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1. Introduction

This note is intended as a brief survey of the theory of quasimaps from curves to
a certain (large) class of GIT quotients, and of its applications to Gromov-Witten
theory, as developed in the papers [10, 14, 11, 12, 13, 6]. The theory may be viewed
as an algebro-geometric realization of Witten’s Gauged Linear σ-model (GLSM)
[52] in the geometric phases. The study of GLSM and of its relation to Mirror
Symmetry has been a very active area in String Theory, see [42, 32, 31, 22, 1, 34]
for a (very incomplete) sampling of developments.

When such a geometric phase (a target with a GIT presentation) is fixed,
there is a family of quasimap theories indexed by a stability parameter ε ∈ Q>0.
When ε > 1 one recovers the “nonlinear σ-model”, i.e., the Gromov-Witten the-
ory of the target. There is a wall-and-chamber structure on Q>0, with walls at
1, 1

2 ,
1
3 , . . . ,

1
d , . . . , such that the theory stays unchanged in the chamber ( 1

d+1 ,
1
d ].

Wall-crossing formulas relating the invariants in different chambers of nonsingular
targets are conjectured (and are established in many cases) in [11] for genus zero,
and in [12] for all genera; the genus zero case is extend to orbifolds in [6]. These
results are described in §4-5 of the paper. As explained there, the wall-crossing
formulas may be viewed as generalizations in many directions of Givental’s Mirror
Theorems [26] for (complete intersections in) toric manifolds with semi-positive
anti-canonical class. In addition, the mirror map is given a geometric interpreta-
tion as the generating series of primary quasimap invariants with a fundamental
class insertion.
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collaboration on parts of this quasimap project. The first named author was partially supported
by NSF DMS-1305004 and the second named author was partially supported by KRF 2007-
0093859. In addition, the second named author thanks University of Minnesota for hospitality
during the writing of the paper.
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There is also an extension of the theory in a different direction, allowing the
domain curves of quasimaps to carry weighted markings. When (some) markings
are given infinitesimally small weights, this produces for many targets a closed form
expression of a “big I-function” defined on the entire parameter space H∗(X,Q)
associated to the GIT target X. By a result in [13] the big J-function of the
Gromov-Witten theory of X is obtained from this new big I-function via the
“Birkhoff factorization” procedure of [18]. As a result, one obtains an explicit
determination of all the genus zero Gromov-Witten invariants of X.

2. Maps from curves to quotient targets

2.1. A class of GIT quotients. Let W = SpecA be an affine algebraic
variety over C and let G be a reductive algebraic group over C, acting upon
W from the right. Choose a character of G, θ ∈ Hom(G,C∗). Denote by Cθ the
associated 1-dimensional G-representation space. This determines a G-equivariant
line bundle Lθ := W × Cθ on W .

There are four quotients as follows.

(i) The affine quotient W/affG := Spec(AG), which is of finite type over C by
Hilbert’s Theorem.

(ii) The stack quotient [W/G] (see [20, 40]). One departure when working with
algebraic stacks versus working with schemes is that algebraic stacks are
groupoid-valued functors from the category of schemes, while schemes are set-
valued functors. By the Yoneda lemma, the category (Sch/C) of C-schemes
is embedded into the category of functors of points. For schemes X,Y ∈
(Sch/C), the set of Y -points of X is Hom(Sch/C)(Y,X), i.e., the set of all
morphisms from Y to X over C. The stack [W/G] can be considered as a
functor from (Sch/C) to the category of groupoids, defined as follows. A
morphism from Y to [W/G] is by definition a triple (Y, P, f̃), where P is
a principal G-bundle on Y (which is trivializable in the étale topology of
Y ) and f̃ : P → W is a G-equivariant morphism. Equivalently, it is a
triple (Y, P, f), with f a section of the induced fiber bundle P ×G W → Y
with fiber W . An isomorphism from (Y, P, f) to (Y, P ′, f ′) is a G-bundle
homomorphism ϕ : P → P ′ such that f ′ ◦ ϕ = f . Suppose that Y = SpecC;
then the C-points of [W/G] form a groupoid, the collection of orbits with the
isomorphisms described above. A C-point has non-trivial automorphisms if
and only if the corresponding G-orbit in Y has non-trivial stabilizer group.

Consider the trivial G-bundle W×G on W . It comes with the G-equivariant
map W × G → W given by the action. This gives a canonical morphism
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from W to [W/G], fitting in the cartesian diagram

P
f //

��

W

��
Y // [W/G].

The geometry of [W/G] is encoded by the “atlas” W → [W/G].

(iii) The GIT quotient W//G := W//θG := Proj(⊕n≥0Γ(W,L⊗nθ )G)). This is a
quasi-projective scheme, equipped with a canonical projective morphism to
W/affG. It is called the Proj quotient in direction θ in [43, §6.13].

(iv) The GIT stack quotient [W ss/G]. This is an open substack of [W/G] since
W ss := {p ∈ W : s(p) 6= 0 for some n > 0, s ∈ Γ(W,Lnθ )G} is a G-invariant
open subset of W .

Assumption 1.1: G acts on W ss with at most finite stabilizers.

