate P;, and using the
description of the three universal quotient bundles as extensions, as in e.g. (3.5.11]) below).
Define the required vector bundle on I" to be

1O := ker .
Lemma 3.4. The normal cone Cro;r is a subcone of 0.

Proof. Let #ro denote the defining ideal sheaf of the closed substack I'° of I'. We will check
that the induced homomorphism (Y o)|fo — Fro/F3 is identically zero. For this consider
the commuting diagram

(Ya,,)" T Jro

| | |

m (W*Q(—it,big & C*ﬂ-*"@;’,big)v — 7" (Fy @ ¢"Fy)" — Or,

where 7} denotes the composition I' — Gr x (P'\ {1}) — Uj. By the above commuting
diagram and the surjection (Y g,, )|y — (Y 2)[}o, it is enough to show that the composition
of the bottom arrows lands in .#%. On the other hand 77*Im(c}") C #ro by Lemmal[3.3] (1).
Here we view the dual 0" of o} as the cosection 05" : (P})" — Op+. Hence by Lemma
d/
(2) it is enough to check that the composition comp of (.25 big) = (F3)Y — Oy lands
) d/
in (Imo3")2. This is easy to check as follows. Recalling the definition of 0%, o5 in (2.5.3),
note that, for 6 € (W*ijig)v

!/

comp(d) = (0, @i Bjy>j0 Vepilsuu,) - (sj,u5, — spu5,) — (0ils,uf,) — @i(sjpu),)))
€ (Imop")2
Here the last line is due to the Taylor expansion of the last term ¢;(s;,u ) in the first line:
(pi(szU‘/jl) = @Z(Sjlugz) + v(lpl(sﬂlu;g) ’ (Sj2u;1 - Sj1U;2)

modulo the square of the ideal Imalfv generated by sj,uf; — sj,uj,. O
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By construction, on the fiber T') := I'* x I’y we have
T0|F8 = C*Ed_ ,
while on the distinguished component T'Y 4., := I'’ Xp I'sg gist OVer A = oo,

TO‘FO

oo,dist

= E;F,
with EF as defined in ([2.4.5).

3.4.3. Refined degeneration formula. Consider the diagram, whose squares are all cartesian,

A Gry~——T% Crojry —— A
| | b
P {1} =— Grz x (P \ {1}) <-— 1" Cror —= P\ {1}

ro—° ’}0

where Gry denotes the relative Grassmannian Gr restricted to Z, with projection 7|z :
GI’Z — 4.

Lemma 3.5. In A.(Z)q we have the equality

BAY (22000 (Cryye,) — (o) lio)e Oy, (Ctal)) =
D M (1]2)e(t00)s (0o, ([C5])),
(A,ja) A

where Cgs 18 the normal cone Cpgo}dist/pwydist and C;, 1is the normal cone CFgo,jA/Foo,jA'

Proof. By Theorem 6.2.(a) and Theorem 6.4 in [15] (as extended to DM-stacks in [29]), we
have

(3.4.5) AN'00'[Cror] = (62):A'0Cro/r] = (62):0'X'[Cror].
When A = 0,

O!)‘![CFO/F] = O!T0|F8([CF8/F0])'
By Lemma below, when \ = 0o,

O!A![CFO/F] = O!TO\FO ([Cdist]) + Z mjA0!Y0|FO _ ([CjAD'
(Aja) A

0o,dist .
Aja
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The first term in (3.4.5)) is independent of A. Hence
(10)-Ooy (ICrgpr) =(ioe Oy, (Cots))

oco,dist
+ > My (te)e(Opo . ([C1))
(Asz) oA

in A.(Grz)g. Pushing forward to Z we get (3.4.4)). O

To state Lemma [3.6| used in the above proof, we set up some notation first. Recall from
[23, p. 489] that for a local embedding X — ) of algebraic stacks of finite type over the
base field, one has the normal cone C x/y to X in Y and also the deformation of normal
cone, denoted M$(Y). This is a stack with a morphism to P! such that the general fiber is
isomorphic to Y and the special fiber at t = 0 € P! is isomorphic to Cy,y. If X is a closed
substack in ), the deformation can be obtained as in [15, Chapter 5], by constructing

Mx(Y) = BlXx{o}y x P!
and setting
M3(Y) i= Mx(D)\ Blax oy x {0}.

Now form the commuting diagram, whose squares are all cartesian

Crgo/rooc—j> Cro/r|a=oc Crop ——1t=0

Lo T

My (Poo) o Mo (T) [rmoo —— Mpo(T) P!

closed l l

A= 00 P\ {1}.

Lemma 3.6. The equalities
00'[Crosr] = 4u[Cro o] = [Caist] + > m;,[Cy]
A?jA

hold in A,(Cro/r|rx=)q-

Proof. The equality co'[Cror] = j.[Cro_r.] is a consequence of the definition of Gysin
maps, their commutativity, and their compatibility with proper push-forward, as follows:

00'[Cro,r] = 00'vp[Mfo(I')] = 0400 [Mo(T)] = vh[Mypo(T)| o]
=0)[Toe X (P = {t = 0})] = vis[Mfo (Too)] = juvp[Mpy (Fo)]
=J[Crojr..]-

0
feS)



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 37

Here some explanation is in order. For the third equality in the above chain, note that
M2, (T') is irreducible and dominant over P'\ {1}. The closure is taken in M2 (I')|e. The

170
fifth equality follows by the very definition of proper push-forward.

