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Abstract. We propose an approach via Frobenius manifolds to the study
(began in [BCK2]) of the relation between rational Gromov—Witten invari-
ants of nonabelian quotients X //G and those of the corresponding “abelian-
ized” quotients X //T, for T a maximal torus in G. The ensuing conjecture
expresses the Gromov—Witten potential of X //G in terms of the potential
of X //T. We prove this conjecture when the nonabelian quotients are partial
flag manifolds.

1. Introduction

1.1. The paper [BCK2] conjectures a correspondence between the genus
zero Gromov—Witten invariants of nonsingular projective GIT quotients
X//G and X//T, for G a complex reductive Lie group with a linearized
action on a projective manifold X and T a maximal torus in G. The cor-
respondence expresses (descendant) Gromov—Witten invariants of X //G in
terms of Gromov—Witten invariants of X //T twisted by (the top Chern class
of) a certain decomposable vector bundle on X //T.

Our main goal in this paper is to give a natural reformulation of the
correspondence in terms of the Frobenius structures describing the (big)
quantum cohomology rings QH*(X//G, C) and QH*(X//T, C). This is
accomplished in Sect. 3. To explain it, recall that a given cohomology class
o € H*(X//G) can be lifted to a class & (of the same degree) in the Weyl
group invariant subspace H*(X//T)W. Such a lift is not unique, however,
if w is the fundamental W-anti-invariant class, then 6 U w is uniquely
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determined by o. Moreover, by results of Ellingsrud and Strgmme when
X = PV, and later Martin in full generality, this identification respects cup
products:

(cUxyg0)Uw=6U (G Uw) e H(X//T).

A naive guess might be that the identification respects quantum products as
well, that is,

(U*X//G O'/) Uw=7o *X//T (6'/ U a)),

after an appropriate specialization of quantum parameters. Indeed, as shown
in [BCK1], Theorem 2.5, this is the case for small quantum products when
X//G is a Grassmannian. At the level of Gromov—Witten invariants, this
would translate into an appealing identity of the form

(1.1.1)

X//T

(01,02, ..., 04_1,0p) Onﬁ—izﬁl, ey Op2, 6,1 Vo, O'nuw>0{l/’ﬂ
BB

It is not hard to convince oneself, however, that this fails for big quantum
cohomology (already for the Grassmannian Grass(2, 4)), and that it has no
reason to be true in general even for small quantum cohomology. Instead,
we conjecture a generalization to quantum cohomology as follows:

Fix alifting & of H*(X//G) to a subspace U C H*(X//T)W. Let {1;}
be the coordinates on H*(X //G), corresponding to a choice of basis, and let
{#;} be the coordinates on U corresponding to the lifted basis. Let N(X//G)
and N(X//T) be the Novikov rings for the two quotients.

The quantum product in QH*(X//G, C) is a N(X//G)[[t]]-linear prod-
uct on H*(X//G C) ®c N(X//G) [¢]], while the quantum product in
OH*(X//T,C) is a N(X//DII f, y]]-linear product on H*(X//T, C) ®c
N(X//T)[[f, y]l, where (7, y) is an extension of 7 to coordinates on the
entire H*(X//T, C).

There is a natural specialization of Novikov variables p : N(X//T) —
N(X//G) which takes into account that there are more curve classes on
X //T. We denote by “x” the quantum product on X //T with the Novikov
variables specialized via p. Given 0,0’ € H*(X//G), there are classes
£, € U®c N(X//G)[[ f ]], uniquely determined by & x w = & U w and
& xw = &' U w respectively.

Conjecture. There is an equality

((0:;/:0’) Ua)(t) =&xE %o (£,0) = E* (6" Uw)(,0),

after an explicit change of variable 7 = 7(f).
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At the level of Gromov—Witten invariants, the Conjecture says that the
right-hand side of the naive formula (1.1.1) receives a correction term which
is a sum of products of invariants of X //T of the same type (see the appendix
for a discussion and some examples).

We should warn the reader that the above formulation is a translation
of the actual Conjecture 3.7.1 in the body of the paper, which is stated
in the conceptual framework of Frobenius structures. It is in this frame-
work that one is naturally lead to the conjecture. Indeed, if N is the formal
germ of the affine space over N(X//G) associated to the subspace U, the
general machinery of the infinitesimal period mapping in the theory of
Frobenius—Saito structures (see e.g., [Sab]) gives a canonical Frobenius
manifold structure on N. It is induced by the primitive homogeneous
section w of the (trivial) bundle with fiber the anti-invariant subspace
H*(X//T)* over N, together with the restriction to this bundle (in an appro-
priate sense) of the Frobenius structure on H*(X//T). Our conjecture says
that this new Frobenius manifold is identified with the Frobenius manifold
given by the Gromov—Witten theory of X //G. The new flat metric “g on the
sheaf ®y of vector fields satisfies

“9(6,6") = g(6 xw, 5 * w).

It follows that the coordinates {7;} on N provided by lifting are nor flat
for the new Frobenius structure, or, equivalently, the liftings & are not
horizontal vector fields. The vector fields &, & appearing in the statement
of the conjecture are precisely the horizontal vector fields corresponding
to o, o’ under the identification of flat coordinates of Frobenius structures.
This identification of coordinates is the change variable 7 = 7(r).

In fact, we treat a more general situation in Sect. 3, by considering the
equivariant Gromov—Witten theories in the presence of compatible actions
of an additional torus S on X//G and X //T. The corresponding Frobenius
structures are more general than the ones considered in [Sab], as they lack an
Euler vector field. However, a suitable modification of the notion of Euler
vector field allows the application of the theory of infinitesimal period
mappings in this case as well. We give an exposition of the relevant facts
in Sects. 2.2-2.3.

This generalization is needed in Sect. 4, where we prove, by using recon-
struction theorems for Gromov—Witten invariants (extended to the equivari-
ant setting), that the conjecture above can be reduced in many cases to the
abelian/nonabelian correspondence for small J-functions from [BCK2]. In
particular, the following result is obtained:

Theorem. Let FI = Fl(ky, ..., k., n) be the flag manifold parameterizing
flags of subspaces {Ch' C --. c C* c C"}, viewed as a GIT quotient
P'//G for appropriate 1, G. Denote by Y the toric variety which is the
corresponding abelian quotient P! //T (cf. [BCK2]). Then the conjecture is
true for the pair (FL,Y).
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The theorem implies that the genus zero Gromov—Witten invariants
of a flag manifold (with any number of insertions) can be expressed in
terms of Gromov—Witten invariants of the associated toric variety Y. In
an appendix we write down explicit formulae in the simplest case of the
Grassmannian Grass(k, n), for which the abelian quotient is the product
of k copies of P"~!,

In Sect. 5, we obtain an equivalent formulation (5.3.4) of the conjecture in
terms of (big) J-functions of X //T and X //G. It generalizes Conjecture 4.3
of [BCK2] and, by the above theorem, it holds for type A flag manifolds.

Finally, in Sect. 6 we extend the abelian/nonabelian correspondence to
include Gromov—Witten invariants with an additional twist by homogeneous
vector bundles. As an application, we describe the J-function of a general-
ized flag manifold for a simple complex Lie group of type B, C, or D as the
twisted J-function of the abelianization of the corresponding flag manifold
of type A.
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2. Preliminaries on Frobenius structures

2.1. Formal Frobenius manifolds from Gromov—Witten theory. Let R
be a C-algebra and let K be a free R-module of rank m. We think of K as
the affine m-space over R (precisely, the spectrum of the symmetric algebra
of the dual module). Let M := Spf(R[[K]]) be the formal completion
of K at the origin. M is a formal manifold over R. We denote by ®,, its
formal relative tangent sheaf over R. Note that it is canonically identified
with K ® R (QM.

Definition 2.1.1. The data (M, x, g, e, €) is called a (conformal, even)
formal Frobenius manifold over R if the following properties hold:

e g is an Oy-linear, nondegenerate pairing such that its metric connection
V is flat

e x is an Oy-linear, associative, commutative product on ® y

e ¢ is a formal vector field on M over R which is the identity for the
product x, and such that Ve = 0

e Vc is symmetric, where the tensor c is defined by c(u, v, w) = g(u*v, w)

e ¢ is a formal vector field on M over R satisfying

Le(g) = Dg, Lex) =%, Lele) =—e,

where L ¢ denotes the Lie derivative and D € C is a constant.
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The fourth condition implies that there is a formal function F on M
(the potential of the Frobenius manifold) such that the tensor c¢ is given
by the third derivatives of F in flat coordinates, and then associativity of x
translates into the WDV'V equations for F. The vector field € is called an
Euler vector field.

We recall here the formal Frobenius manifold structures determined
by the genus zero GW-theories (ordinary and equivariant) of a projective
manifold endowed with an action of an algebraic complex torus S = (C*)*.
Detailed expositions can be found in [LP2] or [Man], to which we refer the
reader.

Let Y be a smooth projective variety over C. We assume for simplicity
that H,(Y, Z) is torsion-free and that the odd cohomology H***!(Y, C)
vanishes. We denote by N(Y) the Novikov ring of Y. It can be described
as the C-algebra of “power series” {ZﬁeNEl cp Qﬁ|cﬂ € C}, where NE; C
H,(Y, Z) is the semigroup of effective curve classes.

The genus zero Gromov—Witten theory of Y determines a formal Frobe-
nius manifold over R = N(Y). We take

K = N(Y) ®c H*(Y, C),

so that M = Spf(N(Y)[[K"]]). The metric g is given by the intersection
pairing:

g,y = / yuy'
Y

Let {1 =%, Vr» Vri1>---»> Vm_1} be a basis of H*(Y, C) consisting
of integral homogeneous classes, such that yi, ..., y, form a basis of H>.
We write o = Y _ 1;y; for a general cohomology class on Y. The functions #;
give flat coordinates on M. A potential function is defined using the genus
zero Gromov—Witten invariants of Y

FQ.0= ) ) Q'f‘nl! (0, O Nomps

BENE| n>0

where the unstable terms with 8 = 0, n < 2 are omitted in the sum. The
tensor c is given in flat coordinates by

Cijk = at,‘ atj 8tk F

and the product « is called the big quantum product. The unit vector field e
is given by the class yy = 1.
The following notation is customary:

1
— E E B
((Gl,---,ar>> - Q n!<o_l$“‘$o’r$gs -;,O;>O,n+r,ﬂ,
BENE| n n

where o; € H*(Y, C) are given cohomology classes and o = ) 1;; is the
general element in H*(Y, C) (so that ({( )) = F). We extend this double
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bracket 9y,-linearly to general vector fields o7, ..., o,. It is easy to see that
for any vector field & we have

Ve(F) = {(§)).