Assumption 1.1 is equivalent to requiring that there are no strictly semi-stable
points. Under this assumption, the GIT stack quotient [W ss/G] is a Deligne-
Mumford (DM) stack.

It follows that there is a natural commuting diagram of morphisms:

[W ss/G] //

proper

��

[W/G]

��
W//G

projective
// W/affG.

The left vertical morphism is proper, see e.g. [35].

2.2. Examples.

1. Projective Spaces. Let G = C∗ diagonally act on V = Cn+1 and let θ = idC∗ .
Then

V//G = Pn ⊂ [V/G] = [Cn+1/C∗]
and Lθ restricted to V//G is O(1).

Note that the set of C-points of [V/G] contains one more element [0, ..., 0]
other than those in the projective space Pn. This point has nontrivial auto-
morphisms and is called a stacky point. Even when n = 0, the stack [C/C∗]
is interesting. This stack parameterizes pairs (L, s) with L a line bundle and
s a section of L.

2. Grassmannians. Let V = Hom(Cr,Cn), G = GL(r,C) and θ = det. Then
V//G = Gr(r, n), the Grassmannian of r-planes in Cn. A similar description
works for a type A flag variety, see e.g. [5].
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3. Toric DM-stacks. V = CN and G = (C∗)r; there are many choices of θ and
the GIT quotient [V ss/G] is a toric DM-stack.

4. Complete Intersections. Any projective variety X ⊂ Pn−1 is a GIT quotient:
X = W//C∗, withW = C(X) ⊂ Cn, the affine cone overX, but only complete
intersections lead to good theories (see Remark 3.3 below).

5. Zero locus of regular sections of homogenous vector bundles. Let V,G, θ
define a GIT quotient as in §2.1 and let E be a G-representation with induced
vector bundle E = V ss×GE on V//G. Let s ∈ Γ(V, V ×E)G be regular with
induced s̄ ∈ Γ(V//G, E). If we set W := Z(s) ⊂ V (note that W is lci), then
W//G = Z(s̄) ⊂ V//G. For example, complete intersections in toric varieties
are obtained in this way, but there are many more non-abelian examples with
indecomposable bundles E which are not complete intersection.

According to Coates, Corti, Galkin, and Kasprzyk [17] who rework the Mori-
Mukai classification of Fano 3-folds, every smooth Fano 3-fold can be realized
as an example of this type. We remark that the Rødland’s Pfaffian Calabi-
Yau 3-fold and the determinantal Gulliksen-Neg̊ard Calabi-Yau 3-fold are
also of this type (see [50, §2], [34, §5] respectively).

6. Nakajima Quiver Varieties. Nakajima quiver varieties ([47]) give a large class
of typically quasi-projective only GIT quotients of the kind we are interested
in, see [14, Example 6.3.2]. Particularly interesting such examples are certain
Hilbert schemes of points on non-compact surfaces. For example, let

V = Hom(Cn,Cn)⊕2 ⊕Hom(C,Cn)⊕Hom(Cn,C),

W := {(A,B, i, j) ∈ V | [A,B] + ij = 0},
G = GL(n,C), and θ = det .

Then W//G = Hilbn(C2) and W/affG = Symn(C2). This is the well-known
ADHM presentation of the Hilbert scheme of points in the plane.

More generally, let Γ ⊂ SL(2,C) be a finite subgroup. Let

X := Γ-Hilb(C2) := {Z ⊂ C2 : OZ ∼= C · Γ}.

It is the crepant resolution of C2/Γ. Using an appropriate Fourier-Mukai
functor Φ : D(X)→ DΓ(C2), the Hilbert scheme Hilbn(X) can be realized as
the Nakajima quiver variety associated to the framed affine Dynkin diagram
with a certain King’s stability condition, see [37], [48].

7. Local Targets. Let V,G, θ define a projective GIT quotient and let E be a
G-representation space, with an induced vector bundle E = V s ×G E on
V//G. Assume E is a sum of Ckiθ for some negative integers k1, ..., kr. If
W := V × E, then θ gives a linearization and W//G is the total space of E
over V//G. Again, it is only quasi-projective. These are usually called local
targets in Gromov-Witten theory.
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8. SUC(2, L). Let C be a nonsingular projective curve. Then the moduli space
of rank 2 stable vector bundles on C with an odd determinant L, degL ≥
4g(C) − 1 is realized as the GIT quotient of an affine variety by a general
linear group (see [43, Theorem 10.1]).

2.3. Moduli of maps to the stack quotient. To keep the presentation
simple, from now on we assume that the G-action on W ss is free. The general
case is referred to [6].

Let (C, p1, · · · , pk) be a pointed, genus g prestable curve, i.e., C is a connected
projective curve at worst with nodal singularities, pi are ordered nonsingular points
of C, and the arithmetic genus of C is g.

As explained, a map

C
[u]−→ [W/G]

is described by the data (
(C, {pi}), P, u

)
.

with P a principal G-bundle on C and u a section of the induced W -bundle

P ×G W
ρ−→ C. Any such [u] : C → [W/G] defines

β ∈ Pic([W/G])∨ = HomZ(PicG(W ),Z), β(L) = degC L,

where L := u∗(P ×G L) (a line bundle on C). This β is called the numerical class
of the triple

(
(C, {pi}), P, u

)
.