The decomposition
j*[Cpgo/roo] = [Cdist] + Z mjA[CjA]

AvjA
is a consequence of the decomposition ['e] = [Lec dist] + -4 5, Mja[l'oja] i1 Ax(T'oo)g (Theo-
rem 3.1]), via the specialization to the normal cone homomorphism A,(I')g — A«(Cro_r.. )o-

We finish this subsection by recording a basic intersection-theoretic Lemma which will be
used several times in the sequel.

Lemma 3.7. Let f : Y — Y be a proper morphism between finite type Deligne-Mumford
stacks of the same pure dimension. Leti: X — ) be a closed embedding and form the fiber
square

X/ y/
Lk
X —=.
Let f : Cxryyr — Cuxyy be the induced map between normal cones. If f.[V'] = m[Y)] for a

nonnegative rational number m, then f, [Cxijyr] = m[Cxy].

Proof. When Y, X', and )’ are schemes, this is [29, Lemma 3.15]. For the convenience of the
reader, we give a short argument. Consider the deformations to the normal cone

MxyY = BlXx{o}y X Pl, MY = BZX/X{O}y/ x P!

The map ¢ : Mx)Y' — Mx)Y induced by f is proper and ¢.[Mxy)'] = m[Mx)]. Let
vg : {0} = P! be the inclusion. Denoting by 1 the trivial rank one vector bundle, we have

(3.4.6)  m[P(Cx/y ®1)] + m[BlxY] = mug[Mx Y] = vy [Mar V'] = (¢i=0)v6[Mar V'],

where we have used the commutativity of Gysin maps with proper push-forward for the last
equality. Since

v[MarY'] = [P(Crrjyr @ 1)] + [Blar Y]
and (¢|i=0)«|BlaxY'] = m[Blyx)], we conclude from that
(@li=0)«[P(Cxrjyr @ 1)] = m[P(Cx/y & 1)].

The Lemma follows, since f is the restriction to C - v of @li—o. O
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3.5. The correcting classes ,ug; (2). Consider the Segre embedding
(3.5.1) Seg: P(V) x P(CY) — P(V @ C").

Recall the map h} : U," A, P(CY) given by the twisting line bundle .#, and its sections
s1,---,8n; see (8.2.3). Viewing Q7 , (X, dy) as a substack of U/, , 4 Via the embedding
(2.5.4) for the bundle F;g, we have the restriction 2} : Q1. (X, do) — P(CY); see (3.2.1])

for notation dy = df!. The two evaluation maps on Q;k (X, do) at markings in A are
related by
eAU“‘Q;—,kJrA(X,do) = Sego (e’ua, h;r>;
see for notations €v, and ev,.
In this subsection we prove the following weaker version of the main theorem.

Theorem 3.8. Let z be a formal variable. There exists a Chow cohomology class ,ufi\i () €
A*(X xP(CM))g[z], dependent on g and k only through the dependence on N, such that after
push-forward to A.(Q, (X, d))g by c|z, the equality of Lemma becomes

(3.5.2) [Q;,k(X> d)]vir _ C*[ ;k(X’ d)]vir _
Z |T1|!(bA)*(CA)* (H(eva, h:)*,uél\i (2)]z=—y N [Q;k+A<X7 dé)]vir) .

Proof. We analyze the push-forward to A.(Q, (X, d))q of each term in (3.4.4) by c|z which
will be also denoted by ¢ for easy notation. We have also induced maps

Cro/ry = ¢ Co- (xayv;, = Car (xayys

g,k
whose composition will be denoted by cc.
The terms on the left-hand side are very easy. First, by the identifications (T') C Ty) =
(Z CUy) and Y°|pg = ¢*E; we have

C*(77|Z)*(40)*(0!T0|F8([Crg/rom = O!E; (Cc*[crg/ro])

!
- OE; ([CQ;k(X,d)/U;,])
= [Qg_,k(Xv d)]Virv

where we have used standard properties of the Gysin map for the first equality, Lemma (3.7
for the second equality, and Corollary [2.6] for the third equality.
Second,

u(n]2)120) 0o, ([Caa) = e ([Q (X D)),

again by the identifications (T, 4y C Tocaist) = (@ x(X,d) C Uy) and Tp
together with Corollary [2.6]

— ot
_Edv

oco,dist
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The analysis of the right-hand side of is significantly more subtle, so we divide it
into several steps for clarity.

Step 1: Transferring the computation to P;,. The Segre embedding , together with
the inclusion i : X — P(V'), induces the embedding

(3.5.3) iseg : X X P(CN) = P(V ®CY) x P(CY),
(z,y) = (Seg(i(z), y), y)-
We identify X x P(CV) with its image under ig.,. Set
Qroita = (€V4 X idp(cv)) (X x P(CY)),
a closed substack in Qf,(P(V ® CV),d,) x P(C"), and

+ R +
tail,A " H Cgtail,a7

acA

so that we have the cartesian square
Qpaita — [oea(Qi(P(V ® CY),d) x P(CY))
l i[‘[a(eﬁ)axidwcl\;))
(X x PCV)A 0y @ oY) x PCV))A.