In particular, since Vj, 9,; = 0, the quantum product can be written in our
chosen basis

vixyvi =Y (Vi Vis vV
k

where v’ = Y, g"'y; with (g") the inverse matrix of the metric g.
The divisor axiom for Gromov—Witten invariants implies that the
Gromov—Witten potential has the special form

(211) F = FCI + Z Qﬁeﬂ'tsmallF’B,
BENE), B#0
with F,; a cubic polynomial in the #;’s and Fg € C[[#,11, ..., t;—1]] formal

power series in the non-divisorial coordinates. Here we use the notation
B - tyman for the intersection index of B with the general H>-class,

,
IH * Lsmall = f Zti)/i-
B iz

We will also use the notation F, for F — F.
Assume now that Y is acted upon by the torus S = (C*)*. The equivariant
cohomology Hg (Y, C) is a module over the polynomial ring

Hg(pt) = H*(BS) = C[Ay, ..., Al
and it is in fact a free module by [Gin]. Taking
R = NY)[A] := N(Y) ®c Cl[Ay, ..., Al
and

rel H;(Y’ (C)

.....

we get similarly a formal Frobenius manifold over R. The metric g is now
given by the (C[X,, ..., A¢]-valued) equivariant intersection pairing, while
in F the GW-invariants are replaced by their S-equivariant counterparts.
The unit vector field and equivariant big quantum product are obtained
analogously.

Localization with respect to S determines yet another Frobenius struc-
ture. Consider the localization of H*(BS), i.e., the field of fractions
C(Ay, ..., Ap), and set

NXY)[A]loy = NY) @c C(Aq, ..., Ap)
K = NY) X ®nonypg Ks-
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Taking M = SpfIN(Y)[X]0,)[[K¢”1]) with the localized equivariant metric,
potential function, and unit vector field determines a formal Frobenius
manifold over N(Y)[A];,(in other words, we simply consider the Frobenius
structure induced by base change via N(Y) — N(Y)[A]x)).

In both the equivariant and localized equivariant cases the potential
function in flat coordinates ¢ has the special form (2.1.1), with Fg €
ClA It 41y - - s 1.

Finally, we discuss the Euler vector fields. The Frobenius manifold
defined by the (nonequivariant) Gromov—Witten theory of Y is conformal:
the Euler vector field (with D = 2 — dim(Y)) is explicitly

degy;
€= Z( Cegy)ziati+cl(TY>.

Here “cdeg” is the cohomological degree.
Consider the S-equivariant version of this vector field

¢ = Z( Cegy')tia,i—i—c?(TY)

with y;’s now forming a basis of Hg(Y, C) over H*(BS). € does not give
a conformal structure (because equivariant Gromov—Witten invariants do
not satisfy a dimension constraint). Nevertheless, we consider a variant of
the Euler vector field in this context as well, by relaxing the requirement
of linearity over N(Y) ® C[A] and will define below an Euler vector field
¢g as an N(Y)-derivation on Oy (that is, an N(Y)-derivation of K¢ into
itself). The flat coordinates {#;}, together with {A1, ..., A} form a coordinate
system on M over Spec(N(Y)). Therefore

14
85 = Z )\.,'8)”.
i=1

is a well-defined “absolute” vector field (i.e., N(Y)-linear derivation) and
acts by Lie bracket on the relative vector fields ®,,. Put

QES = Qf+8s.

If n € ®y, is any relative vector field, then the commutator [Eg, 1] is also
in ®y. Hence Lie derivatives of tensors on ®,, are well defined. The
vector field Eg will still satisfy the conditions in Definition 2.1.1, again with
D = 2 — dim(Y). The same &g will be used for the localized structure as
well.

We have

degy;

Leg(0,) = (— 1+ ¢ ) l>8ti, Leg(Mi) =Ai, Leg(F) =3 —dim(Y))F.
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2.2. S-equivariant Frobenius manifolds over R. We extend the construc-
tion of Frobenius manifold through an infinitesimal period mapping to
the previous setting. Let M be as above, with Oy = R[[K{']] and R =
N(Y)[A] or R = N(Y)[A]¢. Let E be a free Oy-module of finite rank. An
S-conformal connection on E consists of a pair V= (V, Vgg) where V
is an R-connection on E and ng is a N(Y)-linear derivation satlsfylng
Vgg (pe) = Lgg(@)e + (pnge for any e € E and ¢ € Oy. We say that v
is flat if V is flat and for any vector field § € Oy, [ng, Vel = Vigg g1 In
coordinates (#;) defined from an N(Y)-basis of K, the previous condition
is equivalent to the pairwise commutation of the operators V,_ and V.
Such a connection V extends in a natural way to a similar object on
homy,, (E, E).

An S-equivariant pre-Saito structure (M, E, %, ®, Ry, g) of weight w
over M consists of

e a free y-module E of finite rank with a flat S-conformal connection %,
e Oy-linear morphisms ® : Oy g, E — Eand Ry : E — E,
e an Oy -bilinear form g on E,

satisfying, when expressed in coordinates (t;), the following relations for
all i, j:

Vi, (@a, ) = Vi, (Py,), [Py, Py, 1 =0, [Ro, Py, ] =0,
@y, — Vg (@4,) + Vi, (Ro) =0,

V() =0, Vele)=—wg, @ =@y, R;=Ro,

i

where * means taking the g-adjoint and %gs (g) is defined as usual by the

formula Vi (8) (8, 1) = Les(8(8, 1) — 8(Vess, m) — 8(&, Vesn).

The pull-back of an S-equivariant pre-Saito structure by a morphism
f : N — M is well-defined only for morphisms f* which commute
with ngs.

The definition of an S-equivariant Frobenius manifold over R is a variant
of Definition 2.1.1: With the same data (M, «, g, e, &), we set & = €+ &g,
and we replace the homogeneity conditions by the following ones:

Leg(g) = Dg, Leg(x) =%, Legle) = —e

Let (M, E, %, ®, Ry, g) be an S-equivariant pre-Saito structure of
weight w and let w be a V-horizontal section of E. It defines an Oy-linear
morphism ¢, : @y — E by § > —®:(w). We say that such a section @
of E is

(1) primitive if the associated period mapping ¢, : ®) — E is an iso-
morphism,
(2) homogeneous of degree g € C if Vgsa) = gw.
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The data of an S-equivariant pre-Saito structure and of a homogeneous
primitive section w is called an S-equivariant Saito structure. As in [Sab,
§4.3] and following K. Saito, we obtain the following results.

If @ is primitive and homogeneous, ¢, induces a flat, torsion-free,
R-connection “V := go;lv% on ®,, and an associative and commuta-
tive Oy -bilinear product x by & x n = —P¢ (¢, (1)), with e = (pajl(a)) as
unit, and ®Ve = 0. Moreover, “V is the metric connection attached to the
metric “g on ®y obtained from g through ¢,,, and “V is S-conformal and
flat as such, setting ®Ve, = ¢! 0 Vg, 0 ¢, — Id.

The Euler field is € = (p;1 (Ro(w)). It is therefore a section of ®,,. We
have “V& = Lg — ﬁgs + ¢ld. In particular, “V(*V &) = 0.

If we put D = 2qg 4+ 2 — w, and if we set as above &g = & + &g, we get

Legle) = —e, Leg(x) =%, Legg(g) =D -“g.

Given an S-equivariant pre-Saito structure (M, E, %, ®, Ry, g) of
weight w, the datum of a homogeneous primitive section w of E having
weight g induces on M, through ¢, the structure of a S-equivariant Frobe-
nius manifold of weight D = 2qg + 2 — w.

Conversely, any S-equivariant Frobenius manifold (M, x, g, e, €) de-
fines an S-equivariant pre-Saito structure (M, Oy, V, ®, Ry, g) having e as
homogeneous primitive form. N

For instance, to give the correspondence (M, x, g, e, €) > (M, ®y, V,
d, Ry, g) we take V to be the Levi—Civita connection of g, and

Ve =Id+ Lo — VE,  Dp(n) = —(E*1),
Ro:@*:—d)@, q:O, w=2—D.

2.3. S-Equivariant Frobenius manifolds with finite group action. Letus
consider an S-equivariant Frobenius manifold (M, x, g, e, €) of weight D
over R. Let W be a finite group which acts by relative automorphisms
on M, hence on ®,,, in a compatible way with the S-equivariant Frobenius
structure. (To be precise, we assume that W acts trivially on R, and on M
by automorphisms preserving the map to Spec(R).) In particular, the action
of W on ®), commutes with Lg.

Let M"Y be the fixed set of W on M. Then W acts by 9,,w-linear iso-
morphisms on © | ,,w. Moreover, the fixed set M" is a smooth subscheme
of M over R and the fixed bundle (®],,w)" is equal to ® yw.

Let us moreover assume that W is equipped with a non trivial character
sgn: W — {£1}. Wedenotebya : ®y|yw — ©Oy|sw the antisymmetriza-
tion morphism and by E its image. Then E is a locally free @,,w-submodule
of ® |, and we have a decomposition ® ;|,,w = E @ ker a. This decom-
position is g-orthogonal, as g(a&, an) = g(&, n) for any &, n and g restricted
to E is nondegenerate.

As the inclusion MY < M commutes with £L¢g, one can restrict to
MY the S-equivariant pre-Saito structure associated to (M, x, g, e, &) to
get such an object with corresponding bundle ®,|,w. One can moreover
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induce this structure on the O)w-module E, as the following operators
leave E invariant:

e the connection V (i.e., Vg1 is a section of E whenever & is a section of
®,,w and n a section of E),

o the Higgs field ®, (i.e., £ x n = —P¢n is a section of E whenever & is
a section of ®,,w and n a section of E),

o the operator Ry = —P¢ = € «,

o the operator Vg, = Id+ Lg — VE (i.e., V, € is a section of E whenever n
is a section of E).

The following is then clear:

Lemma 2.3.1. The tuple (MY, E, %, ®, Ry, g) defines an S-equivariant
pre-Saito structure of weight w =2 — D on MV,

Proposition 2.3.2. Let us assume that there exists a section w of E C © yy | yw
which is V-horizontal and an eigenvector of Vg (acting on E or on © yy|yw)
and such that the morphism

@MW—>E
Er—éxw

is onto. Then, any smooth formal subscheme N C M"Y over R defined by an
ideal invariant under £ ¢ and such that the induced morphism ® y — E|y is
anisomorphism comes equipped with a natural structure of an S-equivariant
Frobenius manifold of weight D.

Proof. We restrict the S-equivariant pre-Saito structure (M Y E, %, o,

Ry, g) to N to get an object (N, E|y, %, ®, Ry, g) of the same kind. Then,
as w|y is a V-horizontal section of E|y and as the morphism @y — E|y
given by & — &xw|y = ¢, (&) is an isomorphism, w is primitive. Moreover,
o is homogeneous in E hence w|y is so in E|y. One can then apply the
correspondence of Sect. 2.2. O

Some properties of the S-equivariant Frobenius manifold structure on N.
Abusing notation, we denote by — » w~! the inverse map of the isomorph-
ism xw: Oy — Ely,i.e., we will write it also as operating on the right.
We denote by “g, “V the metric and connection on ® y coming from that
on E|y, and by o the product on ®y induced by the Higgs field on E|y.

(1) Leté, nbesections of ®y . The product éxnin ® |y may not be a section
of ® (it is only a section of ® yw|y). We have [Exn — & on] xw = 0.
In fact, the composition

—1
* (V) * (V)
O, 2% Ely 22 Oy

induces a projection ®yw|y — Oy, and & o 7 is nothing else but the
projection of £ x n on ®y, so that we have the formula

Eon=(Exnrw)*xw .
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(2) Let us assume that we can find N such that the unit field e is tangent
to N. This condition does not lead to a contradiction, as exw = w # 0.
Then e|y is the unit field for the S-equivariant Frobenius manifold
structure on N. Indeed, clearly, e|y o n = n for any section 1 of ®y.
On the other hand, we have to check that e is ®V-horizontal:

“Vely :=V(ely*xw)xow ' =V ro ' =0, asV(w) =0.