Consider the moduli stack Mg,k([W/G], β) parametrizing all
(
(C, {pi}), P, u

)
as above. It is a non-separated Artin stack of infinite type. We describe here its
obstruction theory. Consider the natural morphisms:

Mg,k([W/G], β)

ν
''OO

OOO
OOO

OOO
O

µ // Bung,kG

φ

��
Mg,k

where

• Mg,k is the moduli stack of prestable k-pointed curves of genus g;

• φ : Bung,kG −→ Mg,k is the relative moduli stack of principal G-bundles on
the fibers of the universal curve Cg,k −→Mg,k;

• µ and ν are the natural forgetful morphisms.

Both Mg,k and Bung,kG are smooth Artin stacks and φ is a smooth morphism.
It follows that the natural obstruction theory to consider is the µ-relative ob-
struction theory governing deformations of sections u. Over the open substack
Mg,k(W//G, β), this induces the usual absolute obstruction theory of maps to the
GIT quotient. The stack Mg,k(W//G, β) parameterizes the triples

(
(C, {pi}), P, u

)
with C irreducible and the image of u contained in P ×G W ss.

The above discussion suggests several natural questions to address:
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1. The Kontsevich compactification Mg,k(W//G, β) is an open and closed sub-
stack of Mg,k([W/G], β). Using the linearization θ, can we impose stability
conditions to single out other Deligne-Mumford open and closed substacks
containing Mg,k(W//G, β), and which are proper (over W/affG)?

2. If in addition the restriction of obstruction theory is perfect, these substacks
will have a virtual class, hence we get “numerical invariants” associated to
the triple (W,G, θ). When is the obstruction theory perfect?

3. Assuming the first two questions have been answered satisfactorily, how do
the invariants change when varying the stability condition? Can one obtain
explicit “wall-crossing” formulas?

In the rest of the paper we explain how quasimap theory provides some answers
to the above questions. The first two questions are discussed in §3, while §4 and
§5 deal with the wall-crossing phenomenon and its relation to Mirror Symmetry.

3. Quasimaps and ε-stability

3.1. Stable quasimaps.

Definition 3.1. (i)
(
(C, {pi}), P, u

)
is called a θ-quasimap (or simply quasimap)

to W//G if

#{u(C) ∩Wus} <∞,

where Wus := W \W ss. Hence, C
[u]
99KW//G is a rational map with finitely

many base points.

(ii) A θ-quasimap is called prestable, if the base points are away from the nodes
and markings of C.

For such a prestable quasimap and x ∈ C, define

`(x) := length(Ox,C/[u]]I[Wus/G]Ox,C) ∈ Z≥0.

(iii) Fix ε ∈ Q>0. A prestable quasimap is called ε-stable, if

1. the line bundle ωC(
∑
pi)⊗Lεθ on C is ample, where Lθ = u∗(P×GLθ) =

P ×G Cθ.

2. ε`(x) ≤ 1 for every nonsingular point x ∈ C.

There is also an “asymptotic” stability condition, obtained by requiring only
the ampleness condition, but for every ε ∈ Q>0. We denote it by ε = 0+.

Denote by Qε
g,k(W//G, β) the moduli stack parameterizing ε-stable quasimaps

of type (g, k, β).
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Theorem 3.2. ([14]) For every ε ≥ 0+, Qε
g,k(W//G, β) is a DM stack with a nat-

ural proper morphism to the affine quotient. (In particular, if W//G is projective,
then Qε

g,k(W//G, β) is proper.)
If W ss is nonsingular and W has at worst lci singularities (necessarily in Wus),

then the canonical obstruction theory on Qε
g,k(W//G, β) (relative to Bung,kG ) is

perfect.

From now on we assume the lci condition on W, so that Qε
g,k(W//G, β) carries

a virtual fundamental class.

Remark 3.3. 1. The theory depends on the triple (W,G, θ), not just on the
geometric target W//G.

2. Assume (g, k) 6= (0, 0).

• If ε > 1 we get the Kontsevich stable maps to W//G; the obstruction
theory is then perfect for all W (of course W ss is assumed to be non-
singular). However, for ε ≤ 1 the lci condition is necessary.

• If 0 < ε ≤ 1
β(Lθ) , all lengths of base points are allowed and the domain

curve has no rational tails. The asymptotic stability condition says that
we are in this chamber for all β.

• There are finitely many “chambers” ( 1
d+1 ,

1
d ] such that the moduli spaces

stay constant for ε ∈ ( 1
d+1 ,

1
d ]; intuitively, when crossing the wall we

trade rational tails of degree d (with respect to O(θ)) with base points
of length d.

3.2. Some history.

• For fixed curve with no markings and ε = 0+, many earlier compactifications
are unified by this construction:

– Drinfeld’s quasimaps to Pn, see [3]. However, note that the moduli of
Drinfeld’s quasimaps to flag varieties considered in [3] are defined using
the Plücker embeddings and therefore fit into the situation described in
Example 4 of §2.2. Since under the Plücker embedding the flag varieties
are not complete intersections, the canonical obstruction theory of the
moduli spaces is not perfect.

