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1. Introduction.

Let X be a smooth projective variety over C with the (linearized) action
of a complex reductive group G, and let T ⊂ G be a maximal torus. In this
setting, there are two geometric invariant theory (GIT) quotients, X//T and
X//G, with a rational map Φ : X//T − −> X//G between them. We will
further assume that “stable = semistable” in the GIT and that all isotropy
of stable points is trivial, so X//T and X//G are smooth projective varieties,
and Φ is a G/T fibration.

Ellingsrud and Strømme [ES] and Martin [Mar] studied the relation be-
tween the intersection theory of such quotients. In particular, there is a lift of
cohomology classes γ ∈ H∗(X//G,Q) to invariant classes γ̃ ∈ H∗(X//T,Q)W

(for the action of the Weyl group W ), and Martin’s integration formula relates
the Poincaré pairings:∫

X//G

γ ∧ γ′ =
1
|W |

∫
X//T

(γ̃ ∧∆+) ∧ (γ̃′ ∧∆−)

where ∆+ =
∏
c1(Lα), product over the positive roots α (with line bundle

Lα), and ∆− is the corresponding product for the negative roots. (For a root
α of G, the 1-dimensional T -representation Cα with weight α gives rise to the
T -equivariant line bundle X ×Cα, hence to an induced line bundle Lα on the
quotient X//T .)

Gromov-Witten theory generalizes the intersection theory of a smooth pro-
jective variety Y by means of intersection numbers on moduli spaces of maps
from curves to Y . In [HV], Hori and Vafa made a “physics” conjecture relating
Gromov-Witten theories of X//G = G(s, n), the Grassmannian of s-planes in
Cn, and X//T = Pn−1×· · ·×Pn−1 = (Pn−1)s (a mathematical version of the
conjecture for genus zero curves was proved in our earlier paper [BCK]), and
they suggested that their conjecture should extend to general flag manifolds.
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In this paper, we contend that the appropriate generalized context for the
Hori-Vafa conjecture is that of nonabelian/abelian quotients described above
and we state precise mathematical conjectures for the genus zero theory. In
the second part of the paper, we prove the “J-function” conjecture for flag
manifolds.

Given a smooth projective variety Y , a class d ∈ H2(Y,Z), cohomology
classes γ1, ..., γn ∈ H2∗(Y,Q) and a1, ..., an ≥ 0, then 〈τa1(γ1), · · · , τan

(γn)〉d ∈
Q denotes the associated (genus zero) Gromov-Witten invariant (see §3)

When a vector bundle E on Y is given, one can also define Gromov-Witten
invariants twisted by a multiplicative characteristic class of E, see [CG]. Our
main conjecture (in a somewhat imprecise form, see (4.2) for the precise state-
ment) can be viewed as a “quantum” version of Martin’s integration formula:

Conjecture 1.1. The genus zero Gromov-Witten invariants of X//G are
expressible in terms of genus zero Gromov-Witten invariants of X//T twisted
by the Euler class of the bundle E = ⊕α∈{roots of G}Lα.

The n = 1 invariants suffice for many applications to enumerative geometry.
Here, a cohomology-valued formal generating function of (t0, t) ∈ H0(Y,C)⊕
H2(Y,C) (and an additional parameter ~) is formed:

JY (t0, t, ~) = et0+t/~
∑

d

e
R

d
tJY

d (~),

with JY
d (~) defined by

∫
Y
JY

d (~) ∧ γ =
∑∞

a=0 ~−a−2〈τa(γ)〉d.

A special case of Conjecture 1 says then that the J-function ofX//G can be
calculated from the J-function of X//T . Precisely, the relation is as follows:
Set

Id(~) :=
∑
ed7→d

∏
α

∏ed·c1(Lα)
k=−∞ (c1(Lα) + k~)∏0
k=−∞(c1(Lα) + k~)

 J
X//Ted (~),

summed over all curve classes d̃ ∈ H2(X//T ) lifting d ∈ H2(X//G) (see (4.1)),
and

I(t0, t, ~) = et0+t/~
∑

d

e
R

d
tId(~).

Conjecture 1.2. JX//G(t0, t, ~) is obtained from I by an explicit change
of variables (“mirror transformation”). If X//G is Fano of index ≥ 2,

JX//G(t0, t, ~) = I(t0, t, ~).

Remarks: Conjecture 2 resembles the quantum Lefschetz theorem for “con-
cavex” bundles (sums of ample and anti-ample line bundles). Indeed, the
modification to Jed has exactly the form it would have if ⊕Lα were concavex
(which it isn’t!) and X//G were a complete intersection in X//T defined by
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the convex part of the bundle. See [Kim2], [Kim3] [Lee]. In fact, our most
general conjectures (see (4.2) and (4.3)) include a general version of quan-
tum Lefschetz, involving an additional twist by Euler classes of homogeneous
vector bundles on X//G and X//T .