(3) Let us assume that N is chosen so that the Euler vector field € is
tangent to N. Then €|y is the Euler vector field for the Frobenius
manifold structure on N, as Ry = &x leaves E invariant.

(4) We have “g(&, 1) = g(Exw, nxw) forany &, n € Oy.

Remark 2.3.3. Given an R-basis e’ of E/(ty,...,t,_1)E, there exists
a unique system of flat coordinates (#;) on N for which 9, * @ = ¢ mod
(to,...,tn_1)E. Given any other formal smooth subscheme N’ over R
satisfying the properties in Proposition 2.3.2, with corresponding coordin-
ates (#/), we do not know whether the natural isomorphism Oy — Oy,
t; — t;, is compatible with the S-equivariant Frobenius structures. In other
words, there is a priori no uniqueness in the construction resulting from
Proposition 2.3.2. However, when this construction is applied to the setting
of Sect. 3.1, Conjecture 3.7.1 also gives uniqueness.

3. The abelian/nonabelian correspondence for Frobenius structures

A precise relation between the genus zero Gromov—Witten theory (with
descendants) of a quotient by a nonabelian group and a twist of the theory
for the quotient by a maximal torus in the group was conjectured in [BCK2].
Here we formulate a version of this correspondence for the associated
Frobenius structures.

3.1. Setting. Let X be a smooth projective variety over C with the (lin-
earized) action of a complex reductive group G, and let T C G be a max-
imal torus. In this setting, there are two geometric invariant theory (GIT)
quotients, X //T and X //G. We assume (for both actions) that all semistable
points are stable and that all isotropy groups of stable points are trivial, so
that X//T and X//G are smooth projective varieties. Further, we assume
that the G-unstable locus X\ X*(G) has codimension at least 2 in X. (Note
that this last condition is automatic when X is a projective space.)
There is a diagram

X/T=X(T)/T< X(G)T
V7T
X//G=X(G)/G

with j an open immersion and 7w a G/T-fibration.
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The above diagram leads to a comparison of the cohomology of the non-
abelian quotient X //G to that of the abelian quotient X //T [ES,Mar,Kir].
We describe an equivariant version of it. Let another (possibly trivial) com-
plex torus S act on X. Assume that the action commutes with the action
of G and preserves X*(T) and X*(G). There is an induced action of S on the
smooth projective varieties X //T and X //G. The morphisms in the diagram
are S-equivariant. To the pair (G, T) we associate the usual Lie-theoretic
data:

e the Weyl group W = N(T)/T (N(T) is the normalizer of T in G).

e the root system ® with decomposition ® = &, U ®_ into positive and
negative roots.

e foreachrooto € ® the 1-dimensional T-representation C, with weight «z.

The Weyl group acts on X//T, hence also on the equivariant cohomology
ring Hg (X //T, C). The representations C, define S-equivariant line bundles

L, :=X(T) xt C,

on X//T with equivariant first Chern classes c?(La) € H3(X//T,C). The
S-action on L, is induced by the S-action on X*(T) (and the trivial S-action
on C,). Note that L_, = L for any pair (o, —cr) of opposite roots. The
equivariant cohomology class

1 (=1)I®+]
© = |W|l_[c?(La>=\/ w o

acd acd

will play an important role in this paper. It is the fundamental W-anti-
invariant class in the equivariant cohomology of X//T; any other
W-anti-invariant class ¢ can be written (non-uniquely) as y U o, with
y € HS(X//T, C)W. (The reason for considering e rather than the cus-

S . . . .
tomary A = [[,cq, ¢7(Lo) is one of convenience: we simply want to avoid

having to insert the factor (—1)!®+!/|W| in all formulae comparing Gromov—
Witten invariants of X //G and X //T.)
The following facts are known:

(3.1.1) m* induces an isomorphism Hg(X//G) = H;(XS(G)/T)W
(3.1.2) There is an exact sequence

0 >ker(Uw) _>Hi(X//T% oyt ~ HX(X//G) >0

where ker(Uw) is {y € Hg‘(X//T)VV |y Uw = 0}.
(3.1.3) The equivariant push-forwards satisfy the equality

/ a)25:f o
X//T X//G

forallo € H{(X//G), 6 € HG(X//T) with j*6 = n*(0). (Such &
are called lifts of 0.)
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(3.1.4) Thereis anidentification of the S-equivariant relative tangent bundle
Tn of m: X° (G)/T — X* (G)/G with @aEQLa|XS(G)/T'

In the nonequivariant case (that is, for S=1), (3.1.1) is a classical result,
(3.1.2) isprovedin [ES] for X = P" and in [Kir] in general, (3.1.3) is proved
in [Mar] and (3.1.4) can be seen by a direct computation. The extensions to
the equivariant context are straightforward and left to the reader.

3.2. The W-induced Frobenius manifold. Applying the resultsin Sect. 2.3
to the Weyl group action on the S-equivariant Frobenius manifold given
by the equivariant Gromov—Witten theory of X//T, a new S-equivariant
Frobenius manifold (of dimension over the base ring equal to the rank of
HS(X//G, C)) is obtained. In this subsection we spell out for concreteness
the details of the construction and the main properties of the new Frobenius
structure in this special case.

As mentioned in the introduction, a specialization of Novikov variables
will be needed before comparing the new Frobenius structure with the one
given by the equivariant Gromov—Witten theory of X //G and we start with
this specialization.

Recall from (3.1.3) the notion of lift of cohomology classes from X //G
to X//T. By (3.1.2), one can always choose W-invariant lifts. These are
not generally unique; however, the assumption that the G-unstable locus
in X has codimension > 2 implies that for divisor classes the W-invariant
lifts are unique. This allows us to lift curve classes as well (cf. [BCK2]):
the inclusion

Pic(X//G) = Pic(X//T)V c Pic(X//T)
induces by duality a projection
o :NE\(X//T) — NE{(X//G).

We say that f lifts 8 € NE;(X//G) (and write B8 — B) if o(B) = B. Note
that any effective § has finitely many lifts. Define a projection on Novikov
rings

(3.2.1)
PN = NX/G),  p(Y s 0F) =D (=D (Y ¢5) 0",
f; B BB
where
€ :NE\(X//G) — Z»
is defined by

«®=([ X ) moa2)

acd
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with B any lift of 8. This makes sense, since the right-hand side does not
depend on the choice of lift. Indeed, if &’ is any simple root and v,y € W is
the corresponding reflection, then by standard properties of root systems

v Y Sa) = D e — 2 (Lo,

()(6@4r ()(6@4r

s0Y co, C? (L) is W-invariant as acohomology class with Z, -coefficients.

The sign in (3.2.1), which may seem rather mysterious, has its origin in
the twisting bundle appearing in the abelian/nonabelian correspondence, as
formulated in [BCK2, Conjecture 4.2].

Let Z be the formal Frobenius manifold defined by the S-equivariant
Gromov-Witten theory of X //T, with potential function FX/TS_ Let M be
the formal scheme over N(X//G) ® C[)] obtained by base change from Z
by the morphism of Novikov rings (3.2.1). Let 6 : M —> Z be the base
change map. We obtain a formal Frobenius structure over N(X//G) ® C[A]
on (M, ®,,) by pulling-back via 6 the Frobenius structure on Z. Note that
only the potential (and therefore the quantum product) changes under the
pull-back, since the coefficients of the metric, the horizontal sections and
the Euler vector field do not depend on the Novikov variables. Explicitly,
the potential of the Frobenius structure on M is

(3.2.2)
1
e g X)TSy _ _1\e(B) 0B X//T.S
Fm @' (S = 3 0Py (D e a5
BENEL(X//G) n>0 Bisp M
Choose a homogeneous basis {oy = 1,01, ...,0,,0,41,...,0,_1} Of

HS(X//G) over C[A] := C[A4, ..., A¢] = H*(BS), such that {0y, ..., 0.}
forms a basis of HZ(X//G) and fix homogeneous lifts y; € Hg(X//T)W of
o;. The fixed lifts give rise to a C-linear embedding

(3.2.3) H{(X//G,C) C H{(X//T, C)

(which may not in general be a homomorphism of equivariant cohomology
rings).

The image of the embedding (3.2.3) determines a formal submanifold N
of M over N(X//T) & C[A].

Let

V := H}(X//T, C)"

be the subspace of W-anti-invariant classes. The composition of (3.2.3) with
the map

Uo : Hi(X//T,C)Y — HI(X//T, C)*

is an isomorphism from Hg(X//G,C) to V. Let V = V ® Oy be the
subsheaf of ®,,|y induced by V. Let = be the quantum product on ®, (that
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is, the pull-back by 6 of the quantum product on Hg(X//T, C)). Consider
the map

xw: OunY — VY, £ Exow)ly,

with & € @XZ any extension of & to M. (It is well defined, since the quantum
product of two vector fields at a point depends only on their values at the
point.) This map reduces to Uw modulo the ideal generated by {Q#|8 # 0}.
By Nakayama’s lemma, *® induces an isomorphism ®y — V. Let
¢ : V — Oy be the inverse isomorphism. Abusing notation, when n € 'V
we write 7 x w ™! for ¢(17). Hence we have for £ € @y

(Exw)xo ' =&
We now induce a structure of formal Frobenius manifold on N (over
N(X//G) ® C[A]) using the maps * w and » w~'. Explicitly:
(3.2.4) The metric “g on Oy is given by the composition

* W Q *w

Oy ® Oy = Oyly ® Ouly VeV —4Ys 0y,

that is,
“e&,n) = glvE*w, nxw).

Note that g|y is nondegenerate on 'V by Martin’s formula (3.1.3).
(3.2.5) The Levi—Civita connection “V of “g satisfies

Ve = (Vi (i % )|y x o~
(3.2.6) The product of &, n € Oy is defined by
Eon=(Exnrxw)*w ..

In other words, & o 1 is the projection of £ x n along ker(x w).
(3.2.7) The unit is the vector field 1 restricted to N.

The symmetry of “V(“g(- o -, -)) and the corresponding potential func-
tion are discussed in Sect. 3.5 below.

3.3. Flat coordinates. On N there are coordinates , . . . , f,,_; determined
by thebasis {yo =1, y1, ..., ¥, - . ., Ym—1} Of lifts introduced above. These
are just restrictions to N of coordinates on M which are flat for the connec-
tion V. Let

(3.3.1) £ =WV *xo !, i=0,...,m—1.
Equivalently, &; is defined by the equality
(3.3.2) Exw=y;Uwn.