Further, define the closed substack Dx 4 C D4 by the cartesian square

Pr
(3.5.4) Dx a . akra(X:do)
pra J/ i ((eva,hd))aca
+ X x P(CN)A.
Qtazl,A Hg‘(évaXid]p((cN)) ( ( ))

where by abusing notation Pr 4, pr, denote Pra|p ,, pr|py , respectively. Note that [, (ev, %
idp(cwvy) is a flat map (in fact, smooth) and therefore so is Pry.
Now fix the pair (A, j4) and define Z;, C P;, by the cartesian square

(3.5.5) Z; P;
ajAl/ lajA
Fgo,jA —— FOO,jA‘

Z;, is the zero locus of the section of @ € H°(P;,,a;, T). The restriction to Zj, of the

projection 7p : P;, — D4 factors through Dx 4.
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We assemble everything in the commuting diagram

(nlz)oteo c _
(3.5.6) ro . Z Q; (X, d)

i T VA TbA
s Pr c _
- N Qe a(X o) — s Qy (X, dy)

ZjA DX,A
pra l((eva,hi))aexx

(X x P(CNV))A

+ - >
Qtail,A T1(

vq xid)

with abusing notation again ¢ = c|z, ca = calg+ (x4, (this notation is justified by Remark

Jk+A
in 43.4.1)) and v4 = valpy , etc. ’
Let
(357) CjA = CZJA/PJA'
By Lemma applied to (3.5.5)) and the commutativity of the Gysin map with push-forward,
1 -
O!TO|F20 jA([CjA]) = W(@jA)*OL;A(WngO jA)([CjA]),
where C;, = CFSO,jA/Foo,jA as defined in Lemma . From the diagram (3.5.6)),
1 -
Wc*(n|2)*(b<>0>*(aj14)*(O!a;fA(TO|F0 _ )([CjA])) =
! Oein
1 _
W(bA)*(CA)*(PYA)*(WIP)*(O!OC;A(MFQOJA)([CJA]))-
Letting 19, denote a, T, it remains to show that
00,7 A
(3.5.8) > mjy(Pra)u(me). (O ([Cy,))
Ja

has the form

(H(evav hj)*ﬂda(z) |Z=1/Ja> N [Q;k-&-A (X> dé)]Vir7
acA
as claimed in Theorem [3.8

Step 2: Description of T;,. We start by describing first

(359) TjA = Oé;ATlr

00,J A

on P;,. Define vector bundles G374 and G,”4 on D4 via exact sequences
0

(3510) 00— pr*A_F;—;{{:ZE — VZF; N G:l_/jA SN 07
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0— Pr*Ac’;,F_B“ — VyCF, — G;éj“‘ — 0.
By , we have an extension
(3.5.11) 0 = Baea(Or,, (1) @ mF) = T, = m3(Gy™* © G,7*) = 0.
Further, if we let
G;ﬁf‘da 1= (Bacapr, F, tazld )/ PTAFtZ{f?z ;
then from (3.3.4) and (3.5.10)) it follows that G;{,’“ fits into an extension

(3.5.12) 0= Gl = Gy’ = PriFy — 0.

Note that we may write alternatively
Gy =PryC(Pucasyca (P, © Oay—sopa (dapa)))
Pry i (@aeame (BijusiaaZ gy @ Ottida—ja)pa (lidaPa)))-
and

+,,'jA _ pr#A(BHGEAﬂ-*((‘@C—;; @ @Ze@:_da) ® O(ja_l) tail( pf]?’”)))’ ]f ja S da,
tail,da Py (Baeame(Bijo<tia, Zila, @ O, —ypret (=06™))), i Ja > da,

from which it follows that in the K-group of vector bundles on D 4
G ~ (Baea @ 1y (PraciO(—=miy,) @ P% ™)) @
(Baea ®1—y @%Izajaﬂ(PrZCZO(—m%) ® R
and
G, ~ Baea (2 1(pr O(mytehy @ F™))3
where Pda=m .= Pr*¢rpda—m Rlide=m . pprerg—lida=m (gee (337F), (3.3.6)), (3.3.10) for the

a a ’l

definition of P~ o~ m g hide” m, F" respectlvely).

To summarize, the outer terms of the exact sequences (3.5.11)) and (3.5.12)) give four pieces
that combine to make T,

We now move to the description of the subbundle T9, C T,|z, (see for the

notation T? A). For each 1 <7 <r and 0 < j,, introduce the bundles

Ja pry (v X idp(ev))* (Opvacy)(l) B Openy(=h)) ,  if jo < lida,
g small 07 if ja > lidaa

2The notation F™ is a little ambiguous, since the dependence on the marking a is not apparent anymore.
The same will happen later, e.g., with the bundles F° in (3.5.17) below. Hopefully this will not cause any
confusion.
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on D,. We use the same notation for the restrictions of Rg"sma” to the substacks D4 and
Dx 4 of D,. Further, we set

Ja P T Ja
Rsmall T 69'L':lR‘i,small '

Note that, alternatively, we may write on Dx 4

Rz;(;nall = pIZ(TF*(@Z (g.t,_,da)li & Op(tlail))

= Pry(m(&:(Lra,)" ® Op,)),
for j, < l;d,. Finally, put
Flran = P ® Rl
The surjection T;, — ﬂﬂ*;Pr*AF(;Z on P;, (coming from and (3.5.12)) induces a
surjection Y9 ~— mpPriE; on Z;,. Define the excess bundles T;, o and T9 . as the
corresponding kernels:

0— TjA,ex — TJA — WEDPI'ZFJ(; — O,

(3.5.13) 0— 7YY . — Y9, — mPraE; — 0.