Consider the flag manifold F := Fl(s1, . . . sl, n = sl+1) parametrizing flags:

Cs1 ⊂ · · · ⊂ Csl ⊂ Cn

and let Hi,j , j = 1, ..., si be Chern roots of the duals of the universal bundles
Si:

S1 ⊂ S2 ⊂ · · · ⊂ Sl ⊂ Sl+1 = Cn ⊗OF

and d = (d1, . . . , dl) be the degree of a curve class, obtained by pairing
with c1(S∨i ). Then Conjecture 2, together with Givental’s formula for the
J-function of the relevant toric variety gives the following closed formula for
the J-function of F which we will prove and generalize to the other “classical”
flag manifolds:

Theorem 1.3. For curve classes d on the flag manifold F :

JF
d (~) =

∑
P

di,j=di

l∏
i=1

 ∏
1≤j 6=j′≤si

∏di,j−di,j′

k=−∞ (Hi,j −Hi,j′ + k~)∏0
k=−∞(Hi,j −Hi,j′ + k~)

·

∏
1≤j≤si, 1≤j′≤si+1

∏0
k=−∞(Hi,j −Hi+1,j′ + k~)∏di,j−di+1,j′

k=−∞ (Hi,j −Hi+1,j′ + k~)


Remark. With the same proof as in [BCK] for Grassmannians, it follows
from Theorem 1 and its generalization that Givental’s R-Conjecture, hence by
[Giv2] the Virasoro Conjecture, holds for classical generalized flag manifolds.

Earlier work on the J-function of type A flag manifolds is contained in the
recent paper [LLY], where a formula is given for

∫
F
etJF

d , but the problem of
finding a closed formula for the function J and a generalization of the Hori-
Vafa Conjecture is left open. The reader may want to compare our Theorem 1
with the formula on page 39 of [LLY]. Our proof of the Theorem is a routine
verification of our conjecture using Grothendieck quot schemes. The main
point here is that once one has the correct conjecture, it is an easy matter to
verify it. In particular, we do not use any of the results in [LLY].
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2. Classical intersection theory of GIT quotients.

(2.1) Abelian and non-abelian quotients.
Let X be a smooth projective variety with fixed ample line bundle L and

linearized action of G as in the introduction. We denote the G-stable points
by Xs(G), respectively the T -stable points by Xs(T ), so that

X//G = Xs(G)/G and X//T = Xs(T )/T

The main example to have in mind is the situation considered in [ES]
where there is a vector space V on which G acts linearly via a representation
G→ GL(V ) whose image contains the homotheties of V , so that there is an
induced action on X = P(V ). We adopt the notation in [ES] in this case and
write V//G and V//T for the quotients. Here it is clear that the unstable
locus X −Xs(G) has codimension ≥ 2. We will make this (mild) assumption
as well in the general case.

Under our hypotheses there is a diagram relating the two quotients:

(2.1)

U := Xs(G)/T
i
↪→ Xs(T )/T = X//T

↓ Φ

X//G = Xs(G)/G

The map i is an open immersion, while Φ is a fibre bundle with fibre G/T ,
and can be further factored as

U
%−→ Z

η−→ X//G
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with η a G/B-bundle and ρ an (affine) B/T bundle. The diagram is con-
structed in detail in [ES], §2.

Let R be the root system of G corresponding to the choice of the torus
T and denote by R+ the set of positive roots and by R− the set of negative
roots. For each root α ∈ R there is an induced line bundle Lα on X//T ,
coming from the canonical 1-dimensional representation Cα of T with weight
α. Precisely, Lα = Cα ×T X

s(T ). If (α,−α) is a pair of opposite roots, then
the corresponding line bundles are dual, and c1(Lα) = −c1(L−α).

We denote

E+ := ⊕α∈R+Lα, E− := ⊕α∈R−Lα, E := E+ ⊕ E−.

The Euler classes

∆ = ∆+ = Euler(E+) =
∏

α∈R+

c1(Lα)

and
∆− = (−1)dim(G/B)∆ = Euler(E−) =

∏
α∈R−

c1(Lα)

will play an important role in this paper.
Note that the Weyl group W = N(T )/T of G acts naturally on X//T , and

therefore on the cohomologyH∗(X//T,Q). The classes ∆ and ∆− areW -anti-
invariant, i.e. if w is an element of W of length `(w), then w(∆) = (−1)`(w)∆.

(2.2) Cohomology of X//G versus cohomology of X//T .
Unless mentioned otherwise, we will only consider cohomology with Q coef-

ficients. We recall some results of Ellingsrud-Strømme [ES] and Martin [Mar]
relating the cohomology rings H∗(X//G) and H∗(X//T ).

There are surjective Kirwan maps

κG : H∗
G(X) −→ H∗(X//G) and κT : H∗

T (X) −→ H∗(X//T )

from equivariant cohomology of X to the cohomology of the quotients, as well
as a natural restriction map

τG
T : H∗

G(X) −→ H∗
T (X).

For cohomology classes γ on X//G and γ̃ on X//T we say that γ̃ is a lift of
γ if they come from the same G–equivariant class on X:

γ = κG(θ), γ̃ = κT (τG
T (θ))

for some θ ∈ H∗
G(X). From surjectivity of κG it is clear that each γ ∈

H∗(X//G) has a lift. Equivalently, one may define the notion of lift using the
maps in the basic diagram (2.1) by the requirement that

i∗(γ̃) = Φ∗(γ).
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This second description shows that γ̃ may be taken in H∗(X//T )W . We
repeat, for emphasis, Martin’s integration formula:

(2.2.1) Theorem ([Mar], Theorem B). With notation as above,∫
X//G

γ =
1
|W |

∫
X//T

γ̃ ∧∆+ ∧∆−

for any γ ∈ H∗(X//G).