The &;’s form a basis of ® y consisting of “ V-horizontal vector fields. Denote
by s := (59, 515+ - Sr, .. ., S;—1) the corresponding “V-flat coordinates on
N (so that 9, = &;). Note that

(3.3.3) s = f, modulo the ideal generated by {Q*|B # 0}.
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3.4. Euler vector field. Since
JETX)T)) = ¢ (T(X*(G)/T))
=7 (T (TX//G)) + D ¢ (La)

aed

= (S (T(X//G)))

and Picg(X//T) = Pics(X*(G)/T) via j*, we conclude that c?(T(X//T))
is W-invariant. Viewing C?(T(X //T)) as a vector field on M, its restriction
to N is therefore a section of (©,,|y)"W. Moreover, this restriction is in fact
tangent to N, since (by uniqueness of lifts of divisors) N contains the germ
of linear subspace H3(X//T)W.

Define the Euler vector field by

12
@S - @ + Z)\.ia)ﬁ
i=1

with
m—1

dego; ) -
e=Y" (1 . e?’ )tia,;. + STX )Ty
i=0

Note that &g is simply the restriction to N of the corresponding Euler vector
field for X //T (see Sect. 2.2): Extend {yy, . .., ¥m—1} to abasis of Hg(X//T)
for the Euler vector field for X //T.

Applying L¢ to the equality (§; x w) = 07 U w, we see that

deg o;
Legi=(1- 3" )5

Easy calculations show then that
Leg(g) = 2 —dim(X//G)) g, Leg(0) =0

(and obviously £L¢s(1) = —1), hence &g is indeed an Euler vector field.
Also,

Leg(si) = deg(fi)si,

that is, deg s; = deg7;. In particular, degs; = - -- = degs, = 0.

3.5. Potential. Recall that we identify the cohomology classes on X//T
with Oy -linear vector fields on M. Denote by 0z, the vector field cor-
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responding to y; U w. The components of the tensor “o” in the basis of
“V-horizontal fields are

(3.5.1)
Q& 0 &), &) = glv(E % Ejx 0, Exx ) = g€ * (v; U ), e U )|y

where §,~ is any extension of & to a W-invariant vector field on M. Since

gEx (yjUw), mUo)ly = gy Uw, & x (y Uw))ly
=glv(yj*xw, & * & *w) = “g(§;,& 0 &),

we see that the Frobenius algebra property

(3.5.2) “g(&i0&;, &) ="g(&;,& 0 &)

holds. Recall the potential F (see (3.2.2)) of the formal Frobenius mani-
fold M. We get from (3.5.1)

(353) %ok, &) =gE*(y;Vw), i Uw)ly
= (& (05,0000 F)) I = & (00000 F) ).

Note that

&1 ((97u0 0706 F)IN)) = &i(51((97u0d5u6 F)IN)),

since [&;, &1 = 0. Hence

§(“g(& 0 &, &) = &(“g(& 0 &, &0).

Combined with (3.5.2), this implies that the tensor & (“g(§; o &;, &) is
symmetric in the indices [, i, j, k, hence there is a (formal) function F’ on N
such that

3si3s,-3skF/ = wg(gi o Sj, Sk)

Finally, a direct computation shows that Lg F' = (3 — dim X //G) F’ up to
quadratic terms.

This finishes the construction of the induced structure of formal
S-equivariant Frobenius manifold over N(X//G) ® C[A] on N.

3.6. More on the flat coordinates. For later use we record here some
details about the change of coordinates s;(f) on N. From the defining equa-
tion (3.3.1) for the horizontal vector fields &; it follows that the jacobian
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matrix A := (ds;/9%;); ; is given explicitly by

as;
at] (atjatvaatﬂuwF)|N

where

E ik
[lUw . 8 atkUw

with (¢*) € GL,,(C[A]) the inverse matrix of the metric g|y. Using the
divisor axiom for Gromov—Witten invariants of X //T in the formula (3.2.2)
for the potential F', we see that the entries of the jacobian matrix have the
form

3
361 2 =5,

dto
0s; z ~ ~ .
97, = 8 + Z QFef fmale g i(frits oo oo tme1),  J #0,
J B#0
where cg ;; € C[A[[fy41, - .., Iw—1]] and

,
/3 . fsmall = Zfzfaz
i=1 7P

By integrating (3.6.1) (with the initial condition s(0) = 0), we obtain
a refined version of (3.3.3)

(3.6.2) si =0+ ) QP Mg (G, ),
B0
with bﬂt € C[)"][[ rls cees fmfl]]-

By considering the inverse jacobian matrix (which gives the map x w ™),
it follows that the inverse coordinate change 7(s) is also of the type (3.6.2),
hence the potential function F’ in flat coordinates s; has the special form
(2.1.1) (up to quadratic terms)

(3.6.3) F'=F+) 0P ™ F(sp. .. o)
B#0

where IH * Ssmall = Z?:l Si (fﬂ 0i).
Finally, we record what happens with the “small” parameter spaces
under the change of coordinates.

Lemma 3.6.1. (i) If X//G is Fano of index > 2, then the subspaces of N
glven by the equations {sg = s,11 = -+ = sp_1 = 0} and {fp = fr+1 =

=1y = O} coincide. Moreover, on this subspace we have s; = t; for
i=1,.
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(@) If c1(T(X//G)) is nef, then the subspaces {s,+1 = -+ = sp,_1 = 0}
and {t,4 = -+ = 1,,_; = 0} coincide.
Proof. (i) Let 1 <i < r. After restriction tofo = f,4| = - = f,,_1 = 0
we obtain

E=vi+ Z <Zcﬂ,ij Qﬁeﬁ'f‘“ma">yj-
J B

Since degé&; = 1 and deg P fsman — fﬁ c1(T(X//G)) = 2, we must have
& = y; and the statement follows. The proof of (ii) is similar. O

3.7. Main conjecture. Let P be the formal S-equivariant Frobenius mani-
fold over N(X //G)®CJ[X] defined by the genus zero S-equivariant Gromov—
Witten theory of X //G, with flat coordinates #y, 1, ..., ., ..., f,,_1 corres-
ponding to the C[A]-basis {0y = 1,01,...,0,,...,0,_1} of HS(X//G)
and potential function FX/¢S_ We are now ready to formulate the abelian/
nonabelian correspondence:

Conjecture 3.7.1. Let ¢ : P —> N be the isomorphism of formal schemes
over N(X//G) ® C[A] defined by ¢*(s;) = t;. Then ¢ induces an isomorph-
ism of formal S-equivariant Frobenius structures such that ¢*(&;) = o; and
¢*F' = FX//GS up to quadratic terms.

Note that ¢*(§;) = o; follows easily from (3.3.1). The main point of
the conjecture is the identification of potentials. We also remark that the
conjecture implies in particular that the new W-induced Frobenius structure
constructed in this section does not depend on the choice of the W-invariant
lift of HS(X//G, C).

4. Proof of Conjecture 3.7.1 for flag manifolds

4.1. Preliminaries. Let 0 < k; < --- < k, < n = k,, be integers.
Consider the vector space

Q := @ Maty, i, (C)

i=1

where Maty, ..., (C) is the space of matrices of size k; x k; ;| with complex
entries. Let G := [[;_, GLy, (C), with maximal torus T equal to the product
of the subgroups of diagonal matrices. G acts on 2 by

(81, 8)(AL . A) = (514185 24083 oL g1 A8y 8 AY).

This action descends to an action on X := IP(£2), with a canonical lin-
earization on @ (1), and the GIT quotient X //G is the partial flag manifold
Fl(ky, ..., k., n) parameterizing flags of subspaces [Chc...cCkcCry.



I. Ciocan-Fontanine et al.

The corresponding abelian quotient X //T is a toric variety which can be
realized as a tower of fibered products of projective bundles.

Let S = (C*)" be the subgroup of diagonal matrices in GL,(C), acting
on 2 by right-multiplication of A,. There are induced S-actions on X//G
(which is just the usual action of the maximal torus in GL, on the flag
manifold) and on X //T. See [BCK2, §5.1] for more details on X //G, X//T,
and the S-actions on them. As before, we let C[A] = C[A{, ..., A,] =
H*(BS, C), with quotient field C(A). Our goal in this section is to prove

Theorem 4.1.1. Conjecture 3.7.1 holds for
(a) the usual Gromov—Witten theory of Fl(ky, ..., k., n).
(b) the S-equivariant Gromov-Witten theory of Fl(k,, ..., k., n).

Remark 4.1.2. Note that part (a) follows from (b) by taking the non-
equivariant limit Ay = - -- = X, = 0 of the potential functions.

Our strategy for proving Theorem 4.1.1 is to use reconstruction theorems
to reduce the statement to a comparison for 1-point invariants which was
established in [BCK1,BCK2]. Typically, reconstruction results for Gromov—
Witten invariants work under the assumption that the cohomology ring is
generated by divisors. Our observation here is that in the torus-equivariant
setting, this assumption needs only to hold after localization. This enlarges
the class of varieties for which reconstruction is applicable. We begin with
a simple lemma.

Lemma 4.1.3. Let PV be acted by a torus S and let Y be an S-invariant
smooth subvariety. Suppose that the natural map H*((PY)S) — H*(YS) is
surjective (for example, this is true when the S-fixed locus (PN)S is isolated).
Then the localized equivariant cohomology ring HS(Y, C) Qcpy C(A) is
generated (as a C(\)-algebra) by divisors, i.e., by {c1(L) @ 1|L € Pic3(Y)).

Proof. There is a commutative diagram

H;®Y)<  H*(®)%) ® C]

v v
HE(Y) < H*(YS) ® C[A].
After tensor product with C(A), the horizontal maps are isomorphism by
the localization theorem. |
It is well-known that X //G = Fl(ky, ..., k,, n) admits an S-equivariant

embedding into a product of projective spaces on which S acts with isolated
fixed points. By Lemma 4.1.3, the localized equivariant cohomology

Hg(X//G, C) ®cpn C(1)
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is generated by divisor classes. Note that this is false in general without
localization. For example the equivariant cohomology of Grassmannians is
not generated by divisors. (On the other hand, since X //T is a toric variety,
both the usual and S-equivariant cohomology rings are already generated
by divisors.)

Before going into the details of the proof, it is useful to discuss the
base-change of Novikov rings (3.2.1) in the particular case of flag mani-
folds. By choosing the usual Schubert basis in Hy(Fl(ky, ..., k., n),7Z),
the semigroup of effective curve classes is identified with (Z)". We write
d = (d, ..., d,)forthe typical element in this semigroup. The Novikov ring
is simply the power series ring C[[Q1, ..., O,]]. Similarly, effective curve
classes on the toric variety X//T are described by tuples of non-negative
integers

d=n,....,dwg,--dr1y ..., dy,)

r

and the Novikov ring is identified with C[[Q;[|1 < i <r,1 < j < k]l.
A class d is a lift of d if and only if

Finally, e(d) = Zle(k,' — 1)d; (mod2). Hence the projection (3.2.1) of
Novikov rings is

@.11) p:ClQ;ll<i=<r 1=<j=<kl]l— C[[Q,...,0/ll
Qi+ (-D% P,

4.2. Kontsevich—-Manin reconstruction and reduction to 2-point invari-
ants. This step involves an equivariant version of the Kontsevich—-Manin
reconstruction theorem. In its original formulation [KM], the reconstruc-
tion theorem states that if the cohomology ring H*(Y, C) is generated by
divisors, then all Gromov—Witten invariants of Y can be reconstructed from
3-point invariants for which at least one insertion is a divisor class. These in
turn are expressed in terms of 2-point invariants by using the divisor equa-
tion in Gromov—Witten theory. We give here an extension of reconstruction
to the S-equivariant setting.