0

i,» we note that the excess bundle in turn fits into an

To complete the description of T
extension

(3514) 0— EGGA(OPJ@ (1)|ZjA ® ﬂﬁFZinall) — T;')A,ez — WIE(G;;%?da,small ® Gc;(;,jsAmall) — 07
with

9 ] .afl ]
G;i]l?da,small ~ EBULGA (@'Zn:l (przO(mwaml) ® FTmall)) )

G ~ (Baea By, 01 (PrACHO(=mis,) @ P#~")) @
(Baca &y B, (PraciO(—mi) @ RE)

in the K-group of D,4. For later use, we note that from the above K-group expressions it
follows that the Euler classes of these bundles have the form

(3.5.15) (G ity aman) = P [ [ (€va X idpieny)* £ (2)]cyppan
a€A
(3.5.16) (G tan) = Priy [ [ (eva, B 1.7 (2) o=,
a€A

where the Chow cohomology classes
F3.7(2), £3,7(2) € A(X x P(CV))g[z] = (A*(X)g ® A*(P(CY))g)[2]

are polynomials in z with coefficients which are universal expressions in Chern classes of
various tautological bundles Ox (1) on X, and Opcny(m) and the tautological quotient bundle
Q on P(CV).
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In the formula we have used that the i-classes at markings in A on Q| 4(X, do)
and Q;r,kJrA(X7 do) pull-back under cy, that is, 1), = 1,.

Step 3: Deformation. The idea for computing is to deform the bundle T?A, together
with its closed subcone 6; (see for the notation 6;), to the bundle Y9 @miPri B
with the closed cone WﬁPrZCQ;kH( X do) U+

o (see (3.5.13) for the notation Y9, ).

To begin with, consider on D, the vector bundle homomorphisms

tail
@araaz

Pr*A(@aeAthﬂ,dQ) PBacaF°,

DaTa
Prjl Fj{; @GGAFO )

where 7! and r, are given by “restricting sections at the marking a”. The resulting surjec-
tive gluing map

Da (Ta _TZH'” )

69aeAFO

PrZFL;Z D pTZ(@aeAFt:u,da)

has kernel v} F}.
Via its embedding in 73 (v4 F @ Pricy Fy ), we may view o, (Craz|r.. ;,) as a subbundle

o}, Crerlr.;,) C WE(PTZF&Z O priy(@acaFiya,) © PriciFy).

The quotient is an “unglued” version of Y;,. Precisely, it splits as m’,ﬁ,PrZ(F;g) © Y, o

and there are exact sequences

@aréail . 0
00— ijeI - TjA,ex,ﬁ - WP(EBULF ) —0
and
N EBa(Ta—Téa“) .
(3.5.17) 0 T, TPOFL © T, 73(BF0) 0

onP;, % D4. Composing the section 7 : O]ij — T, with the monomorphism in (3.5.17))
gives the section

*Do% 4+ — . * Pk It -
(WPPI'AO'%’ O-SCE) . OP]A WPPI‘AFd{) @ TjA,e$,0'

The base of our deformation will be A' with coordinate ¢. Denote o : P;, x A — P;,
the projection. Define on P;, x A'! the vector bundle ker via the exact sequence

* (kP “(tmir‘tlail)* *
0 ker ¢ OTPPIAF‘;{) D TjA,ea:,ﬁ?% 0 ﬂ-]P(@aFO)

0
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deforming (3.5.17)). The section

~ . * % * 4+ *—
g:=(p mpPrioy ,to Tex)

of Q*(WI;PF*AF(;Z ® T, ..0) factors through ker, so we will view it from now on as a section
of ker. We have the identifications

(ker i1, Fli—1) = (T;,,7)

Jas
and
(ker |4—0, 0li=0) = (W;PrZFdZ DY, e (WI}ZPrf‘Aa;%, 0)).
Let
Z:=510) cP;, x Al

be the zero locus and observe that we have in fact

7 C PjA‘DX,A X Al,
where P;, |p, is the fibered product
P Pry
PJ'A |DX,A DX,A Q;_,IH-A (Xv do)
+
Pis === Da Pry Uty

The fibers of the Al-family Zatt=1and at t =0 are

Z0iwr = Zjns Zlimo = Pjylng 4
Notice that the normal cones satisfy
(3.5.18) €2/, xan =) = [Ceesyiny rein] = PTAlCG;xanuy,, )
and
(3.5.19) [CZ/(PijA1)|t:1] = [6\;]7
as desired.

The “correct” obstruction bundle T‘; ' also deforms. Namely, if we repeat the construction
in this step, but with the bundles 2% @ %*, F3 replaced by 2%, Q7 := 7,25 respectively,
we obtain an unglued version of T, := o}, Tolr., ;, given as the extension

DBa (raier'l) .