3. Genus zero Gromov-Witten theory.

(3.1) Gromov-Witten invariants with descendents
Let Y be a smooth projective variety and let d ∈ H2(Y,Z) be fixed curve

class. The Kontsevich-Manin moduli stack M0,n(Y, d) of stable maps of class
d from n-pointed nodal rational curves to Y comes with n evaluation maps
ev1, . . . evn to Y (at the marked points). The natural projection

π : M0,n+1(Y, d) −→M0,n(Y, d)

given by forgetting the last marked point allows us to view M0,n+1(Y, d) as
the universal curve. The map π has n sections s1, . . . , sn (corresponding to
the marked points) defining the Witten cotangent line bundles Li := s∗i (ωπ),
with ωπ the relative dualizing sheaf. It is customary to denote by ψi the
Chern class c1(Li).

Given cohomology classes γ1, ..., γn ∈ H2∗(Y ) and nonnegative integers
a1, ..., an, the associated genus zero Gromov-Witten invariant is

〈τa1(γ1), · · · , τan
(γn)〉d :=

∫
[M0,n(Y,d)]virt

∧n
i=1(ψ

ai
i ∧ ev

∗
i (γi)),

where [M0,n(Y, d)]virt is the virtual fundamental class of [LT], [BF]. This
virtual class lives in the Chow group Avdim(M0,n(Y,d))(M0,n(Y, d)), with

vdim(M0,n(Y, d)) =
∫

d

c1(TY ) + dimC(Y ) + n− 3

the virtual dimension of M0,n(Y, d), as given by the Riemann-Roch theorem.
The invariant is in general a rational number, and it vanishes unless

n∑
i=1

1
2
deg(γi) + ai

equals the virtual dimension.
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(3.2) Gromov-Witten invariants twisted by the Euler class. Assume
now that on Y we are given a vector bundle E. From:

M0,n+1(Y, d)
e−→ Y

↓ π

M0,n(Y, d)

with e = evn+1, we obtain

En,d = [R0π∗e
∗E]− [R1π∗e

∗E]

the push-forward of e∗E in K-theory. Its virtual rank is given by the Rieman-
Roch formula:

vrk(En,d) := rk(E) +
∫

d

c1(E).

Since En,d can be obtained as the cohomology of a 2-term complex of vector
bundles on M0,n(Y, d) (see [CG]), it has a well defined “top Chern class”
ctop(En,d) := cvrk(En,d). It is of course zero if the virtual rank is negative,
but this will not be the case for any of the twisting bundles we employ.

We define the Gromov-Witten invariants of Y twisted by the Euler class of
E by

〈τa1(γ1), · · · , τan(γn)〉d,E :=
∫

[M0,n(Y,d)]virt
∧n

i=1(ψ
ai
i ∧ ev

∗
i (γi)) ∧ ctop(En,d).

These twisted invariants (in much greater generality) were studied by Coates
and Givental in [CG]. Their definition of twisting by the Euler class is for-
mulated in a more general setting (essentially “twisting by the Chern poly-
nomial”) but can be seen to specialize to the one given here for the cases we
consider.

4. Conjectural relations between X//T and X//G

Recall that on X//T we have the bundle E = ⊕α∈RLα. Martin’s integra-
tion formula (2.2.1) may be viewed as expressing degree zero Gromov-Witten
invariants (i.e. usual intersection numbers) on X//G in terms of degree zero
invariants on X//T twisted by the Euler class of the bundle E. We conjecture
that this relation extends to stable maps of higher degrees.
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(4.1) Definition. For curve classes d ∈ H2(X//G,Z) and d̃ ∈ H2(X//T,Z)
we say that d̃ lifts d (and write d̃ 7→ d) if∫

d

H =
∫

ed H̃
for every divisor class H ∈ H2(X//G,Q) with lift H̃ ∈ H2(X//G,Q)W .

Since any two lifts agree when restricted to the “G-stable locus” U ⊂ X//T ,
and by assumption (see (2.1)) the complement of U has codimension at least
2, it follows that for divisor classes the W -invariant lifts are unique, and the
d̃’s are indeed well-defined. (Note also that by taking H to be ample in (4.1),
with ample W -invariant lift, we see that each d has finitely many lifts.)

As shown by the examples we treat in §6, it is actually useful to introduce
an additional twisting. Namely, consider a finite dimensional linear represen-
tation V of G. It induces the homogeneous vector bundle VG := Xs(G)×G V
over X//G and, viewing V as a T -representation, the vector bundle VT :=
Xs(T ) ×T V over X//T . Since a T -representation is completely reducible,
VT splits as a direct sum of line bundles, which we will assume to be nef.
Note that the Euler class of VT is a lift of the Euler class of VG. With this
definitions we can state:

(4.2) Conjecture. Twisted genus zero Gromov-Witten invariants of X//G
and of X//T are related by

〈τa1(γ1), · · · , τan
(γn)〉d,VG

=
1
|W |

∑
ed7→d

〈τa1(γ̃1), · · · , τan
(γ̃n)〉ed,E⊕VT

,

where γ̃i are lifts of γi.