Lemma 4.2.1. Let Y be a smooth complex projective variety with S-action.
Let

P = SpA((N(Y) ® CIAD[[HE (Y. ©)"]]).

endowed with the formal S-equivariant Frobenius structure (P, %, g, 1, &g)

defined by the equivariant Gromov-Witten potential F'. Lett = (ty, ti, . . .,
try ..., tm—1) be the flat coordinates defined by a basis of H(Y, C), such
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that tgnan = (1, ..., t.) are the coordinates on the small parameter space
H§(Y, C). Let G € Op be another formal function satisfying the WDVV
equations. Assume that:

(i) Inflat coordinates G has the form (2.1.1)

G=Gy+ Z Qﬂeﬁ~t>ma11Gﬁ’
BEE,B#0

with Gg € C[Al[[tr41, ..., tm—11] and G a cubic polynomial in the
t;’s (with coefficients in C[A]).

(ii) Leg(G) = (3 —dim(Y))G.

(iii) Gy = FJ.

(i) 3,0, Gy = 04,00, F¥ |1y Jor all i, j.

(v) The localized equivariant cohomology ring HZ(Y,C) ®cpy C(A) is
generated by HSZ(Y ,C) as a C(A)-algebra.

Then G = FY.

Proof. Let P, be the S-equivariant Frobenius manifold defined by the
localized Gromov—Witten theory of Y (see Sect. 2.1). The function G
defines a formal S-equivariant Frobenius structure (P, o, g, 1, &) over
N(Y) ® C[A], and a localized Frobenius structure over N(Y) ® C(A) as
well, by viewing it as a formal function on P;, via the natural (injective!)
localizationmap¢ : Op — Op,, . It suffices to check that the localized poten-
tials F}) = «(F") and G5y = «(G) are equal. The assumptions (i)—(iii) hold
for the localized potentials as well (where in (i) we replace C[A] by C(})).

In the conformal case, a formal Frobenius structure satisfying (i) and (i)
is said to be of gc-type in [Man]. Such structure has “cup product”, defined by

Gu = ég((Zt,ﬂ,l) U (D). D)

and “‘correlators”
IO,n,ﬂ(at,-I IR ati,,) = 8ti| e 8[,',, Gﬂlt:o

which satisfy the analogue of the divisor axiom in Gromov—Witten theory.
See [Man, § 5.4]. The same will hold for the Frobenius structure defined by
our potential G, or for its localized version. We may call them Frobenius
structures of equivariant qc-type.

Assumption (v) and the usual Kontsevich-Manin reconstruction im-
ply that the localized GW-potential F, (YA) is determined recursively by
0y, 01, F (YM |7onar- The proof only uses properties of Gromov—Witten invariants
which are shared by the correlators of any Frobenius structure of equivariant
gc-type, hence it will work in the abstract case as well.

Assumption (iii) says that the abstract cup product coincides with the
usual one on cohomology. By the above discussion reconstruction applies
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and we find that G;) is determined recursively by 8t, 04, G () ltgman» With the

same recursion coefficients in C(L) as those for F, (A) By assumption (iv),
we are done. O

We go back now to the proof of Theorem 4.1. We intend to apply
Lemma 4.2.1to Y = FI, G = ¢*F'. Note that assumption (v) holds by
Lemma 4.1.3, assumption (i) holds by (3.6.3), while (i) and (iii) are
immediate from the construction of F’ in Sects. 3.2-3.5. Hence the theorem
will be proved if we can show that (iv) holds as well, i.e.,

@.2.1) 8,9, F™S| = @" (05,05, F' | 595,41 =-=sp_1=0)-

Recall that (in the notation of Sect. 2.2)

to=tr41=""=tpm—1 =0

3,0, F™5(1) = ({07, 07)).

Setting tg = t,11 = - -+ = t,,—1 = 0 and using the divisor axiom we get
r
FLS _ i FLS
@22) 0,0,F™S| = > [T(@e") o1, 0505
d=(dy,..., dy) =1

On the other hand, since

84, 03,9s; F = 85, (35 000,00 F) )
it follows that
(4.2.3) 05, 0s; F' = (07000 U0 F) N

up to a constant (in the base ring). By adding appropriate quadratic terms
to F’, we may assume that (4.2.3) holds exactly. (Recall that F is the
S-equivariant Gromov—Witten potential of X //T with the Novikov variables
specialized asin (4.1.1).) Moreover, the first Chern class of the flag manifold
satisfies

[ enm) = Y dither ~ k) = minth ~ k) = 2
d =1 !

Therefore the specialization of the left-hand side of (4 2.3)to 59 = = Sr41 =
<o = 8,1 = 01is equal to its spemahza’uon atfo=ty1 = =t,_1=0
by Lemma 3.6.1 (i). Using the divisor axiom as above in the right hand side
of (4.2.3), we conclude that

(4.2.4)
as,- 8Sj F

|S r1="=8m—1=0

= X [T (X 0™,y Uel L),

d=(dy,....dy) I=1 drd
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Using (4.2.2) and (4.2.4), the proof of (4.2.1), and therefore of The-
orem 4.1.1, is reduced to checking the following identity among 2-point
invariants:

4.2.5) (o’l,o‘/ glzsd = Z( I)Z(kl Udl()/ U o, Vi Uw)())(/z/"l;?,s

d>d

4.3. Lee-Pandharipande reconstruction and reduction to 1-point in-
variants. There is another reconstruction theorem, due to Lee and Pand-
haripande [LP1], and independently to Bertram and Kley, which reduces in
certain cases computations of (descendant) GW-invariants with any number
of insertions to 1-point descendants. In fact, Lee and Pandharipande deduce
the reconstruction result from universal relations they found among divi-
sors in the Picard group of the moduli space M 0,2(IP’N , d[line]) of 2-pointed
stable maps to P". We establish first a straightforward equivariant extension
of their divisor relation.

Let Y be a projective variety with S-action. Let M »(Y, B) be the moduli
space of 2-pointed genus zero stable maps with evaluation maps

evy, evy . Moz(Y ,3) — Y.

The moduli space inherits an S-action and the evaluation maps are equiva-
riant. Let ¥ = i be the S-equivariant first Chern class of the line bundle
on Mg, (Y, B) with fiber T;IC over the point [ f : (C, x1, x) — Y.

There is a “boundary divisor” Dy g2, in M (Y, B) corresponding to
maps with reducible domains and splitting type 8; + B, = f. It is obtained
as the image of the (S-equivariant) gluing morphism

Jgig s Mo ix, e (Y, B1) Xy Mo (.0 (Y, B2) —> Mo2(Y, B)

and one defines its virtual fundamental class in the equivariant Chow group
Ai( M2(Y, B), Q) as the push-forward of

[Mo (.01 (Y, BOT" K [Mg (1.0 (Y, B)]'"
Lemma 4.3.1. For all L € Pic>(Y), the relation
ev3 (L) N[Moa(Y, I — (ev} (L) + ( f L)) N [Moa(Y, HI
B

* Z </ﬁz L) N[D1gpp]" =0

Bi1+B2=B

holds in AS(Mo>(Y, B), Q).
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Proof. As in [LP1], since the relation is linear in L and the equivariant
Picard group is spanned over Q by S-equivariant very ample line bundles,
the Lemma will follow from the case Y = PV, 8 = d[line] and the stronger
statement

43.1) evi(L) —evi(L) — (/ﬂL)w 3 (/ﬁ L)Dl,ﬁ”z,ﬁz —0
Bi1+p2=8B 2

in PicS(PY).
The relation (4.3.1) holds after passing to the non-equivariant limit
A; = 0 by [LPI1, Theorem 1]. Therefore the left-hand side is a linear poly-
nomial in the A;’s and the corresponding equivariant line bundle is just
a trivial bundle twisted by a character of S. To check that this character is
trivial, it suffices to restrict to any S-fixed point of M O,Z(IP’N ,d[line]). There
are many possible choices of fixed points that will work. One particular such
for which the computation is very easy is the point corresponding to a stable
map with domain C U D (the union of two irreducible components) such
that x;,x, € C and f : CU D — PV collapses C to a fixed point p € PV
and maps D with degree d onto an S-invariant line in PV joining p to an-
other fixed point ¢, such that the map is totally ramified at g. The classes
and Dy g 2,3, vanish when restricted to this point, while eviL and ev;L
have the same restriction. Relation (4.3.1) and hence the lemma are proved.
O

We will use Lemma 4.3.1 to obtain a reconstruction result in the context
of the abelian/nonabelian correspondence. Recall that descendant (genus 0)
Gromov—Witten invariants of a smooth projective Y are defined by

T P T GV = / [T v ev: o,

[MO,n (Y’ ﬂ)]vir i

where y; € H*(Y) and ; are the first Chern classes of the cotangent line
bundles at the marked points. The definition extends to torus-equivariant
descendants (which will be C[A]-valued). We establish first an auxiliary
vanishing result for certain descendant invariants of X //T.

Let X//G, X//T, S etc. be as in the setting Sect. 3.1. Let 8 €
H,(X//G, Z) be fixed. Consider the moduli space

Mp = [ [ Mon(X//T, B)
BB

with the obvious evaluation maps ev; : Mg —> X//T,i =1,...,n and
virtual class [Mg]*"". Note that

H§ (Mg, C) = €D H5 (Mo, (X//T, B), C).
BB
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Introduce “psi-classes” on Mg by

Vi = Z Vi g

Pr>p

and define for cohomology classes yi, ..., y, € H3(X//T).

Ly (Tay (V)5 -+ Tay (7)) = (=) / [Tvievron
[Mﬂ]vn ;
— (_1)¢® X//T.8
= D D w0, T, )l
B—B
Recall that the intersection form is non-degenerate on the W-anti-invari-

ant subspace Hg(X//T)“. We denote the orthogonal complement by
(H3(X//T))* .

Lemma4.3.2. If &,...,6,_1 are W-invariant lifts of classes o; in
HS(X//G) and y € (H;(X//T)")l, then

In,ﬂ(Tal(éil U a))’ Ta2(62)’ ey Ta,hl (5n—l)’ Tan (V)) =0.

Proof. The W-action on X //T induces a W-action on Mg, by composing
stable maps with the automorphisms in W. The evaluation maps are easily
seen to be W-equivariant. Note also that the psi-classes are W-invariant.
Hence the class

n—1

(ev). (evi(@) [Tw T evi @) 0 [M1™)
i=1

i=1

is W-anti-invariant. The lemma now follows from the projection formula.
O

Proposition 4.3.3. Let X//G, X//T, S be as in the setting Sect. 3.1. As-
sume that the localized equivariant cohomology Hg(X//G, C) ®cppy C(X)
is generated as a C(L)-algebra by divisors (that is, by ci(L) ® 1 for
L € Pic’(X//G)). Let o;, oj be any equivariant cohomology classes on
X//G, with W-invariant lifts 6;, 6; to X //'T. If the identity

(432 (100, 000 45% = 3 (D P (1,5: Uw). 5; U ) {5
BB
holds for o; = 1, then it holds in general.