– Gauged linear σ-models for toric targets (Witten [52], Morrison - Plesser
[42], Givental [25, 26]).

– Quot schemes for Grassmannians ((Strømme [49], Bertram [2]); their
generalization to type A flag varieties due to Laumon [38, 39] (and
rediscovered under the names hyperquot or flag-quot schemes in [9, 36]).

– ADHM sheaves for Hilbn(C2) (Diaconescu [21]).

• For the case when the complex structure of the domain curves varies and/or
markings are allowed, the starting point was the work by Marian, Oprea,
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and Pandharipande [41] on moduli of stable quotients (in the terminology
introduced above, this corresponds to target a Grassmannian and ε = 0+).
Inspired by their paper, the authors developed the toric case and realized
that the GIT point of view is the correct generalization of both ([10]). The
ε-stability idea appeared first in work by Mustaţă and Mustaţă for target
Pn ([46]). For Grassmannian targets, Toda introduced and studied ε-stable
quotients in [51].

• There’s a long (ongoing) related story in the symplectic category concerned
with the study of (compactifications of) the moduli space of solutions to
vortex equations, starting with work of Cieliebak - Gaio - Salamon and of
Mundet i Riera, see [7, 8, 44, 45, 29, 30, 54]. An algebraic version of this
theory is developed by Woodward in [53].

• Frenkel - Teleman - Tolland are developing a general formalism of a Gromov-
Witten type theory of quotient stacks [Y/G], see [24].

3.3. Quasimap Invariants. There are evaluation maps evi to W//G (by
the prestable condition) and tautological line bundles Mi on Qε

g,k(W//G, β) with

fiber the cotangent line to C at the ith marking:

evi : Qε
g,k(W//G, β)→W//G.

As usual, denote ψi := c1(Mi). Given

δ1, . . . δk ∈ H∗(W//G,Q)

and integers a1, . . . , ak ≥ 0, we define ε-quasimap invariants

〈δ1ψa11 , . . . , δkψ
ak
k 〉

ε
g,k,β :=

∫
[Qεg,k(W//G,β)]vir

∏
ψaii

∏
ev∗i (δi)

for all ε ≥ 0+.
If ε > 1 (we write ε = ∞ for all such stability conditions), these are the

descendant Gromov-Witten invariants of W//G.
The definition above requires W//G projective; in the quasi-projective case

there are equivariant versions available for all interesting targets, e.g., toric vari-
eties, local targets, and Nakajima quiver varieties. Precisely, what is needed in
order to have a good theory for non-compact targets W//G is that there is an
action on W by an algebraic torus T ∼= (C∗)r, commuting with the G-action and
such that the T-fixed locus on the affine quotient W/affG is proper (and therefore
a finite set). To get a unified framework, we will make this assumption from now,
allowing the case r = 0 of a trivial torus.

The invariants satisfy the “splitting axiom” and in fact they form the degree
zero sector of a Cohomological Field Theory (CohFT) on H∗(W//G). However,
for general targets W//G and ε ≤ 1, the string equation may fail so the CohFT
will not have a flat identity. We refer the reader to [12, §2] for some more details
on the quasimap CohFT.
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4. Genus zero wall-crossing and mirror maps

It is natural to expect that different stability chambers carry the same information.
This will be expressed via wall-crossing formulas for generating functions of the
invariants. In this section we explain why the wall-crossing formulas for genus
zero invariants are generalizations (in many directions) of Givental’s Toric Mirror
Theorems.

First we fix some notations:

• H∗(W//G) denotes the localized T-equivariant cohomology with Q-coefficients.

• 〈 , 〉 is the intersection pairing on H∗(W//G).

• {γ1 = 1, . . . , γs} and {γ1, . . . , γs} are dual bases of H∗(W//G) with respect
to 〈 , 〉. Here 1 denotes the cohomology class dual to the fundamental cycle.

• Eff(W,G, θ) denotes the semigroup of numerical classes β ∈ Pic([W/G])∨

represented by θ-quasimaps with possibly disconnected domain. (Note that
Eff(W,G, θ) is in general bigger than the cone of effective curves in W//G.)

• Λ ∼= Q[[q]] denotes the Novikov ring of the theory, that is, the q-adic com-
pletion of the semigroup ring C[Eff(W,G, θ)], β ↔ qβ .

4.1. S-operators. For δi ∈ H∗(W//G) and integers ai ≥ 0, put

〈〈δ1ψa11 , . . . , δkψ
ak
k 〉〉

ε
g,k =

∑
β∈Eff(W,G,θ)

∑
m≥0

qβ

m!
〈δ1ψa11 , . . . , δkψ

ak
k , t, . . . , t)〉εg,k+m,β .

It is a formal function of t =
∑s
i=1 tiγi ∈ H∗(W//G).

Define, for γ ∈ H∗(W//G,Λ) and a formal variable z,

Sεt (z)(γ) :=

s∑
i=1

γi〈〈
γi

z − ψ
, γ〉〉ε0,2(t).

Here ψ = ψ1 and the right-hand side is interpreted as usual by expanding 1/(z−ψ)

as a geometric series in ψ/z. By convention, 〈 γi

z−ψ , γ〉
ε
0,2,0 = 〈γi, γ〉. We think of Sεt

as a family (parametrized by t) of operators on H∗(W//G,Λ). When the variable
z is understood we drop it from the notation.