In particular, when the extra twist by V is absent, we are expressing the
GW-invariants of X//G in terms of invariants of X//T twisted by the Euler
class of E, specializing to Martin’s formula in degree zero. Next, we express
this relationship in terms of Givental’s J-functions.

By the work of Coates and Givental ([CG], Thm. 2 and Cor. 5), one can
extract from (4.2) a conjectural “Quantum Lefschetz formula” calculating the
J-function (on the “big” parameter space H2∗(X//G)!) of the nonabelian
quotient X//G (or, more generally, the J-function of the theory on X//G

twisted by VG) in terms of the bundle E (respectively, the bundle E⊕VT ) and
the J-function of the abelian quotient X//T . We state explicitly a weaker ver-
sion involving the restriction of J to the “small” parameter space H2(X//G).
This restriction amounts to considering (4.2) only for 1-point invariants.
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We let (t0, t) denote a general element of H0(X//G,C) ⊕ H2(X//G,C).
The VG-twisted J-function of X//G is

JX//G,V(t0, t, ~) := et0+t/~
∑

d

e
R

d
tJ

X//G,VG

d (~),

with JX//G,VG

d (~) defined by∫
X//G

J
X//G,V
d (~) ∧ γ ∧ ctop(VG) =

∞∑
a=0

~−a−2〈τa(γ)〉d,VG
.

Let M1, . . . ,Mr (r is the dimension of the representation V) denote the line
bundle direct summands of the split bundle VT on X//T and assume all the
Mi are nef, so that d̃ · c1(Mi) ≥ 0 for every effective curve class d̃. Define

IX//T,V(t0, t, ~) = et0+t/~
∑

d

e
R

d
t
∑
ed7→d

Ied(~),

where

Ied(~) =
∏
α

∏ed·c1(Lα)
k=−∞ (c1(Lα) + k~)∏0
k=−∞(c1(Lα) + k~)

r∏
i=1

∏ed·c1(Mi)
k=−∞ (c1(Mi) + k~)∏0
k=−∞(c1(Mi) + k~)

J
X//Ted (~).

In other words, IX//T,V is obtained from the (untwisted) J function of
X//T by first introducing in each Jed the correcting classes determined by the
bundles E and VT , and then specializing the parameter t to the subspace
H2(X//T,C)W , which we identify with H2(X//G,C).

(4.2) Conjecture. There is an explicit change of variable (t0, t) 7→ f(t0, t)
such that

JX//G,V(t0, t, ~) = IX//T,V(f(t0, t), ~).

(4.3) Remark. As in the usual quantum Lefschetz hyperplane theorem
([Giv1], [Kim2], [Lee], [CG]), the change of variable is read off the asymptotics
of the 1/~ expansion of the function I. In particular, if X//T is Fano, and
for every effective curve C ⊂ X//T the intersection number C · (c1(X//T )−∑r

i=1 c1(Mi)) is at least 2, then no change of variable is needed and we have
the equality

JX//G,V(t0, t, ~) = IX//T,V(t0, t, ~).

This will be the case for all examples we treat in the rest of the paper.
Note that in general no analogue of the quantum Lefschetz “correcting”

class is known when twisting by an indecomposable vector bundle.
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5. Standard flag manifolds

(5.1) The flag manifold as a GIT quotient. F = Fl(s1, . . . sl, n = sl+1)
from the introduction is the GIT quotient:

F = P(⊕l
i=1Hom(Csi ,Csi+1))//G

by the action of G =
∏l

i=1 GL(si,C), where a matrix A ∈ GL(si,C) acts on
Hom(Csi ,Csi+1) by left multiplication, and on Hom(Csi−1 ,Csi) by right mul-
tiplication by A−1. Stability here is the ordinary stability for Grassmannians:
an element x ∈ P(⊕l

i=1Hom(Csi ,Csi+1)) is stable if each of its “coordinates”
xi ∈ Hom(Csi ,Csi+1)) is injective. If T ⊂ G is the product of the subgroups
of diagonal matrices, then the associated abelian quotient

Y := P(⊕l
j=1Hom(Csj ,Csj+1))//T

is a toric variety. Corresponding to the description of the flag manifold as a
tower of Grassmannian bundles:

G(si, si+1) → Fl(si, si+1, ..., sl+1) = G(si, Si+1)
↓

Fl(si+1, ..., sl+1)

the toric variety Y is a tower of product-of-projective-space bundles:∏si Psi+1−1 → Yi = P(Vi+1)×Yi+1 · · · ×Yi+1 P(Vi+1)
↓

Yi+1

with

Vi+1 =
si+1⊕
j=1

OYi+1(0, . . . , 0,−1︸ ︷︷ ︸
j

, 0, . . . , 0)

the vector bundle on Yi+1 corresponding to Si+1, with Yl+1 = Spec(C) and
Y1 = Y .

There is the additional right action of GL(n,C) commuting with the action
of G, descending to a (transitive) action on F , exhibiting F as a homogeneous
space. When we speak of the equivariant cohomology of F and of Y , it will
be with respect to the induced action of the maximal torus Tn ⊂ GL(n,C).