Proof. 1t is enough to prove the Proposition for a fixed choice of lifts of
cohomology classes on X //G to X//T.



The abelian/nonabelian correspondence and Frobenius manifolds

It follows immediately from Martin’s integration formula (3.1.3) that

—~—

(4.3.3) c/Uoc"Uw=0'Uc"Uw

forany o', 0" € H{(X//G, C) (see e.g. [BCKI, Cor. 2.3] for an argument).

Assume first that the equivariant cohomology ring of X //G is generated
by divisors without localization (this happens for example when X //G is the
complete flag manifold FI(1, 2, ...,n —1,n)). Using Lemma 4.3.1 and the
splitting axiom for GW-invariants we find that (t, (0;), o j)é /2/ (g,s is expressed

recursively (with C[A]-coefficients) in terms of invariants (z,/(¢”), 1)3( /2/ (;Z S

(these can be further reduced to 1-point descendants by the fundamental
class axiom for GW-invariants). This is just the reconstruction of Lee-
Pandharipande.

Recall the notation 15 g(7,(6; Uw), 6;Uw) introduced above for the right-
hand side of the identity (4.3.2). The divisor relation in Lemma 4.3.1 can
be extended in an obvious manner to the moduli space Mg for
W-invariant lifts L of line bundles L € Pic%(X//G). By Lemma 4.3.2, the
reconstruction procedure applies to the invariants I g(7,(6; U w), 6; U w)
and (by (4.3.3) and the equality €(B; + B,) = €(B1) + €(B2)) it expresses
them in terms of 1, g/ (7, (0’ U w), w) with the same recursion coefficients.
The proposition is proved in this case.

In the general case the same argument will work word for word, except
that the recursion coefficients will now be rational functions rather than
polynomials in the A;’s. O

Remark 4.3.4. In view of Lemma 4.3.2, one might be tempted to try to
extend the version of Lee—Pandharipande reconstruction above to des-
cendants with any number of insertions and -classes at all points. How-
ever, this is not possible, because an analogue of the fundamental
class axiom does not hold for the invariants I, g (indeed, in general
I, 3(61Uw, 62, ...,0,-1,w) # 0). This is the reason for which the “twist-
ing” by » w is necessary.

Corollary 4.3.5. The following identity holds between Gromov—Witten in-
variants of X//G = Fl(ky, ..., k., n) and those of the abelian quotient
X//T: foranyd = (dy, ...,d,) € Hy(Fl,Z), any a > 0 and any equivari-
ant cohomology classes o;, o on Fl, with lifts y;, y; respectively,

lS _ X T,S
(2a(01), 0))0 50 = ), (=DEE iz, (y, Uw), v Vo) (105
d—d

Proof. By Lemmas 4.1.3 and 4.3.1, it suffices to check that

434 (nlo). Dozg = Y (DS (n (U w), ) )5,

d>d
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This is (essentially) proved in [BCK1,BCK2]. However, since the ac-
tual statement is explicitly written (see formula (5) on p. 124 and Remark
on p. 125 in [BCK1]) only for Grassmannians and non-equivariant invari-
ants, we should say a few words here.

For the general flag manifold, a correspondence between the equivariant
“small” J-functions of FI and X //T is given by [BCK2, Theorem 1] (see
the next section below for more about J-functions). Reading the argument
in [BCK1, pp. 124-125] backwards', the equality (4.3.4) follows from the
J-functions correspondence, provided that for any factorization

o= ({ar” ) () o( 11 )

acA acd\A
we have
(4.3.5) \/(_IV)VQD+ <l_[ C?(La)> *small ( l_[ C?(La)) = w,
| | acA acd\A

where gy 18 the small equivariant quantum product on X //T, restricted
to Hg(X //T, C)W and with the Novikov variables specialized as in (4.1.1).
By a simple degree counting, this last equality is always true when X//G
(and hence X//T, cf. Sect. 3.4) is a Fano variety. Indeed, the left-hand side
of (4.3.5) is W-anti-invariant, homogeneous, and of the form

® + quantum corrections.

However, o is the unique class of lowest degree in Hg (X //T, C)“, and in the
Fano case the quantum parameters have positive degree. Hence the quantum
corrections must vanish. O

It remains to observe that relation (4.2.5) is a special case of the corollary
to conclude the proof of Theorem 4.1.1. O

Note that the only instance in this section where we have used that X //G
is a flag manifold was in quoting the small J-function correspondence from
[BCK2]. In other words, we have proved

Theorem 4.3.6. Let X, G, T, S etc. be as in the setting Sect. 3.1. Assume
that X //G is Fano of index > 2 and that its equivariant cohomology is
generated by divisors after localization. Then Conjecture 3.7.1 holds if and
only if (4.3.4) holds, if and only if the abelian/nonabelian correspondence
for small J-functions holds.

! The specialization of the f;-variables there corresponds exactly to our specialization
(4.1.1) of the Novikov variables Q; here.
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A similar statement holds if we only assume that c;(7(X//G)) is nef,
by using Lemma 3.6.1 (ii) in the argument just above (4.2.4). However,
the change of coordinates s() will be nontrivial even for the restriction
to subspace {s,+; = --- = s,—1 = 0}, and coincides with the change of
coordinates in the abelian/nonabelian correspondence for small J-functions
(see [BCK2, Conjecture 4.3]). This is precisely analogous to the mirror
theorem [Giv1] for hypersurfaces in projective space. We leave the precise
formulation for the interested reader.

5. The abelian/nonabelian correspondence for J-functions

Our goal in this section is to explain why Conjecture 3.7.1 is equivalent to
(an extension to the big parameter space of) the correspondence between
the J-functions of X //G and X //T proposed in [BCK2, Conjecture 4.3]. In
particular, by Theorem 4.1.1 and Corollary 5.3.4 below, the correspondence
holds for the flag manifolds Fl(k, ..., k., n).

5.1. Deformed flat coordinates. First we recall the definition of deformed
flat coordinates following Dubrovin [Dul,Du2,Du3]. Let M be a Frobenius
manifold (say, analytic, for simplicity), with Euler vector field. There is
a deformed flat connection V< on ®,, given by

Vin = Ven — 7 Exy

(see [Dul, p. 189 and p. 323] and also [Du3]; however, we follow Givental
for the convention on z). By identifying the cotangent sheaf €2}, and the
tangent sheaf ®,, via the flat metric, a deformed flat connection is induced
on Q1,. A coordinate system J; of M is called a deformed flat coordinate
system if dJ; are horizontal sections. In other words, J; form a complete
solution space to the second order linear PDE system

(5.1.1) 20,0, =Y clioyJ
Y

where t; are flat coordinates and cffj are structure constants of multiplications,
ie., d; x a,j = Zk C'z,j{/atk-

Suppose that the potential function F' (defined up to quadratic terms)
for the Frobenius structure is of the form F = F, + F,, with F. a cubic
form of the flat coordinates #; and F, € Cl[qy, ..., g, t,41, ..., Ig]] such
that ¢; = €' and F, = 0 modulo the ideal (¢, ..., g,) (cf. 2.1.1).

Consider the normalization condition

D Jidy =zl =29, +1+0@E")  (mod (g1, ..., ),

where t = ) t;9,,, the products of vector fields in the exponential are the
“cup” products (determined by F,; = (1/6)g(t Ut, 1)) and 1 = 9. The
normalization uniquely determines deformed flat coordinates once the flat
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coordinates are chosen (see [Du2, Lemma 2.2]). We will call ) J;0; the
J-function if it is normalized as above.

5.2. J-functions in quantum cohomology. The J-function plays an im-
portant role in Gromov—Witten theory. Let ¥ be a projective algebraic
manifold. Then the J-function Jy for the (formal) Frobenius structure de-
fined by the quantum cohomology of Y can be constructed using descendant
Gromov—Witten invariants. Let {¢;} be a homogeneous basis of H*(Y'), with
Poincaré dual basis {¢'}. Let t := > ti¢;. Jy coincides with the assignment

b
=Y

cf. [CG,Giv3], where #_ = ! H*(Y) ®c N[Y][[!]].
Here we use the double-bracket notation introduced in Sect. 2.2, so that

i 1 1(@i * *
<<Zflﬂ>>: Z Qﬂzn! evl(¢)ev2(t)...evn+l(t)

ﬂENE] n>0 [MO,n+1(Y’,B)]Vir <= w

(5.2.1) H*(Y)9t|—>z+t+z¢i<< >> ez +it+ H_

where i = | and 1/(z — ¥) is formally expanded as a geometric series.
The normalization condition

Jy(t, z) = ze'l*

modulo quantum corrections follows from the well-known result

Yl = (=30 i Y =0 =3,
Mo
(Note that in the paper [BCK2] Jy (t, 7)/z is used for J-function, i.e., a dif-
ferent normalization.)

5.3. The abelian/nonabelian correspondence. Let X, G, T be as in the
setting Sect. 3.1. (For simplicity, we do not consider the equivariant theory
here; the interested reader can readily make the necessary modifications to
cover this case as well.) We have the W-induced Frobenius structure over
the Novikov ring N(X//G) constructed in Sects. 3.2-3.6. We will keep the
notations, and make liberal use of all its properties proved there. Moreover,
from now on, we assume that Conjecture 3.7.1 holds for X //G and X //T.

If Jx)c = Z;”;Ol Ji.xyc(to, - .., tu—1, 2)0; is the J function of X //G, as
given by (5.2.1), put

m—1

Jxyc(t, 7)== Z Jixyc(o, .., ty—1,2)Vi.
i=0

(Recall that y;’s are chosen W-invariant lifts of the o;’s.)
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Lemma 5.3.1. fx//G(t, )Uw= (zawlx//T)|Q5 :(_l)e(ﬁ)Qﬂ’N(go(t), 7).

Proof. Both sides satisfy the normalization condition J = ze"/* U » mod-
ulo quantum corrections. Therefore it suffices to check that {9,J;}; forms
a deformed flat coordinate system for (N, o, “g, e, €) if Js is a deformed
flat coordinate for (M, *, g, e, €) such that {J;| y}; form a coordinate system
of N. Indeed, by Conjecture 3.7.1, which we’re assuming, the Frobenius
manifolds P and N are isomorphic via ¢.

First, we rewrite the PDE (5.1.1) as

(5.3.1) 20;0;0 = (8; % 0;)J.

This is useful in computations.
Next, if £ and » are ®V-horizontal vector fields, then

20¢0p90Ji = d(gonwwdi
= Ozx(ear) i
= Zagamw.],'
= 720:0,0,,J;

since w and 1 * w are V-horizontal. |

Remark 5.3.2. Lemma 5.3.1 reveals the relation between 7 and the s = ¢(7):

o0
i _1eB b .
t:s—l—z( Q0 Z Vi<V V0,08, 08 >0,00.7

where {y/ U )} is the basis of H*(X//T)“ dual to {y; U w}, that is,
/ y,'Ua)ijUw:Sf.
X//T

Define, for T € N,

(5.3.2)
I(t,2) : = (( l;[ zaa) JX//T)‘Qﬁ=(,1)e<ﬂ>gﬂ,;\;(r’ 2)
= Z(_l)e(ﬁ)Qﬂ Z 1_[ (Cl(La) +zf3 cl(La))Jf//T‘N(T, 2)
s fropacdy

where 0, is the (V-flat) vector field associated to ¢;(L,), the ~derivative
of J is taken component-wise and J}? /T is the coefficient of Q” in Jx;t

before specializing the Novikov variables. The latter equality follows from
the divisor axiom.