In Gromov-Witten theory, the operator S∞t is well-known. Its matrix is the
(inverse of) a fundamental solution for the quantum differential equation. Fur-
thermore, by the string equation for Gromov-Witten invariants, S∞t (1) coincides
with Givental’s (big) J-function of W//G (we will come back to J-functions in the
next subsection). The operator S∞t determines the entire genus zero sector of the
Gromov-Witten theory of W//G by a standard reconstruction procedure, essen-
tially due to Dubrovin [23]. As shown in [12], the same reconstruction works for
ε-quasimap invariants for all ε ≥ 0+. The key point where a new idea is needed is
the proof of the following result, which reconstructs invariants with two descendant
insertions.
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Theorem 4.1. Let z, w be formal variables and define

V εt (z, w) :=

s∑
i,j=1

γi ⊗ γj〈〈
γi

z − ψ
,

γj

w − ψ
〉〉ε0,2(t),

where [∆] =
∑s
i=1 γi⊗γi ∈ H∗(W//G)⊗H∗(W//G) is the cohomology class of the

diagonal and the convention

s∑
i,j=1

γi ⊗ γj〈
γi

z − ψ
,

γj

w − ψ
〉ε0,2,0 =

[∆]

z + w

is made for the unstable term in the double bracket. Then

V εt =
Sεt (z)⊗ Sεt (w)([∆])

z + w
.

The usual - and very easy - argument that proves the above theorem in Gromov-
Witten theory (see [27, item (4) on p.117]) requires the string equation and there-
fore does not extend to stability parameters 0+ ≤ ε ≤ 1. The new proof from [12]
is uniform for all values of ε.

4.2. Wall-crossing for S-operators. The most general wall-crossing for-
mula in genus zero applies to the operators Sεt , see [11, Theorem 7.3.1]. We state
here a slightly more special case.

Theorem 4.2. Assume that there is an action by a torus T on W , commuting
with the action of G, and such that the induced T-action on W//G has isolated
fixed points. For every ε ≥ 0+

Sεt (1) = S∞τε(t)(1),

where the (invertible) transformation τε(t) is the series of primary ε-quasimap
invariants

τε(t) =

s∑
i=1

γi〈〈γi,1〉〉ε0,2(t)− 1

= t+

s∑
i=1

γi
∑
β 6=0

∑
m≥0

qβ

m!
〈γi,1, t, . . . , t〉ε0,2+m,β .

Moreover, the same statement holds for E-twisted theories, where E is any convex
G-representation.

A G-representation is called convex if the G-equivariant bundle W×E on W is
generated by G-equivariant sections. By twisted theories in the last statement we
mean that the twisting is by the top Chern class, in the sense of Coates - Givental
[18], as extended for quasimap invariants in [14, §6.2]. The twisting vector bundle
E on W//G is descended from the representation E.
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Note that no positivity assumptions are made in Theorem 4.2 on (W,G, θ), or
on (W,E,G, θ) in the twisted case, and also that no assumption is made on the
1-dimensional orbits of the T action on W//G.

Theorem 4.2 applies to essentially every example listed earlier: toric manifolds,
flag manifolds, some (but not all) Nakajima quiver varieties, and local targets over
them all admit torus actions with the required property. Of course, the statement
is conjectured to hold without the existence of a torus action with isolated fixed
points, see [11, Conjecture 6.1.1]. In fact, the part of the Theorem involving twisted
theories already covers such targets. This is because the E-twisted quasimap in-
variants give (almost all of) the genus zero quasimap invariants of the zero-locus
of a regular section of the bundle E = W ss ×G E and this zero-locus generally is
not T-invariant.

4.3. Jε-functions and Birkhoff factorization. Recall first the big
J-function of Gromov-Witten theory:

J∞(q, t, z) = 1 +
t

z
+
∑
i

γi〈〈
γi

z(z − ψ)
〉〉∞0,1(t)

= 1 +
t

z
+
∑
β,k

qβ

k!
(ev1)∗

[M0,1+k(W//G, β)]vir ∩
∏1+k
j=2 ev

∗
j t

z(z − ψ)

(the last sum is over (β, k) 6= (0, 0), (0, 1)). We want to extend it to all ε ≥ 0+.
The problem is that the spaces Qε

0,1(W//G, β) do not exist for ε ≤ 1
β(Lθ) . To

resolve it we use the interpretation of the J-function as a sum of certain virtual
localization residues for the natural C∗-action on the Gromov-Witten graph spaces
M0,k(W//G× P1, (β, 1)).

Specifically, for all 0+ ≤ ε, k ≥ 0, we have the quasimap graph space

QGε0,k,β(W//G) = {
(
(C, {pi}), P, u, ϕ

)
| ϕ : C → P1, ϕ∗[C] = [P1]}.

This is the moduli space of (genus zero, k-pointed) ε-stable quasimaps whose do-
main curve contains a component C0 which is a parametrized P1. The ampleness
part of the ε-stability condition involves only C \ C0, while the length condition
remains the same. These spaces are defined for all k ≥ 0 and the analogue of
Theorem 3.2 holds for them. For toric targets and ε = 0+ they were introduced
in [10], the general case is in [14].