The Chern roots Hi,j , 1 ≤ i ≤ l, 1 ≤ j ≤ si of the introduction can now be
viewed as Chern classes of the relative hyperplane classes of Yi → Yi+1. This
way of representing the Chern roots is less efficient than the Chern classes on
the full flag variety Fl(1, 2, ..., n), since in that case Hi,j = Hi+1,j for each
j = 1, ..., si, whereas in this representation the Hi,j are all distinct. The
additional classes Hl+1,j really appear extraneous, as they are Chern roots
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of the trivial bundle. But they play an important role in the equivariant J-
function of the toric variety, which we now describe, following Givental [Giv1].

A toric variety Y comes with a finite set {Di} of torus-invariant divisor
classes that generate H2(Y ) additively and H∗(Y ) multiplicatively. In the
description of Y as a quotient CN//T for T ⊂ (C∗)n, these are simply the
first Chern classes c1(Li), where Li are the N line bundles determined by
the coordinate lines of CN . Moreover, if T ⊂ T ′ ⊂ (C∗)n, then the T ′/T -
equivariant cohomology ring of Y is similarly generated by the equivariant
divisor classes determined by the coordinate lines.

(5.1.1) Theorem (Givental, [Giv1]). If Y is a smooth toric variety with
the property that each curve class d ∈ H2(Y ) satisfies −

∫
d
KY ≥ 2, then the

J-function of Y is given by the formula:

JY
d (~) =

N∏
i=1

∏0
k=−∞(Di + k~)∏R

d
Di

k=−∞(Di + k~)

and the T ′/T -equivariant J-function is given by the same formula, with equi-
variant divisor classes.

Note: In case Y = Pn or a product of projective spaces each
∫

d
Di ≥ 0, and

the numerator can be factored out of the denominator, but in the general case
this is the most convenient formulation of the J-function.

For our toric variety, it is easy to see that the invariant divisors are:

Hi,j −Hi+1,j′ , i = 1, ..., l − 1

in both the ordinary and equivariant case, and in addition Hl,j−Hl+1,j′ which
are equivariant if Hl+1,j′ = λj′ in H∗(BTn) = Q[λ1, ..., λn] and ordinary if
Hl+1,j′ = 0.

Thus, by Givental’s theorem, we have:

JY
~d

(~) =
l∏

i=1

∏
1≤j≤si, 1≤j′≤si+1

∏0
k=−∞(Hi,j −Hi+1,j′ + k~)∏di,j−di+1,j′

k=−∞ (Hi,j −Hi+1,j′ + k~)

where
~d = (d1,1, ..., d1,s1 , d2,1, ..., d2,s2 , ..., dl,1, ..., dl,sl

)

is the general curve class (with, evidently, each dl+1,j′ = 0).

It is also easy to see that the roots of G give the divisor classes:

Hi,j −Hi,j′ , i = 1, ..., l, j 6= j′

so that our J-function conjecture becomes precisely Theorem 1. Again, we
repeat for emphasis that the Tn-equivariant J-function is obtained by setting
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each Hl+1,j′ = λj′ and the “ordinary” J-function is obtained by setting each
Hl+1,j′ = 0.

(5.2) Conversion of the Formula. In our previous paper [BCK], we
proved that the J-function of the Grassmannian G(s, n) is given by:

JG(q, ~) =
∑

qdJG
d (q, ~)

where

JG
d (~) = (−1)(s−1)d

∑
(d1,...,ds)

d1+...+ds=d

∏
1≤j<j′≤s(Hj −Hj′ + (dj − dj′)~)∏

1≤j<j′≤s(Hj −Hj′)
∏s

j=1

∏dj

k=1(Hj + k~)n

and Hi are Chern roots of S∨, the dual of the universal subbundle. We first
rewrite the formula in a version more parallel to the Givental formula for toric
varieties:∑

(d1,...,ds)
d1+...+ds=d

∏
1≤j 6=j′≤s

∏dj−d′j
k=−∞(Hj −Hj′ + k~)∏0
k=−∞(Hj −Hj′ + k~)

· 1∏s
j=1

∏dj

k=1(Hj + k~)n

and then it follows that the J-function for a product of Grassmannians:
∏

G =∏l
i=1 G(si, n) is given by:

(5.2.1) J
Q

G
(d1,...,dl)

(~) =
∑

~d

l∏
i=1

 ∏
1≤j 6=j′≤si

∏di,j−di,j′

k=−∞ (Hi,j −Hi,j′ + k~)∏0
k=−∞(Hi,j −Hi,j′ + k~)

×

1∏si

j=1

∏dij

k=1(Hi,j + k~)n

)
where ~d is defined just as in the toric formula, with

∑si

j=1 di,j = di. Let Si

and Qi = Cn ⊗ O/Si be the universal sub and quotient G-bundles, thought
of either on G(si, n),

∏
G(si, n) or F . Then F ⊂

∏l
i=1 G(si, n) is a transverse

zero section of the bundle V =
⊕l−1

i=1Hom(Si, Qi+1). Of course, we may write:

0→ ⊕l−1
i=1Hom(Si, Si+1)→ ⊕l−1

i=1Hom(Si,Cn)→ V → 0

and then the correction to the dth term of the J-function of
∏

G coming from
twisting by V, as predicted by our general conjecture (4.2), is:

(5.2.2)
l−1∏
i=1

 ∏
1≤j≤si, 1≤j′≤si+1

∏0
k=−∞(Hi,j −Hi+1,j′ + k~)∏di,j−di+1,j′

k=−∞ (Hi,j −Hi+1,j′ + k~)
×

si∏
j=1

dij∏
k=1

(Hi,j + k~)n


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Or, in other words, our conjecture gives the same result whether we regard
the flag variety itself as a GIT quotient, or we think of it as the zero locus of
a section of V in

∏
G, regarded as a GIT quotient. This is not a particularly

deep check of the conjecture, but it is the latter point of view that we will use
in the next section to prove the Theorem, as it generalizes immediately to the
other classical Lie types.

6. Proof of Theorem 1 and its Generalizations

(6.1) A Simple J-function Lemma The degree d component of the (T -
equivariant) J-function of Y (with action of T ) is given by the push-forward:

JY
d (~) = e∗

(
[MY

d ]
[MY

d /G
Y
d ]

)
= e∗

(
[MY

d ]
~(~− ψ)

)
in (T -equivariant) cohomology, where we use the following conventions:

• MY
d = M0,1(Y, d) with virtual fundamental class [MY

d ]

• GY
d = M0,0(Y × P1, (d, 1)) with virtual fundamental class [GY

d ].

• C∗ acts on P1 by scaling (x, y) 7→ (tx, y) and H∗(BC∗) = Q[~].

•Whenever F ⊂ X is a fixed locus for an action of C∗, then [F/X] denotes
the Euler class of the normal bundle of F in X in H∗

C∗(F ) = H∗(F )[~] (or
H∗

T (F )[~]), which is always invertible, by the Atiyah-Bott localization theo-
rem.

• MY
d ⊂ GY

d is one of the fixed components for the induced C∗ action on
GY

d . Specifically, it consists of stable maps of curves with one component of
class (0, 1) and the rest of the curve mapping to 0 ∈ P1.

It is a standard fact in Gromov-Witten theory (see e.g. [Ber], [Lee]) that:

[MY
d /G

Y
d ] = ~(~− ψ)

When Y ⊂ Pn, there is an equivariant “map to the linear sigma model”
and diagram of fixed components:

u : GY
d → Yd ⊂ Pn

d = P(Homd(C2,Cn+1))
∪ ∪ ∪
MY

d
e→ Y ⊂ Pn

where Yd ⊂ Pn
d is defined by the equations induced from the equations of

Y , and Pn ⊂ Pn
d is the fixed locus arising from the “zero” line C ⊂ C2 and
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inclusion Pn = P(Homd(C,Cn+1)) ⊂ Pn
d . Set-theoretically,

Yd =
d∐

e=0

Mape(P1, Y )× Pd−e,

so that if Y is homogeneous (which will be our case), then Yd is the (singular!)
closure of the (smooth) Hilbert scheme Mapd(P1, Y ) ⊂ Mapd(P1,Pn) ⊂ Pn

d

which is birational to the smooth compactification GY
d , and u∗[GY

d ] = [Yd].
(Indeed, when Y is homogeneous, GY

d is the (disjoint) union of GY
β over

β ∈ H2(Y,Z) with j∗β = d and each GY
β is a smooth irreducible Deligne-

Mumford stack containing Mapβ(P1, Y ) as a dense open substack. The re-
striction to Mapd(P1, Y ) =

∐
β Mapβ(P1, Y ) of the surjection u : GY

d → Yd is
an isomorphism.)

Now let

i : X
k
↪→ Y

j
↪→ Pn

be T -equivariant embeddings for an action of T on Pn with isolated fixed
points. Suppose X and Y are both homogeneous and Mapd(P1, Y ) ⊂ QY

d is
another smooth compactification with extended C∗×T action and equivariant
map v : QY

d → Pn
d , and suppose there is an equivariant class [QX

d ] ∈ A∗(QY
d )

such that:

(†) v∗([QX
d ]) = [Xd] = u∗([GX

d ])

Let αF : F ↪→ QY
d be the union of fixed components mapping to Pn by v.

For ease of notation, we will pretend there is only one component, writing, for
example, α∗F [QX

d ]/[F/Qd
Y ], when we really mean the sum

∑
α∗Fk

[QX
d ]/[Fk/Q

Y
d ]

over the components Fk ⊂ F . Let f : F → Pn be the restriction of v. It fol-
lows that f factors through a map g : F → Y , and we get the following
diagram:

GX
d

u→ Pn
d

v← QY
d

αd ↑
αX

d ↑ Pn αF ↑

j ↑
f

↖
MX

d → Y
g← F

e

↘ k ↑
X

(6.1.1) Lemma. [QX
d ] computes JX

d . First, in C∗-equivariant cohomology:

i∗J
X
d = α∗du∗([G

X
d ])

[Pn/Pn
d ] = α∗dv∗([Q

X
d ])