I. Ciocan-Fontanine et al.
Theorem 5.3.3. There are unique C'(t, z) € N(X//G)[z][[t]] such that

Ip(1), 2) = Y C'(1, )20, Jx 6 (1, 2) V.

1

Proof. For the proof we use Givental’s description [Giv3] of the rational
Gromov—Witten theory for a projective manifold ¥ by means of a certain
Lagrangian cone Ly with special properties (see [Giv3, Theorem 1]).

Let s € N. By the very definition

Its, =) = i(( l_[ Za"‘) JX//T)‘Q/é:(fl)E(ﬂ)Qﬁ(s’ -9 ezl

acd

where zL := zT,Lx,t is the tangent space to the Lagrangian cone at the
point p = Jx1(s).

Let {¢,} be a basis of H*(X//T) obtained by adjoining to the basis
{y; U w} of the W-anti-invariant subspace H*(X//T)* a basis of
(H*(X//T))*. Since {20, Jx/1(s, —z)} form a basis of zL/7’L over
N(X//T),

I(S, Z) = Z CM(S, Z)ZBMJX//T|Q,§ =(—1)eB QP (S, Z)

for some unique C* (s, z) € N(X//T)[z][[s]].
Since I is W-anti-invariant by construction, the terms corresponding to
the basis of (H*(X//T)%)* must vanish and we obtain

(533) 1.2 = Y (s, 2)@00dxm) i — 1y 5. 2)-

l

Now d;; * @ = 9,,u,, therefore by (5.3.1)

(534) Y "5, 2) @By 00dx )| i 1yeim i (8: 2)

1

=3 C"(s, 2)(205, 200 x| g _ 1yt 5 (5 2)-

1

Finally, Lemma 5.3.1 gives

(5.3.5) Z C"Y (s, 2) (205,200 JIx 1) | 0F =(—1)« 8 (85 2)

l

= Z C"Y(t, 2)z0, fX//G(la 7) Vo,

1

where ¢(f) = s. The theorem follows from (5.3.3), (5.3.4) and (5.3.5). O
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Corollary 5.3.4.

Txyc(t,2) Vo = I(F, 2) + Z C'(7,2)20;1(7, 2)

l

for some unique C'(f,z) € N(X//G)llz, )], where T = Y _#;y;. The ex-
pression of t in terms of T is uniquely determined by the expansion of the
right-hand side as z+1(f)+ O(z~") (and coincides with the formula (3.6.2)).

Proof. The theorem above shows that, with the identification of cohomo-
logy spaces H*(X//T)* with H*(X//G) by the map 6 U w +— o, the
I-function generates the Lagrangian cone £y, describing the rational
Gromov—Witten theory of X //G [Giv3]. Since {z9; I(7, —z)} also form a ba-
sis of L/zL, where L is the tangent space of Ly ¢ at the point I(7, —z), the
corollary follows.

A constructive argument may also be given, using the “Birkhoff fac-
torization” method. See [CG], Corollary 5 and the paragraph before it for
details. m|

Corollary 5.3.4 is a generalization of [BCK2, Conjecture 4.3] to the
“big” parameter space. The arguments in this section can be reversed to
show that the corollary implies Conjecture 3.7.1

6. Flag manifolds for other classical types

In this section, we extend the abelian/nonabelian correspondence in the
presence of additional twists by homogeneous vector bundles and apply it
to the case of generalized flag manifolds of Lie groups of types B, C, D.

6.1. Twisting by bundles. Let S x G act on X as in Sect. 3.1. Let 'V be
a G-representation space (as in [BCK2]). There are S x G x C*-actions on X
and 'V (where C* acts trivially on X and homothetically on V), inducing
S x C*-equivariant vector bundles

VT = XS(T) XT vV, ’VG = XS(G) XG 1%
over nonsingular quotients X//T and X//G, respectively. Put C[\'] :=

H*(BC*).
There is an S x C*-equivariant Frobenius structure on

z' = Spf<N(X//T)[)»]

sec(([[(recom e (varmmeee((1) T])
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defined by the S x C*-equivariant genus zero Gromov—Witten invariants of
X //'T twisted by (the equivariant Euler class of) Vr. Here we introduce the
extra coefficient ring (C(( /\]’ )) to invert

rkVp
SxC* KVr—i
Cop” (VD) = ()Ml (V).
i=0
We list some comments on this Frobenius structure for clarification, and
refer the reader to [CG] for details.

e The twisted metric gv, is given by
gvr(a,b) = / aUbu ctsof,(c*('VT), fora, b € HS(X//T).
X//T

e The twisted product is given by the requirement that

g'VT(a *yr b’ C) = <<Cl, bs C))VT

QB
= Z Z \ / ~evj(@evs(b)evs(c)
e JIM o3 (X//T, BTV

B eNE(X//T) "
X eVl (1) ... eVl 5(0) Compop(R* eV’ V),
where 7 denotes the projection M ,4+4(X//T, B) — Mo ,3(X//T, B)
of moduli stacks of stable maps which forgets the last marked point.

e The Euler vector field is €y, = € + & + Ec+ — ¢} (V).
e The normalized (S x C*-equivariant) J-function is

o T,
i o Vr

where {¢,;} and {¢'} are dual bases with respect to the twisted metric gv,.

Similarly, we construct an S x C*-equivariant Frobenius structure on
the formal scheme P’ associated to Hg(X//G) ® (N(X//G)[A] ® C((Al,)))
using genus zero S x C*-equivariant Gromov—Witten invariants on X //G
twisted by Vg.

Now, as in Sect. 3.2, we can further twist the Frobenius structure on Z’ by
w = \/ \\}VI | c? (L) in order to induce an S x C*-equivariant Frobenius
structure on the formal scheme N’ over N(X//G)[A] ®¢c C(( A],)) obtained
as in loc. cit. by fixing a lift of Hg(X//G) to Hg XxX//mW.

Conjecture 6.1.1. Letg : P’ — N’ be the isomorphisms of formal schemes
over N(X//G)[L] ®c¢ C((x]/)) defined by ¢*(s;) = t;. Then ¢ induces an
isomorphism of formal S x C*-equivariant Frobenius structures.
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Theorem 6.1.2. Conjecture 3.7.1 implies Conjecture 6.1.1, and further-
more,

FSxC* SxC*

J’VG (t’ Z) Uw = Zan’VT |Q/§ =(—1)<B QB N ((P(t), Z)

Proof. 1t is enough to show the equality of J-functions above, since it
implies that ¢ preserves the product structures.

Abusing notation, for y € Hg .(X//T)*, 0 € Hg, .(X//G), denote o
by y/w if 5 Uw = y. We also denote by oCi//G, OC%/C(:, and OC%ZC* the
Lagrangian cones given respectively by the S-equivariant, S x C*-equi-
variant, and V¢ -twisted, S x C*-equivariant rational GW-invariants of X //G.

By (the S-equivariant version of) Lemma 5.3.1

S
ZawJX//T|Q/§ =(=1)B) 0B N’ (—2)

eLS .
w X//G
Hence
ZE)wJ>S(//T|Q5 —1ehrgp v (72) SxC* SxC*
Ay w € Ay Ly )6 = Ly,
by [CG, Corollary 4], where
AVG = 1_[ bp,' ()"/7 Z)’

pi: Chern roots of Vg
, WA p)In( + p) — (' +
b,(\', z) = exp (( pint Z prmen)

BZ z 2m—1
m
+m2>(:)2m(2m— 1) (k’—i—p) )

(and B,,, are the Bernoulli numbers). Since

s XS
Z8wJX//T|QE =(—1)<P QB N’ 200Dy Ix 1 | 08 =(—1)<B 0F N’
Ve ® - a)

and
Ay, = Ay, (mod ker(Uw))
we conclude that

SxC*
200y

oF =(7])e(ﬂ)Qﬁ,N/(_Z) oCSXC*
€Ly, .

6.1.1)

w
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Since the J-function Jy,, (—z) is uniquely characterized by the intersec-
tion of the Lagrangian cone L, with the subspace —z 4 z#_ as in [Giv3],
it follows that (6.1.1) is the J-function for P’. That is,

SxC*
20y Jy,

t,z) =

S><(C*( 0F =(—1)B 0B N’

Jyg

(r(®), 2)

for some unique (). As in Corollary 5.3.4, the relation between t and ¢ is
given by the expansion of the right-hand side with respect to z.
We have

g'VG(at,'v atj) + O(Z) = g’VG(atiJ’VG’ athvG)
= gVT(ZatianVT, ZatianVT)
= g’VT(arli*VTw’ anj*'vTa)) + O(Z)

where n; := 0, (7). We conclude that n; v, @ = y; Uw, hence t(f) coincides
with the map ¢. m|

Remark 6.1.3. If Vg and Vy are generated by S-equivariant global sec-
tions, then J%G and J%T are well-defined without the auxiliary variable A’

(see [CG]) and hence the equality of J-functions in Theorem 6.1.2 also
holds without A'.

6.2. A simple lemma. Let X be a nonsingular projective variety with an
S-action whose fixed points are isolated, and let Y be a connected com-
ponent of the nonsingular zero locus of a regular S-equivariant section of
a S-equivariant bundle E. Suppose that E is generated by S-equivariant
global sections. Let i denote the inclusion of Y in X.

Lemma 6.2.1. If i*(7) = 1, then Jy(1,2)|gi_gia = i*Jo(f,2) where
|gd_gixa denotes the Novikov ring base change given by the pushforward
i : NE\(Y) — NE|(X).

Proof. For each fixed point p; of X under the S-action, choose a nonzero
class §; in Hg(X) ® C(A) supported near p;, and let {8’} be the dual basis,

that is, fcfop(E)m[X] S U d; = §;;. Note that for nonzero 8 € NE;(X),

, 3 i*8) A s
l*JﬁS;’ﬂ(f,Z)= Z n'/ wnevTJFi(f)

kxS Chop (et s ENNIM 0,1 (XA & — W 4y
i*8 ik
-y oy P Hatao.
k:pers ' deNE(Y) : ivamp M0 LT E TV

where the latter equality follows from [KKP]. Note that i *J:i’ﬂ (f) = 0if
there is no d € NE;(Y) such that i,d = B. Since {i*8;} and {i*6} form
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adual pair of bases in Hg (Y) ® C(A) with respect to the equivariant Poincaré
pairing, we are done. O

Remark 6.2.2. The above Lemma is true for the nonequivariant J-functions
as well, since both sides of the identity can be specialized to A = 0.

6.3. J-functions of flag manifolds of classical type. LetY be a generalized
flag manifold K/ P, with K a simple complex Lie group of type B, C, or D
and P a parabolic subgroup. It can be viewed as a connected component of
the zero locus of a canonical section of a homogeneous bundle V¢ over an
appropriate type A partial flag manifold X//G = Fl(ky, ..., k., n). Here

v — S2(V*)  for types B, D
Tl A2V fortype C

where V is the fundamental representation space of GL;, (C). Note that Vy
is decomposable into a direct sum of line bundles (since T-representations
are completely reducible).