WP(@aF?@)

0 Tuy, = mEPEQL O T,

,JA,ex,0
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and a vector bundle kery on P;, x A' defined via the deformation

tT’a Ttazl)

0 ket O (TEPTA QY Vo, ) o O TH(BaFY) —— 0.

Here FY “at the marking a” is the cokernel of 0 — F? . — F%; alternatively,

smal

Fo = priy(m (2, ® Opan)) = Priy(m(25, @ Op,)).
After restricting to Z , there is a surjection
( PI‘AZ?Jr D T]A ex, 0) — 0 ( ];Per;% > TQ,jA,ex,é) — O?
(just as in §3.4.2)), making the diagram

Da (tra 77'20'“ )

o (MpPryFy &Y 0) 0T (BaF") 0
* (% * -i-l @a(tra— rmzl) * 0
0 (WPPYAQd/O DV g, enn) = 0 Tp(BaF ) 0

i

0 0
commutative. We conclude that there is an induced map of vector bundles
ker — kerg,

which is easily seen to be surjective at all closed points, and hence surjective. Now define
the correct obstruction bundle T on Z as the kernel:

O—>T—>ker—>kerg—>0.

At t =1 we have

(3.5.20) Tl =10,
while at t =0
(3.5.21) T|imo = mPriEf @ 10 ..

Here T‘;A e 00 Py, |py , is given by the same extension as in (3.5.14)):

(3522) 0— EEaeA(O]P’ja( ) ® 7T-]P’F — TO — WP(G—’—’]A small D Gy

small) JA,€T tail,dg,

) — 0.

do, small

By a calculation similar to the one used to prove Lemma 3.4} one checks that the normal
cone CZ/ L xA1) is a subcone of Y.
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Let v: Z < P;,|px.4 X A' denote the inclusion and consider the diagram
t ]P)jA|DX,A i Z|t CZ/(PJAXA1)|t t
_ |
Al — jA|DX,A x Al L Z CZ/(IPjA xAl) Al
7—"—=7

The proof of Lemma (3.5 shows the equality

(Ll)*olf‘z:l([CZ/(PijA1)|t:1]) O!Yh:()([ci/(ﬂj’m><A1)|t:0])

in the Chow group of P;,|p, ,. By (3.5.18)), (3.5.19), (3.5.20)), (3.5.21)), the Excess Intersec-
tion Formula ([I5l Theorem 6.3]), the compatibility of Gysin maps with flat pull-back, and
Corollary [2.6] this can be rewritten as

(3.5.23) (1) ([C]) = e(XY, o) NTEPEAQ) 4 a(X. o)™,

where e denotes the Euler class and 7, Pr’y are the flat pull-backs.
Step 4: Final calculation. Recall the diagram from ((3.5.6])

IEDjA |DX,A
P
T Pr
Zi, - Dx a - Qg rya(X, do)
Pra l \L ((eva’h;—))aeA

Qs s~ (X X PCY)

€vq xid)
and that we want to compute (3.5.8]). From ([3.5.23) this is the same as computing

(3.5.24) > my, (Pra)(me). (e(Y9, o) N mpPrA[Q) 4 (X, do)]'™) .
Ja

By (3.5.22),

e(T?A:GCU) = e(EE’CLEA(OPja (1) ® W;Fi%all))e(WI;(G:;’iJl'?da,small))e<(WP>*<G;0,;7;:mall))'



QUASIMAP WALL-CROSSINGS AND MIRROR SYMMETRY 47

Set o := e(G;’fx‘dmsma”) e(G a0 Priy[QF . 4(X,do)]"™. Then (3.5.24) can be succes-
sively rewritten as

D> mia(Pra). {(me). (e(Baca(Or,, (1) © TFL ) N i) }

I‘k(Fsrrball)
- Zm]A PrA H( ) Z 1(01[»].&(]_))7” N ﬂ-f;’ < Crx (Fgma”)—m(Fsmall) N Oé)
acA m=0
k(F?s:nall) .
= ijA(PrA)* H Z Sm—1 (prZO(jawZ“”) @ Pr,O(— Jawa)) €k Fjgnall)fm(Fil;nall) Na
Jja acA m=0

where s,,_1 denote the Segre classes.
The Chow cohomology class

rk (Fg('rlnall)
> st (PrAOG™) & PriO(=jatha)) Cucqein - (Flinant)
m=0

is a polynomial in Pr’,, of the form

> (v x 1d)78y(2) |amygun ) Pries,

b

where the d;’s are themselves polynomials with coefficients given by universal expressions in
Chern classes of various tautological bundles Ox () on X, and Opcny(m) and @ on P(CV).

Further, by (3.5.15)), (3.5.16]), the Euler classes e(G;ﬁﬁlmsmau) and e(G,74 ) appearing

dog,small
in o are given respectively by the universal expressions [], pri(ev, x id)* *;Jaw;“”) and

[ 1, Pri(eva, A £ (—ta).
Setting

= (€va X 1d)* (0 f17) (W) € A (Qfia)e
and recalling that m;, = [],c 4 ja. we conclude that (3.5.24)) has the form
(3.5.25)
max;{l;d; }
I > daPra). {ZPYA(%)PYA(ID (evas b )" f0, 7 (= %))} ([Qgrra(X, do)]™)

acA Ja=1 b

Here (Pra). : A*(Dx.a)g — A*(Q 4 4(X,do))g denotes the Gysin map induced by the
bivariant class [Pra] corresponding to the canonical orientation of the flat proper morphism
Pra, see equation (Gg) in [15, §17.4]. Applying [15, Example 17.4.1(b)] to the cartesian
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square 13.5.41 and using the projection formula for bivariant classes, equation (3.5.25)) proves
Theorem [3.8] with

max;{l;d; }

(3526)  ph(z)= ) ]az )(€vq X id). (1) € A*(X x P(CN))gl2].