[Pn/Pn
d ] = f∗

α∗F [QX
d ]

[F/QY
d ]

= j∗g∗
α∗F [QX

d ]

[F/QY
d ]
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Next, in C∗ × T -equivariant cohomology:

JX
d = i∗i∗Jd

X

[X/Pn] = 1
[X/Pn] i

∗j∗g∗
α∗F [QX

d ]

[F/QY
d ]

= 1
[X/Y ]k

∗g∗(
α∗F [QX

d ]

[F/QY
d ]

)

Finally, if E is a T -equivariant vector bundle on Y , andX is the zero scheme
of a section of E transverse to the zero section, then [X/Y ] = k∗ctop(E), and:

JX
d = k∗g∗(

α∗F [QX
d ]/g∗ctop(E)
[F/QY

d ]
)

and if (as will be our case) the right side is well-defined as a C∗-equivariant co-
homology class, then the equality holds in C∗-equivariant cohomology, taking
limits.

Remark: The lemma is an easy exercise using the Atiyah-Bott localization
theorem. It immediately implies the quantum Lefschetz theorem for quadrics,
taking Y = Pn and QY

d = Pn
d , with [QX

d ] = [Xd] defined by the 2d+1 induced
quadratic equations. Indeed, the obstruction to an easy proof of the quantum
Lefschetz theorem for Fano complete intersections X ⊂ Pn is simply the fact
that the linear sigma models Xd ⊂ Pn

d tend to have “extra” components aside
from the closure of Mapd(P1, X), making property (†) difficult to check. Such
extra components do not exist when X is a homogeneous space.

(6.2) Applying the Lemma. Let

Q
G(s,n)
d

be the Grothendieck quot scheme of vector bundle subsheavesK ⊂ Cn⊗OP1 of
degree −d and rank s on P1. This is an alternative smooth compactification of
the Hilbert space Mapd(P1,G(s, n)) with universal sub and quotient sheaves:

0→ K → Cn ⊗OP1×QG
d
→ Q→ 0

As we showed in our paper [BCK], under the natural map to the linear sigma
model:

v : Q
G(s,n)
d → Q

G(1,(n
s))

d = P(n
s)−1

d

∪ ∪
F

g→ G(s, n)
the components F~d ⊂ F are in bijection with the possible splitting types:

K = ⊕s
i=1OP1(−di)

Associated to each splitting type ~d = (d1, d2, ..., ds) (in non-decreasing order,
with d1 = ... = ds1 , ds1+1 = ... = ds2 , ...) is F~d

∼= Fl(s1, ..., sl = s, n) . The
Euler classes to the F~d were inverted and pushed forward in [BCK]. This
required a lemma of Brion ([Bri], see Lemma 1.4 of [BCK]) and the following
implication:
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(6.2.1) Let P (x1, ..., xs, d1, ..., ds) be a polynomial with the property that:∏
1≤i≤l

∏
1≤a<b≤si−si−1

(xsi−1+b − xsi−1+a) divides P (x1, ..., xs, ~d)

for each splitting type ~d and such that each:

P (H1, ...,Hs, ~d)∏
i

∏
a<b(Hsi−1+b −Hsi−1+a)

represents a cohomology class in F~d, where the H1, ...,Hs are the Chern roots
of S, arranged so that Hsi−1+1, ...,Hsi

are the Chern roots of Si/Si−1 on F~d.
Then:∑

~d

g∗

(
P (H1, ...,Hs, ~d)∏

i

∏
a<b(Hsi−1+b −Hsi−1+a)

)
=

∑
d1+...+ds=d

P (H1, ...,Hs, d1, ..., ds)∏
1≤j<j′≤s(Hj′ −Hj)

Clarification: The polynomial P (x1, ..., xr) in Lemma 1.4 of [BCK] corre-
sponds here to:

P (x1, ..., xs, ~d)∏
i

∏
a<b(xsi−1+b − xsi−1+a)

As we showed in [BCK]:

1
[F~d/Q

G
d ]

=
P~(H1, ...,Hs, ~d)∏

i

∏
a<b(Hsi−1+b −Hsi−1+a)

with

P~(x1, ..., xs, d1, ..., ds) = (−1)(s−1)(
P

di)

∏
1≤j<j′≤s(xj′ − xj + (dj′ − dj)~)∏s

i=1

∏di

k=1(xi + k~)n

Our point here is that (6.2.1) also applies to classes:

α∗F~d
[QX

d ]/ctop(E)

[F~d/Q
G
d ]

(from(6.1.1)) describing the J-functions of sub-homogeneous spaces. For ex-
ample, consider the “Lagrangian Grassmannian:”

LG ⊂ G(n, 2n) ⊂ P(2n
n )−1

obtained as the zero scheme of the section of E = ∧2(S∨) over G(n, 2n)
induced from the standard algebraic symplectic form on C2n.
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Theorem 2. The J-function of the Lagrangian Grassmannian is given by:

JLG
d =

∑
d1+...+dn=d

(∏
n≥i>j≥1

∏di+dj

k=0 (Hi +Hj + k~)∏
n≥i>j≥1(Hi +Hj)