Leti : Y C X//G be the natural inclusion and put

o= o (I 280)w)
acd

J5 pi

=Y I I i+kaifp.

B eNE|(X//T) k=1 pj: Chernroots of V

Note that Iy, is a H*(X //T)-valued series and I is a H*(X //G)-valued
series.

Let S be a maximal abelian subgroup of the simple complex Lie group K.
It acts on the flag manifold Fi(ky, ..., k,, n) with isolated fixed points and Y
is an S-invariant submanifold. Since bundles Vg and Vy are generated by
S-equivariant global sections and i* : HJ(X//G) — HS(Y) (as well as
i*: H*(X//G) — H*(Y)) is surjective, we obtain the following

Corollary 6.3.1. Fixa subspace Ny of H*(X //T)W which is a lift of H*(Y)
under the composite surjection i* o (1*)~' o j*. The J-function of Y can be
expressed as

0Ff =(=1)eB 0B N’

205 Iy (T, z))

w

Tyt D) ga_gia = I (1. ) + Y CH(x, z)i*(
k

for some unique C¥(t,z) € N(X//G)[z, t]l, where &, are coordinates
OfNy.

Proof. Due to Remark 6.2.2, Jy = i*Jy,. Moreover, by Remark 6.1.3,

Jy., = J ) .
Ve w Vr 0F —(—1)<B 0B, N’
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Now apply the quantum Lefschetz theorem of Coates and Givental [CG]
and use a similar argument to the one in the proof of Theorem 5.3.3 to

o (Tvg (—2) .
conclude that z*( VGw ) ) generates the Lagrangian cone Ly. O

Remark 6.3.2. This in particular reproves the result on small J-function
of flag manifolds of types B, C, D in [BCK2]. No coordinate change is
necessary for the explicit description of this small J|, .

7. Appendix: Multi-point GW-invariants of Grassmannians

Recall from Sect. 4.3 the notation

In,ﬂ(yl, T y”) = (_l)f(ﬁ) Z <yl’ ey yn)())(,{l/,’l/; .
B—p
Theorem 4.1.1, together with (3.5.3) (or, better, (4.2.3)), imply that Gromov—

Witten invariants of a flag manifold can be written in terms of invariants of
the corresponding toric variety X //T by a formula of the form

(O’,’l, ey O','n )()){{,/C; = In,ﬂ(6i1 ey 5',',[72, 5',',!71 U w, 5’,’n U (,()) + correction
where “correction” is an expression involving invariants Iy g/(. .., 6, U o,
6 U w) withn’ < n and 8/ < B. Without going into too many details, this
can be seen as follows. Using the double bracket notation for derivatives of
Gromov—Witten potentials mentioned in Sect. 2.1, one writes (4.2.3) as

(o1, o)) x 6 (8) = (61, 6;)) x /1 (1(5)),

with 7(s) the inverse of the change of variables (3.6.2). This is an equality of
power series in s-variables, and the formula for GW-invariants is obtained
by identifying the coefficients of monomials in the s;’s. The coefficient of
an s-monomial in the power series 7;(s) can be explicitly expressed using
the Lagrange Inversion Formula (see [GJ, Theorem 1.2.9]) in terms of the
coefficients of 7-monomials of lower total degree in the power series s(7)
from (3.6.2).

The above discussion shows that the correction term will in general be
quite complicated. Moreover, while it is possible in principle to give an exact
expression, this will require the use of Lagrange inversion for computing
the inverse 7(s) of the coordinate change (3.6.2), or, equivalently, the inverse
(expressed in s-variables) of the matrix of quantum multiplication with @
on a lift of H*(X//G).

However, since flag manifolds are Fano of index > 2, a different ap-
proach that uses Lemma 3.6.1(i) will allow us to reduce to computing only
the inverse of the matrix of small quantum multiplication with . In the
case of Grassmannians, when the associated abelian quotient is a product
of projective spaces, it is an easy observation that the small quantum prod-
uct with o is trivial ([BCK1, Lemma 2.4]), hence no matrix inversion is
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necessary. We present the derivation of closed formulae for Grassmannians
in this appendix.

Let Gr := Grass(k, n) be the Grassmannian of k-planes in n-space,
thought of as the GIT quotient Hom(C*, C") //GL;(C). The abelian quotient
is P := (P"")*. We consider the usual Schubert basis {o;} of H*(Gr, C),
indexed by partitions A whose Young diagrams fitin a k x (n — k) rectangle.
We denote by £ (k, n) the set of all such partitions. The intersection form
in this basis is given by

/ o) UGM = CSM)LV,
Gr

where 1Y the complementary partition to A in the k x (n — k) rectangle.
The Grassmannian has Picard number 1, so the Novikov ring is C[[Q]].
On the other hand, the Picard group of P is isomorphic to Z* and is gener-
ated by Hy, ..., Hy, with H; the pull-back of the hyperplane class on the
j™ factor. The Novikov ring of P is C[[Q;, ..., Qk]], and the specializa-
tion of Novikov variables is Q; = (—1)*'Q. In this case we also have
a “canonical” lifting of a class on Gr to a W-invariant class on P by taking

0, = Sy (Hy, ..., Hy),

with S, the Schur polynomial of the partition A. A curve class d =
(dy, ..., d;) onPisaliftof the curve class d on Grif and only ifozl di=d.

Finally, we have
()
\/ OO iy,

l<j

Let A',..., A be (not necessarily distinct) partitions. The generating
function for the /-point invariants of Gr with o;:’s as insertions is

G
oty oo s o)) Grlyg = E q* (021, s 030 1>
d=0

where g¢ = (Qe'm)?. We start with three-point invariants. Let &, be the
horizontal vector field (for the connection “V) in ®y corresponding to o;
via the isomorphism ¢ of Frobenius manifolds in Theorem 4.1.1. We have
(cf. (3.5.3)

({02, 00, 0 6r () = (6, (5. (F))) (9(D)
= (61,6, U@, 5, Uo))e| , _ ot oy (@(D)
where é,\ is an extension of &, to a vector field on M. To unburden the

notation, this extension of vector fields will be understood when necessary,
and the same letter will be used for a vector field in ®, or its extension
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to ®,,. Moreover, the specialization of Novikov variables and the restriction

to N will be denoted by ({(...)). Hence we rewrite the last equation as

(7.0.1) (o2 0, 00))6r (1) = (&3, 6 U @, G, U ) p(9(1)).

By Lemma 3.6.1 (i) we get

= <(E)u &u Uw, 6, U w))]P

<(0)u Ous Uu))Gr(t)|

Tsmall 3 small

From the relation &, » @ = 6, U w, and the fact that 6, * w|;, , = 61 U o,
we obtain

(7.0.2) &7 = 01

It follows that

G P~ = ~
(02,00, 00030 = 15,463, 6, U w, 6, U o)

_ (k=1)d ~ =~ ~ P
=(-1) > (616, U0. 5, U5
dy+--+dr=d

an equation which was proved in [BCK1].
To obtain 4-point invariants we take the derivative of the relation (7.0.1)
and get

(7.0.3)  ({ox, 0% O, 00))6r() = Ex (((Er, 6 U @, G, U 0))p(@(1)))

= (6. 6., 6, U, 6, U 0))p(p(1))

+ ((Ve, 61, 6, U, 6, Uw))p(p(d),
where V = V¥ is the connection on M. Since
0="Ve & xw=V (6 o)
= (Ve &) xo+ Y ((Er &, 0 6,U0) 0y Vo),

acP (k,n)

it follows that

(7.0.4) Vebri=— Y ((6n 8, 0,6,U0))pE.

acP (k,n)

Combining with (7.0.3) we find

(705) (<Unv 0% Ous Gv))Gr(l)
= ((6x. 61,6, U, 6, U 0))p(9(1))
- Z (x> &1, 0,5 U @) p((Eav, 6 U 0,5, U @) p(9(0)).

aeP (k,n)
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Now we restrict to .y, using (7.0.2), to get
G
(aﬂv O3, Gpn Orv)o,:t,d
= I, /(6+.6,,6,Uw, & Uw)
= > Y 1 (6r 60 0.6,V (640, 5, U, &, U ).
aeP (k.n) e+ f=d

The following remark is in order: while the left-hand side of the last formula
is manifestly invariant under permutations of the indices =, A, i, and v, it is
not at all obvious that the right-hand side has this property. The invariance
can, however, be checked directly using the splitting axiom for Gromov—
Witten invariants, the vanishing result in Lemma 4.3.2, and the triviality of
the small quantum product with w.

Taking another derivative in (7.0.5) we get

(005 O, O3, O, 00)) G (1)
= (£, 7. 5.6, U, 6, U w))p(9(1))
+ ((Ve,bx, &1 6, U o, 6, U w))p(0(1)
+ ({52, Ve, 6.6, U o, 6, U w))p(0(1)
- Z(((Ep, Er 6, 0,5,V 0)p((Eav, 6, Uw, 6, U o)),

(Ve,&x, 61, 0,64 U 0))p((5av, 6, U0, 5, Uw
(Exs Ve, 61, 0,6, U 0))p{(Eav, 6, U0, 65, U
(Exs 81y 0,6, U 0))p((5p, 8av, 6 U, 6, Uw
(Exs 61, 0,54 U 0))p((Ve,60v, 6, U0, 5, Uw

+ P
+ P
+ P

) (@(0).

As above, we use (7.0.4) to replace the V¢, &, insertions, then restrict to fgmgr
and obtain the following formula for 5-point invariants:

(
(
(
+

~, >~ ~, ~,

)
)
M,
)

Gr
(Op’ O, Oy, o—/,h OU)O 5,d

=I5 /(65 67,6..6, Uw, 6, Uw)

- Z Z (I;Pje(ép’ 6ﬂ’ 6')»’ w, 6a ) w)lépjf(éiav, 6’;1. U w, 5’\; U Cl))
a e+f=d

+ IAIEL)(&/)’ 6‘]‘[, Cl), 5'a U (,())IEEf(&av, 6')” 6"u U Cl), 5‘U U w)

+ Iffje(ﬁp, O, @, G4 U w)Iffjf(@v, 6ry 6, U, 6, U )

+ 1} (6. 65, 0,5, U )} ;(6av. 5y, 6, U, G, Uw))

+ Z Z (14.0(8p, G, @, 5y U w)lfjf(&bv, Gy, 0,6, Uw)
a,b e+ f+h=d

P ,~ ~ ~
x I3 (64,6, Uw,,Uw)
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P/~ = ~ P o~ ~ ~ P
+14,(6), 65, 0,6, Uw)ly 1(Gpv, 67, 0,6, Uw)];,
X (6q4v, 0, Uw, 6, Uw)
P~ =~ ~ P~ =~ ~ P
+ 14 (67, 03, @, 6, Uw) I, ((Gpv, Gp, ,6,Uw)];,

X (Gq4v, 0, Uw, oy Ua))).

It is now clear how to proceed to obtain and prove by induction a formula
for Gromov—Witten invariants with an arbitrary number of insertions. We
leave this to the reader.
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