Ja=1

O

We stress again that our argument shows that the formula (3.5.26|) for the correcting class
plY is universal in the following sense: it depends on g and k only through the dependence
on N of the polynomials f; I (2), fi7(2),05(2) € A*(X x P(C"))gl2]. This will be used in

the next subsection.

3.6. Identification of the correcting class. In this subsection we finish the proof of
Theorem [1.6] (for (g, k) # (1,0)) by showing that the class (3.5.20)) satisfies

(3.6.1) py (z) = coefficient of ¢* in z(J5,(2) — J5(2)) ® Lpeny.

Indeed, assuming (3.6.1), it follows first that the coefficient of ¢% in z(JZ, () — J5i(2)) is
a polynomial in z (because the left-hand side is such) and then by the general asymptotic
properties of the small Jé-functions it coincides with the coefficient of g% in [21,,,(q, 2) — 2] 4.
Second, also shows that the class (ev,, h})*pdf (2) is independent of N, so that we

may replace it by evpg, (2) in the formula (3.5.2)). Hence Theorem [3.8| together with (3.6.1))
imply Theorem

To prove (3.6.1)), we take d = d, (so that dy = 0) and consider the graph spaces
QGO 0.d, (X). These are the moduli stacks of e -stable quasimaps of degree d, to X, whose

domains are genus zero unpointed curves with a component which is a parametrized P!, see
[10, [7]. Similarly, we have the moduli stacks QG 0.4, P(V)) and QGO 0.4, P(V®CY)), which
are smooth. The e_-stability condition implies that the domain curve must be an irreducible
parametrized P!, while e -stability allows in addition quasimaps with domain consisting of
one rational tail and the parametrized P'. These quasimaps have degree d, on the rational
tail and are constant maps on the parametrized P!. In particular, there are identifications

QG4,(B(V)) = P(Sym™(C*) @ V),

QG 4, [P(V ©CY)) = P(Sym™(C*) @ V & CV).
Recall that we have the embeddings

X x P(CY) — P(V) x P(CY) — P(V @ CY) x P(CY),
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whose composition is the map ¢ge, from (3.5.3). The induced embeddings of graph spaces
commute with the contraction maps:

(3.6.2) QG g4,(X) x P(CY)— QG ,, (P(V @ CV)) x P(CY)

cXid\L \chid

QG(ID,da( ) x P(CN)—— RGo o4, (P(V @ CY)) x B(CM).
The right contraction map ¢ x id is an isomorphism outside the boundary divisor
Dy = (Qf (o P(V © CY),dy) x P(CY)) Xpvacn)xpen) (QGg 0PV @ CY)) x P(CY))
> (Qg o) PV @ CY), dy) x P(CY)) Xpvgenyxpen) (P(V @ CY) x P x P(CY)),

where QG (o PV® CM)) @ P(V®@CY) x P! is the moduli stack of &, -stable quasimaps of

degree 0 to P(V @ C"), whose domains are genus zero one-pointed curves with a component
which is a parametrized P!, see [10, [7]. Let £, denote the universal line bundles of degree
d, on the fibers of the universal curves over the various QG* x P(CV). Let .# denote the
pull-back of Openy(1) to QG* x P(CV), with the basis {t,...,tx} of global sections, and
set £ = £, ® 4. With these notations (which are justified, since the line bundles are
compatible with the above embeddings), the construction of - produces the obstruction
theory ([2.4.6|) of QGO 0.ds ) xP(CY) relative to the smooth, pure dimensional stack %unG X

P(CY). Here Bunly — P! [0] is the relative Picard stack over the Fulton-MacPherson stack

]IE\[E] of unpointed rational curves with one parametrized component. The corresponding
virtual class is [QGOO 4, (X" x [P(CY)]. Note that for all universal curves, the map h to

P(CY) is just the projection.
Further, if we put

QGOOd (P(V ©C"Y)) x P(CY),
then the construction of - 2.5 also applies to produce the vector bundles F* on U*, with
sections oF such that (o%)71(0) = QGOOd (X) x P(CY). This embedding of QG .. (X) x
P(CY) in U* is precisely the one in (3.6.2). The diagram (2.5.6) holds as well, hence we

have the concrete description

(QCit 0, (1™ x [B(CY)] = 0 (Coge,  (xyeeemyyus)

as in Corollary [2.6]
From the degeneration analysis in — §3.5 it follows that Theorem [3.8 holds in the
situation considered in this section, giving the equality
(3.6.3) (@G04, (X x [P(CY)] = (e x id).([QGg g 4, (X)]" x [P(CY)]) =
(ba x id).((eva, b)) g, (—1a) NV ([QGY (3, o (X x [P(CM))),
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with ,ué\; the universal class in (3.5.26)). Notice that the one-pointed, degree zero graph space
is identified with X x P! with virtual class the usual fundamental class (for any stability
parameter ¢), while the maps

evg : X x P xP(CY) — X, hf: X xP' x P(CY) — P(CY)

are respectively the first and third projections. The class 1), is the pull-back of ¢i(wp1) via
the second projection.