The C∗-action on P1 induces an action on QGε0,k,β(W//G). Let z denote the
equivariant parameter.

Consider the fixed locus F0 of quasimaps for which all markings and the entire
degree β are over 0 ∈ P1 ∼= C0. There are two cases:

• k ≥ 1, or ε > 1
β(Lθ) . Then F0

∼= Qε
0,1+k(W//G, β) with its canonical virtual

class and eC∗(Nvir) := eC∗(Nvir
F0/QGε0,k,β(W//G)) = z(z − ψ). We also have the

evaluation map ev = ev1 : F0 →W//G.
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• k = 0 and ε ≤ 1
β(Lθ) . Then F0 = {(P1, P, u)}, with u having a base point

of (maximal) length β(Lθ) at 0 ∈ P1. We define ev : F0 → W//G by taking
evaluation at the generic point of P1. In this case eC∗(Nvir) changes with β.

Now for each ε ≥ 0+ we define the big Jε-function by

Jε(q, t, z) :=
∑
β,k≥0

qβ

k!
ev∗ResF0

(
[QGε0,k,β(W//G)]vir ∩

k∏
j=1

ev∗j t
)

= 1 +
t

z
+

∑
0<β(Lθ)≤1/ε

qβev∗
[F0]

eC∗(Nvir)

+
∑
β,k

qβ

k!
(ev1)∗

[Qε
0,1+k(W//G, β)]vir ∩

∏1+k
j=2 ev

∗
j t

z(z − ψ)
.

The small Jε-function is by definition the specialization at t = 0,

Jεsm(q, z) := Jε(q, 0, z).

For the asymptotic stability ε = 0+ we have the small I-function

Ism(q, z) = J0+(q, 0, z) = 1 +
∑
β 6=0

qβev∗
[F0]

eC∗(Nvir)
.

When W//G is a nonsingular toric variety, or a complete intersections in a
toric variety, the small I-function is (essentially up to an exponential factor) the
cohomology valued hypergeometric q-series introduced by Givental, see [26].

Closed expressions for Ism are known also for many non-abelian GIT quotients:
flag manifolds of classical type, zero loci of sections of homogeneous bundles in
them, local targets over them, the Hilbert scheme of points in C2 ([4, 5, 15, 16]).

In general, the big Jε-function and the operator Sεt are related by “Birkhoff
factorization”. This is the content of the following Theorem.

Theorem 4.3. ([11]) For any GIT target and any ε ≥ 0+

Jε(q, t, z) = Sεt (P ε(q, t, z))

where P ε(q, t, z) is a power series in z. (In fact, P ε is naturally a generating
function of C∗-equivariant graph space integrals, see [11, §5.4].)

4.4. The case of semi-positive targets. The triple (W,G, θ) is called
semi-positive if

β(det(TW )) ≥ 0

for every β ∈ Eff(W,G, θ). Here TW is the (virtual) tangent bundle of the lci
G-variety W , viewed as an element in the equivariant K-group K0

G(W ). We note
that semi-positivity implies that the anti-canonical class of a projective W//G is
nef, but the converse need not be true.
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The Birkhoff Factorization in Theorem 4.3 simplifies drastically for semi-positive
targets. If (W,G, θ) is semi-positive, easy dimension counting arguments show that
for every ε ≥ 0+ the function Jε contains no positive powers of z. Hence we have
the asymptotic expansions

Jεsm(q, z) = Jε0 (q)1 +
Jε1 (q)

z
+O(1/z2),

Jε(q, t, z) = Jε0 (q)1 +
t+ Jε1 (q)

z
+O(1/z2).

In particular, we have

Ism(q, z) = I0(q)1 + I1(q)
1

z
+O(1/z2),

defining the q-series I0(q) and I1(q). They satisfy I0(q) = 1 + O(q) ∈ Λ and
I1 ∈ qH≤2(W//G,Λ). For ε > 0, the coefficients Jε0 (q) and Jε1 (q) are polynomial
truncations of the series I0 and I1. Note that since there are explicit closed formulas
for Ism in almost all examples, the series I0(q) and I1(q) are also explicit.

It follows that Theorem 4.3 specializes to the following Corollary (a very special
case of this result is due to [19], by different methods).

Corollary 4.4. ([11]) Let (W,G, θ) be semi-positive and let ε ≥ 0+ be arbitrary.
Then the J-function and the S-operator are related by

Sεt (1) =
Jε(q, t, z)

Jε0 (q)
.

The transformation τε(t) =
∑s
i=1 γi〈〈γi,1〉〉ε0,2(t)− 1 satisfies

τε(t) =
t+ Jε1 (q)

Jε0 (q)
,

and in particular
s∑
i=1

γi
∑
β 6=0

qβ〈γi,1〉ε0,2,β =
Jε1 (q)

Jε0 (q)
.

Combining Theorem 4.2 with Corollary 4.4 gives the following Corollary.

Corollary 4.5. ([11]) Assume (W,G, θ) is semi-positive and there is a T-action
on W//G with isolated fixed points. Then

J∞
(
q,
t+ Jε1 (q)

Jε0 (q)
, z

)
=
Jε(q, t, z)

Jε0 (q)
.