)
·

 (−1)(n−1)d∏n
i=1

∏di

k=1(Hi + k~)2n
·
∏

n≥i>j≥1

(Hi −Hj + (di − dj)~)
(Hi −Hj)


Proof: Consider the corresponding section of the vector bundle:

π∗ ∧2 (K∨) on Q
G(n,2n)
d

and its zero scheme, the “Lagrangian Quot scheme” LQG
d ⊂ Q

G(n,2n)
d (here π

is the projection P1 ×QG(n,2n)
d → P1). We apply (6.1.1) with:

[QLG
d ] = ctop(π∗(∧2K∨))

noticing that v∗[QLG
d ] = u∗[GLG

d ] by virtue of the fact that LG is homogeneous,
and the zero section of π∗ ∧2 K∨ is transverse along the Hilbert scheme of
maps Mapd(P1, LG). So all that remains is the computation of ctop(π∗ ∧2 K)
restricted to the fixed loci F~d. But this is easily done. F~d consists of vector
bundle subsheaves of splitting type ~d, and there is a filtration of the restriction
of K to P1 × F~d:

K1 ⊂ K2 ⊂ ... ⊂ Kl = K ⊂ OP1×F~d

with Ki/Ki−1
∼= π∗(Si/Si−1)(−diD0) where D0 = 0 × F~d. From this, one

computes (as in [BCK], in the computations preceding Lemma 1.4):

ctop(π∗ ∧2 K∨)|F~d
= Q~(H1, ...,Hn, ~d)

where

Q~(x1, ...., xn, d1, ..., dn) =
∏
i>j

di+dj∏
k=0

(xi + xj + k~)

and then applying (6.2.1) to P~ ·
(
Q~/

∏
i>j(xi + xj)

)
gives the Theorem,

since ctop(E) =
∏

i>j(xi +xj). Note that evidently
∏

i>j(xi +xj) divides Q~,
hence the Theorem is valid in C∗-equivariant cohomology.

We next prove Theorem 1 in the same way, considering:

Fl(s1, ..., sl, n) ⊂
l∏

i=1

G(si, n) ⊂ PN

with E = ⊕l−1
i=1Hom(Si, Qi+1) ∼= ⊕l−1

i=1S
∨
i ⊗Qi+1 (and

∏
G ⊂ P embedded by

Plücker and Segre). Here the zero scheme of the section of the bundle on the
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product of Quot schemes:

π∗
(
⊕l−1

i=1K
∨
i ⊗ V/Ki+1

)
is smooth and irreducible (V is the trivial rank n bundle). We will denote
the class of the zero section by [QHG

di
]. It is the fundamental class of the

“hyperquot” scheme of flags of vector bundle subsheaves of the trivial bundle
on P1:

K1 ⊂ ... ⊂ Kl ⊂ Cn ⊗OP1

Within the product of Quot schemes, the fixed components relevant to our
computations are the products of flag manifolds

∏l
i=1 F~di

indexed by multi-
splitting types: (Note: It is much harder to describe the fixed components
of the hyperquot scheme. See [LLY]). Now we proceed as in the proof of
Theorem 2. In this case, by (6.1.1) we need to compute the push-forward:

g∗

∑
~di

α∗Q F~di

[QHG
di

]/ctop(E)


to the product of Grassmannians. This follows from an obvious generalization
of (6.2.1) to the product of Grassmannians. When applied to:∏

P~(xi,1, ..., xi,si
, di,1, ..., di,si

)

we obtain the J-function for the product of Grassmannians. We need only,
therefore, to give the analogue of the polynomialQ~ from the proof of Theorem
2. For this, we notice that the sheaf K∨i ⊗ V/Ki+1 is not a vector bundle
(though its push-forward is a vector bundle). For this reason, it is more
reasonable to work with the top Chern class via the exact sequence:

0→ K∨i ⊗Ki+1 → K∨i ⊗ V → K∨i ⊗ V/Ki+1 → 0

and its pushforward to the product of quot schemes:

0→ π∗(K∨i ⊗Ki+1)→ π∗(K∨i ⊗ V )→ π∗(K∨i ⊗ V/Ki+1)→
→ R1π∗(K∨i ⊗Ki+1)→ 0

When the top Chern class is computed with this sequence, we obtain our
desired polynomial Q~(xi,j , di,j) which is divisible by ctop(E) and the quotient
precisely evaluates to (5.2.2) when we set xi,j = Hi,j . This proves Theorem
1.

Finally, the reader may immediately generalize Theorems 1 and 2 to give
the J-functions for all isotropic flag manifolds, i.e., the homogeneous spaces
G/P for G = SO2n+1(C), Sp2n(C), SO2n(C) by realizing the isotropic flag
manifold inside the appropriate product of Grassmannians as the zero locus
of a section of an appropriate homogeneous vector bundle. The point here is
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that a flag of vector subspaces is isotropic for a symmetric or symplectic form
iff the largest subspace in the flag is. This case is therefore a combination of
the ones treated in Theorems 1 and 2: the isotropic flag manifold is the zero
locus of the natural section of a direct sum of Hom bundles as in Theorem 1,
and either the second symmetric power (in the symmetric case), or the second
exterior power (in the symplectic case) of the dual to the tautological bundle
on the appropriate factor.
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