Now recall that graph spaces carry a C*-action (induced by the standard action on the
parametrized domain component) for which the maps ¢ and b, are equivariant. It is custom-
ary to denote by z the equivariant parameter for this action. In each graph space there is
a distinguished part of the C*-fixed locus corresponding to quasimaps for which the entire
nontrivial data is concentrated over the point 0 in the parametrized domain component.
The restrictions of the maps ¢ and b, to the fixed point locus respect the decomposition into
distinguished and non-distinguished parts. It follows that if we apply the virtual localization
formula of [19] to (using the trivial action on the P(CY) factors) and discard from
both sides the localization residues at all non-distinguished fixed-point loci, we still have an
equality between the remaining distinguished residues.

In our particular case, the distinguished fixed locus in QGg, , (X) x P(CY) is identified
with X x P(CY), the distinguished fixed locus in QGg,, (X) x P(CV) is identified with
Qo1 (X, da) x P(CY), and the distinguished fixed locus in QG o(X) x P(CY) = X x P! x
P(CY) is X x {0} x P(CY). Moreover, the restriction of ¢ x id to the distinguished fixed
locus is evy x id, while b, x id, (ev,, b)) are the identity map on the distinguished fixed locus.
The equality of distinguished residues of becomes

P (2)

z
in A*(X x P(CY))qlz, 27"], proving (3.6.1). Indeed, the left-hand side is as stated by the
very definition of the small J-functions in (5.1.1) of [7], while for the right-hand side we used
that, in the right-hand side of , Ya| x xfoyxp(cV) = —%, and that the equivariant normal
bundle of {0} C P! has first Chern class z, i.e., the denominator z in the right-hand side of

(3.6.4) so that ! is the distinguished residue of [QGa{aLO(X)]Vir x [P(CM)].

(3.6.4) coefficient of g% in (J5,(2) — J55(2)) ® Lpewy =

3.7. The unpointed genus 1 case. Since Ml,o is empty, we do not have the twisting line
bundles .Z satisfying Lemma [2.1| and which are all compatible. However, it turns out that
an appropriate modification of the set-up in §2| allows for an application of the arguments
in §3| to establish Theorem [L.6|in this case as well.

3.7.1. Set-up. By an unpointed semistable genus 1 curve we mean an unpointed prestable
genus 1 curve with no rational tails. Let 7% denote the moduli stack of semistable genus
1 curves.
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Fix positive integers d and e. Let My denote the moduli stack of degree e unpointed genus
1 stable maps to P(CY) with semistable domain curves. Since all line bundles of degree e on
semistable genus 1 curves are non-special, My is a smooth (non-proper) Deligne-Mumford
stack. Denote by €7%y — My the universal curve and by

h: €5, — P(CY)
the universal map.

Let d = d+ e and let QY mwb( (V®CN),d’) be the open substack of Q5 ((P(V ® CV),d)
consisting of e-stable quasimaps (C, L', v") with vanishing H'(C, L'). Define U 2’N as the fiber
product

iBLTLOb(]P)<V X (CN), d/) Xgmiso Mpy.

Here the morphism Q7 ”"Ob( (V@ CN),d') — M55 is the composite of the contraction map
jg""”( (Ve CN),d)— Q%(P(V ® CY),d’) and the forgetful map Q?B(IP’(V ® CN),d") —
1,0°
Since My is smooth over M55 and Q7 “"Ob( (V®CN),d') is smooth over Bung, the stack
U™ is smooth over Bung’.
The universal curve €1 ; over U, " has a semistabilization morphism ss, : Coa — €Y
(the contraction of rational tails of universal curves), fitting into the commuting diagram

0 5 €0 — P(CY)

h
N
USN — My.
proj

We set h. = hoss. : €54 — P(CV) and 4 = hiOpcn)(1). Further, the sections t; of
Op(cvy (1) associated to the homogeneous coordinates of P(CV) give the sections s; := hit; €
HO( 10d’7%)7 ] — 1,...,N.

3.7.2. Obstruction theory for Qf o(X,d) Xz, My relatzve to Bung’. Denote by £ the

universal line bundle on the universal curve €5, ; of Uy Nand put L = L' @ M.
Consider the diagram of vector bundles and O@i . d,-linear maps, corresponding to ([2.5.1)),

0——= L0V & hTyen, 22 BY | 2 @V & hi Tyey) —= P25 — 0

\L (@ (®idepi),0)

@ . .Sli
%,3°5 .
- i (L)
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Let Q% = Q] o(X,d). As before, there is a vector bundle
Py @ Ry = 1. 25 @ m(®: (L))
on U E}N, with a section ¢ whose zero locus is naturally isomorphic to the product stack
Q% Xomgs, M.