The same is true for E-twisted theories on W//G, where E is a convex G-representation
such that, for all θ-effective β,

β(det(TW ))− β(W × det(E)) ≥ 0.
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Let ε = 0+. After making t = 0 in the last Corollary and applying the string
and divisor equations in the GW side, we obtain the usual formulation of the genus
zero Mirror Theorem for the small J-function of Gromov-Witten theory

e
1
z
I1(q)

I0(q) J∞sm(Q, z) = Ism(q, z)

after the change of variable Qβ = qβe
∫
β

I1(q)

I0(q) . For Calabi-Yau complete intersec-
tions in toric varieties, this change of variables is precisely the mirror map obtained
from the solutions to the Picard-Fuchs equations associated to the mirror mani-
folds. Note that by the last equation in Corollary 4.4 the mirror map acquires a
geometric interpretation in terms of two-point primary (0+)-quasimap invariants
with a fundamental class insertion, as suggested by Jinzenji [33].

Hence the genus zero wall-crossing formula in Theorem 4.2 generalizes the mir-
ror theorems as follows:

• from abelian to non-abelian quotients

• from the small to the big phase space

• from ε = 0+ to all ε

• from semi-positive GIT triples to all such triples.

4.5. Wall-crossing for Jε-functions in the general case. With-
out the semi-positivity assumption the relation between Jε(q, t, z) and J∞(q, t, z)
is more complicated than the one given by Corollary 4.5. The most concise formu-
lation is given by the following Conjecture [11, Conjecture 6.4.2].

Conjecture 4.6. For all GIT triples (W,G, θ) and all stability parameters ε ≥ 0+
the function Jε(q, t, z) is on the Lagrangian cone of the Gromov-Witten theory of
W//G.

Recall that for a general target X Givental introduced a formalism which en-
codes the genus zero sector of the Gromov-Witten theory of X via an overruled
Lagrangian cone in an appropriate infinite-dimensional symplectic vector space,
see [28, 18]. The Lagrangian cone is generated by the big J-function (this state-
ment is another formulation of the Dubrovin reconstruction mentioned earlier).
The conjecture then implies that J∞(q, τ∞,ε(q, t), z) is a linear combination of the
derivatives ∂tiJ

ε(q, t, z) with uniquely determined coefficients (depending on q, t,
and z) and unique change of variables t 7→ τ∞,ε(q, t).

Theorem 4.7. ([11]) Assume there is a T-action on W such that the induced
action on W//G has isolated fixed points and isolated 1-dimensional orbits. Then
Conjecture 4.6 holds true.

4.6. Big I-functions. The results described so far in this section elucidate
the relationship between quasimap and GW invariants of W//G in genus zero.
However, if one is primarily interested in calculating GW invariants, the applica-
bility of these results is restricted only to invariants with (descendant) insertions
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at one marking. This is because only for the small I-function one can write down
explicit closed formulas. In general, quasimap invariants with two or more inser-
tions are equally difficult to determine for all values of the stability parameter
ε. To improve the situation the authors have introduced in [13] a new version of
big I-function of (W,G, θ) by considering a theory of (0+)-stable quasimaps with
infinitesimally weighted markings. We conjectured that this function lies on the
Lagrangian cone of the Gromov-Witten theory of W//G. Arguments parallel to
the ones in the unweighted case are used to prove the following Theorem.

Theorem 4.8. ([13]) Let (W,G, θ) be a GIT triple. Assume there is a T-action
on W such that the induced action on W//G has isolated fixed points and isolated
1-dimensional orbits. Then the big I-function associated to (W,G, θ) is on the
Lagrangian cone of the Gromov-Witten theory of W//G. Furthermore, if E is a
convex G-representation, then the E-twisted I is on the E-twisted Lagrangian cone
of W//G.

As a consequence, the big J function of the (E-twisted) Gromov-Witten theory
of W//G is obtained from I via the Birkhoff factorization procedure of Coates
and Givental [18]. The advantage is that one can calculate again explicit closed
formulas for this new big I-function in many cases. In [13] it is explained how
to do so for toric varieties and for complete intersections in them. For example,
if Cn+1//idC∗ = Pn is the standard GIT presentation of the projective space and
E = Cl(id) is the 1-dimensional C∗-representation with weight l ∈ Z>0, then one
finds

IECn+1//C∗(t) =

∞∑
d=0

qd
exp(

∑n
i=0 ti(H + dz)i/z)∏d

k=1(H + kz)n+1

ld∏
k=0

(lH + kz),

where H is the hyperplane class and t =
∑n
i=0 tiH

i is the general element of
H∗(Pn,Q).

Observe that if we denote by tsm = t01 + t1H the restriction of t to the small
parameter space H0(Pn,Q)⊕H2(Pn,Q), then

IECn+1//C∗(tsm) = exp(
t01 + t1H

z
)

∞∑
d=0

qd exp(dt1)

∏ld
k=0(lH + kz)∏d

k=1(H + kz)n+1
,

which is precisely Givental’s small I-function of a hypersurface of degree l in Pn
(and differs from the function Ism from §4.3 by the overall exponential factor
exp( t01+t1H

z ) and the change q 7→ q exp(t1)).