On the universal curve €% over Q% Xmss, My (associated to the universal curve of Q% ), we
may complete the diagram above to a homomorphism of short exact sequences. In particular,
we obtain a natural homomorphism

L@V ® W Tpcny = Gy L
and an exact sequence
0— & = P25 & (@,;(L)) — 25 — 0,

defining a vector bundle &; on €%, with m,.&; also locally-free.
Denote by C,- the normal cone to Q5% Xomzs, My in U;,’N. As before, C,- is a closed subcone
of the vector bundle 7,&5, with the embedding induced by a surjection &5 — % /.#% where

# is the ideal sheaf of the closed substack Q5% Xmss My
Consider the following commuting diagram

e,N
Q% Xamgs, MN© U My

closed

smooth
SRV © CY), ) —=

smooth

1,0
Bung

and define a perfect obstruction theory E for Q5% Xomss, My relative to ‘Bunlcio by

[R'W*(.fg RV @& hTpcny — @Z;:lcfeli)}v

R (r.85)Y = (@Lm L @V & mhiTyen) '] = E
} e

[j/jQ - QUs;N/%ung°|Q§< XimffoMN] :

The associated virtual class is, by definition,

[Q?X mefo ]\4]\[]‘11r = O!ﬂ.*%’d[cgs].
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3.7.3. Wall-crossing. We will compare the virtual classes [Qy X, My]*" under the con-

traction map ¢ : Q% Xamss My — Qx Xopss, My, where the contraction map does not do
anything on the My factor.

The comparison can be carried out as before. Similar to (3.2.2), there is a commuting
diagram

7N 7’N
Uy ——=Uy" —— My.

First use the homomorphism @ : P} & R}, — ¢*P, & ¢*R,, induced from the contraction
map to perform the MacPherson graph construction. Second, deform the obstruction normal
cone of ¢ Q¥ Xangs, M) in U o "M using the induced section of the universal quotient bundle
of Gr(P} ® R}, @ ¢*P, ® ¢*Ry).

Repeating word for word the arguments of §3.3-3.6, we obtain the following analogue
of Theorem . Let z be a formal variable. Let the Chow cohomology class Mé\; (2) €
A*(X x P(CY))glz] be given by the universal formula (3.5.26]). The equality

(3.7.1) [Q10(X, d) Xangs, MN]™ = e.[QF (X, d) Xomys, My]™ =

1 . vir
Z |A‘| (bA)*(CA)* (H(eva, hi) :uil\; (Z)|z:fwa N [ 1+,A(X7 dé) Xgmﬁ) MN] )
n !

acA
holds in the Chow group A.(Q1 (X, d) Xmss, My)q, where

e c, is the contraction map

LA, dy) Xamgs, My = Qp 4(X, di) Xz, M,
e b, is the morphism

Qa(X, d) Xomzs, My — Q7 9(X, d) Xomzs) M

which trades the markings A for base points of length d,,,
e the morphism h} : Qf 4 (X, dg') Xonss, My — P(CV) is the composite of the contraction

1+,A(X> dy) Xogs, My — Q1 a(X, i) Xamgs, M,
the marking section

Ea : Ql_,A(X’ dé) Ximfo My — Q:Z,X
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of the universal curve over Q7 ,(X,dg') Xamgs, My (associated to the universal curve
of Q7 4(X, d4')), the morphism

Cax — &y

induced from ba, and finally | : €x — P(CY).

3.7.4. Relation between [Q% Xomss, My]'" and [Q5%]V". By a result of Cooper, [13], the stack
QY5 (P(V),d) has projective coarse moduli and hence there is a morphism from the universal
curve of QYH(P(V),d) to P(CV) for some N such that the morphism does not contract
any irreducible component of any fiber of the universal curve. Fix such a morphism ¢ and
let e be the degree of a fiber curve under ¢. The degree e is independent of the choice
of fiber since QYH(P(V),d) is connected. (In fact, QYH(P(V),d) is irreducible; this follows
from the connectedness of M o(P(V),d) (see [22]), the surjectivity of the contraction map
Mio(P(V),d) — QT (P(V),d), and the smoothness of QY (P(V),d) (see [25]).) From now
on we work with the stack My corresponding to these particular choices of N and e.

By the universal property of My, upon restricting ¢ to the universal curve over Q%" ¥, we
obtain a morphism h, , : + — My fitting in the diagram with the cartesian square

//\
(CY)

1,0

We also let

—10

hio: Q% = QX — My

denote the composition of h, , and the contraction Q% — Q%
One checks directly that there is a natural cartesian square

. (id, h10
Q% — Q% Xmys, My

hiol L(hio,iow

A
MNHMN Xgmfso MN-
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In the derived category of coherent sheaves on ()% there is a commuting diagram

(h10)"(La[=1] = (mh Tpem))Y) (id, hio)"E

| |

H"Q%/Q& Xmiso My [_1] - (1d7 hi,o)*LQ‘} Xmss, MN/%unéo

whose mapping cone is the obstruction theory for Q)5 relative to SBunéo, as in 35 The
functoriality result of [I, Proposition 5.10] implies the relation

(3.7.2) A'[Q% Xonss, My = [Q5]™.

Now apply A' to (3.7.1]). Using the compatibility of the Gysin homomorphism for proper
push-forward, the commutativity of Chern classes with Gysin homomorphism, the relation

(3.72), and the identification of u} (2) from , we conclude the proof of Theorem in
the remaining case (g, k) = (1,0).
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