Remark 4.9. The results described in §4.2 - §4.6 above have been extended in
[6] to the case of “orbifold GIT targets”, that is, to the case when [W ss/G] is
a nonsingular Deligne-Mumford stack. A result related to Theorem 4.8 has been
obtained earlier by Woodward, [53, Theorem 1.6].
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5. Higher genus wall-crossing for semi-positive tar-
gets

In this section we discuss the wall-crossing formulas for higher genus ε-quasimap
descendant invariants in the case of semi-positive triples (W,G, θ).

Let
t(ψ) := t0 + t1ψ + t2ψ

2 + t3ψ
3 + . . . ,

with tj =
∑
i tjiγi ∈ H∗(W//G,Q) general cohomology classes.

By definition, the genus g, ε-descendant potential of (W,G, θ) is

F εg (t) :=
∑

β∈Eff(W,G,θ)

∑
m≥0

qβ

m!
〈t(ψ1), t(ψ2), . . . t(ψm)〉εg,m,β .

As usual, we omit from the sum the unstable terms corresponding to (g,m, β, ε)
for which the moduli spaces are not defined.

Conjecture 5.1. ([12]) For a semi-positive triple (W,G, θ), and every ε ≥ 0+

(Jε0 (q))2g−2F εg (t(ψ)) = F∞g

(
t(ψ) + Jε1 (q)

Jε0 (q)

)
. (5.0.1)

Further, for every ε1 6= ε2

(Jε10 (q))2g−2F ε1g (Jε10 (q)t(ψ)− Jε11 (q)) = (Jε20 (q))2g−2F ε2g (Jε20 (q)t(ψ)− Jε21 (q)) .
(5.0.2)

To be precise, in the case g = 0 the equalities are conjectured to hold modulo terms
of degree ≤ 1 in the coordinates tji (but see [12, Remark 3.1.3 ] for an explanation
on how to extend the statement to an equality up to constants).

Note that the (a priori stronger) wall-crossing formula (5.0.2) follows from
(5.0.1).

Considering the Taylor coefficients on both sides gives the following equivalent
formulation of (5.0.1): If 2g−2+k ≥ 0, then for arbitrary δ1, . . . δk ∈ H∗(W//G,Q)
and integers a1, . . . , ak ≥ 0,

(Jε0 (q))2g−2+k
∑
β

qβ〈δ1ψa11 , . . . , δnψ
ak
k 〉

ε
g,k,β =

∑
β

qβ
∞∑
m=0

1

m!

〈
δ1ψ

a1
1 , . . . , δkψ

ak
k ,

Jε1 (q)

Jε0 (q)
, . . . ,

Jε1 (q)

Jε0 (q)

〉∞
g,k+m,β

.

Combining Corollary 4.5 with reconstruction for ε-quasimap invariants proves
the Conjecture in genus zero.

Theorem 5.2. ([12]) Let (W,G, θ) be semi-positive. Assume there is an action
by a torus T, such that the fixed points of the induced T-action on W//G are



Quasimap Theory 17

isolated. Then the g = 0 case of Conjecture 5.1 holds. Moreover, if E is a convex
G-representation such that β(det(TW ))− β(W × det(E)) ≥ 0 for all θ-effective β,
then the conjecture also holds at g = 0 for the E-twisted ε-quasimap theories of
W//G.

A more convincing piece of evidence for the validity of the Conjecture is pro-
vided by the following result:

Theorem 5.3. ([12]) Let X be a nonsingular quasi-projective toric variety of di-
mension n, obtained as the GIT quotient of a semi-positive triple (Cn+r, (C∗)r, θ).
Then Conjecture 5.1 holds for X.

It is easy to see that toric varieties (in any semi-positive GIT presentation) have
I0(q) = 1 (and hence Jε0 = 1 for all ε). When X is a nonsingular and projective
toric Fano and we take its “standard” GIT presentation (as considered e.g. in
[10]), then I1(q) = 0 as well. Hence we obtain the following

Corollary 5.4. If X is a nonsingular projective Fano toric variety, then its
quasimap invariants (for the standard GIT presentation) are independent on ε:

F εg (t(ψ)) = F∞g (t(ψ)), ∀ε ≥ 0 + .

The first statement of the kind in the Corollary was established by Marian -
Oprea - Pandharipande [41] for W//G a Grassmannian and for ε = 0+. Their
result was extended to all ε in [51] by Toda.

Remark 5.5. 1. The most interesting case covered by Theorem 5.3 is that of
toric Calabi-Yau targets. For 3-folds, our theorem says that F 0+

g |t(ψ)=0 is
equal to the B-model genus g pre-potential, expanded near a large complex
structure point for the mirror of X.

2. The arguments proving Theorem 5.3 also apply to show that the higher genus
wall-crossing of Conjecture 5.1 holds for some non-abelian local Calabi-Yau
targets, namely local Grassmannians, and in fact local type A flag manifolds,
see [12, Theorem 1.3.4].

3. The remaining challenge is to prove Conjecture 5.1 for compact Calabi-Yau
targets at g ≥ 1.
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