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Abstract. In previous work we have conjectured wall-crossing
formulas for genus zero quasimap invariants of GIT quotients and
proved them via localization in many cases. We extend these for-
mulas to higher genus when the target is semi-positive, and prove
them for semi-positive toric varieties, in particular for toric local
Calabi-Yau targets. The proof also applies to local Calabi-Yau’s
associated to some non-abelian quotients.

1. Introduction

1.1. Overview. When a complex affine algebraic variety W is acted
upon by a reductive group G, a choice of a character θ of G determines
a linearization of the action, and hence a GIT quotient W//G = W//θG.

Under reasonable conditions on the triple (W,G, θ), certain stability
conditions, depending on a parameter ε ∈ Q>0∪{0+,∞} produce (rel-
atively) proper Deligne-Mumford moduli stacks of ε-stable quasimaps
from pointed curves of genus g to W//G, carrying virtual fundamental
classes. They come equipped with evaluation maps and with tautolog-
ical cotangent ψ-classes at the markings and therefore determine (for
projective W//G) descendant ε-quasimap invariants

(1.1.1) 〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β.

As usual, if the target is only quasi-projective, but has a torus action
with good properties, (1.1.1) are well-defined as equivariant invariants.
When (g, k) 6= (0, 0) and ε ∈ (1,∞], (1.1.1) are the Gromov-Witten
invariants of W//G. For (g, k) = (0, 0), the same holds when ε ∈ (2,∞].

As ε varies, we expect the invariants to be related via wall-crossing
formulas. For the genus zero sector, with arbitrary number of primary
insertions and one descendant insertion, such formulas are obtained
in [CK2], where we also show that they may be interpreted as a vast
generalization of Givental’s toric mirror theorems. The genus zero wall-
crossing formulas are conjectured to hold for general W//G and are
proved in [CK2] for many GIT targets by localization methods. The
present paper begins the exploration of wall-crossing at higher genus.
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1.2. Conjectures. Let

t = t(ψ) = t0 + t1ψ + t2ψ
2 + t3ψ

3 + . . . ,

where tj ∈ H∗(W//G,Q) are general even cohomology classes. Let the
Novikov ring Λ = Q[[q]] be the q-adic completion of the semigroup ring
on the semigroup Eff(W,G, θ) of θ-effective classes (see §2.2 for the
definition). The genus g descendant potential of W//G is defined by

F ε
g (t) :=

∑
β∈Eff(W,G,θ)

∑
m≥0

qβ

m!
〈t(ψ1), t(ψ2), . . . , t(ψm)〉εg,m,β.

As usual, the unstable terms in the sum corresponding to (g,m, β) for
which the moduli spaces do not exist are omitted.

The wall-crossing formula relates the Gromov-Witten potential F∞g
to the potential F ε

g for semi-positive triples (W,G, θ) (for these triples,
the corresponding quotients W//G have nef anti-canonical class). To
state it, recall first from [CK2] that in genus zero quasimap theory
there is a J-function Jε(q, t, z) for each stability parameter ε ≥ 0+. It
depends on the Novikov variables, a general even cohomology element
t ∈ H∗(W//G,Q), and a formal variable z. For ε > 1, it is the usual
Givental (big) J-function of Gromov-Witten theory. The small Jε-
function is defined as the restriction at t = 0:

Jεsm(q, z) := Jε(q, 0, z).

In the semi-positive case, Jε takes values in H∗(W//G,Λ)[[1/z]] and we
will need the first two terms in the 1/z-expansion of small Jε,

Jεsm(q, z) = Jε0(q)1 + Jε1(q)
1

z
+O

(
1

z2

)
,

where 1 is the unit in cohomology. For the asymptotic stability ε = 0+
we use the special notation Ism = J0+

sm , and call this the small I-function
of W//G. The series I0(q) ∈ Λ is invertible, of the form 1 +O(q), while
the series I1(q) is in H≤2(W//G,Λ), with vanishing constant term in q.
For ε > 0, the coefficients Jε0 and Jε1 are polynomial q-truncations of
I0 and I1.

Conjecture 1.2.1. If W//G is a GIT quotient corresponding to a semi-
positive triple (W,G, θ), then for every ε ≥ 0+ we have

(1.2.1) (Jε0)2g−2F ε
g (t(ψ)) = F∞g

(
t(ψ) + Jε1

Jε0

)
.

Further, for every ε1 6= ε2

(1.2.2) (Jε10 )2g−2F ε1
g (Jε10 t(ψ)− Jε11 ) = (Jε20 )2g−2F ε2

g (Jε20 t(ψ)− Jε21 ) .
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Since the transformation t(ψ) 7→ (t(ψ) + Jε1)/Jε0 is invertible, the
(apriori stronger) wall-crossing formula (1.2.2) follows from (1.2.1).

Let {γ1, . . . , γs} be a homogeneous basis of H2∗(W//G,Q) and write
tj =

∑
i tjiγi, so that F ε

g are formal series in the tji variables. To have
the uniform statement in the conjecture for all stability parameters,
some modifications to the potentials are needed in low genus, as follows:

• When g = 0 we must discard from both sides of equations
(1.2.1) and (1.2.2) the parts of degree ≤ 1 in the tji’s. There
is, however, a natural way to include all terms of tji-degree 1 in
the genus zero potentials, so that (1.2.1) becomes an equality
up to constants, see Remark 3.1.3.
• When g = 1 a correction term is needed, to account for the

failure of the dilaton equation on M1,1. Namely, we redefine
(1.2.3)

F ε
1 (t) :=

1

24
χtop(W//G) log Jε0 +

∑
(β,m)6=(0,0)

qβ

m!
〈t(ψ1), . . . , t(ψm)〉ε1,m,β,

where χtop denotes the topological Euler characteristic.

By matching Taylor coefficients in the tij’s in Conjecture 1.2.1 we
get the equivalent formulation:

Conjecture 1.2.2. Let W//G be a GIT quotient corresponding to a
semi-positive (W,G, θ). Fix (g, n) 6= (1, 0), with 2g − 2 + n ≥ 0, and a
stability parameter ε ≥ 0+. Then for arbitrary integers a1, . . . an ≥ 0
and arbitrary even cohomology classes δ1, . . . δn ∈ H∗(W//G,Q)

(Jε0(q))2g−2+n
∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n 〉εg,n,β =(1.2.4)

∑
β

qβ
∞∑
m=0

1

m!

〈
δ1ψ

a1
1 , . . . , δnψ

an
n ,

Jε1(q)

Jε0(q)
, . . . ,

Jε1(q)

Jε0(q)

〉∞
g,n+m,β

.

If (g, n) = (1, 0) and ε is arbitrary,

(1.2.5)
1

24
χtop(W//G) log Jε0+

∑
β 6=0

〈 〉ε1,0,β =
∑

(β,m) 6=(0,0)

qβ

m!

〈
Jε1(q)

Jε0(q)
, . . . ,

Jε1(q)

Jε0(q)

〉∞
1,m,β

.

Note that the string and divisor equations in Gromov-Witten theory
allows one to rewrite the right-hand sides of (1.2.4) and (1.2.5) in terms
of invariants with the same insertions as in the left-hand sides.

1.3. Results. The first evidence we give for the conjectures is that
they hold in genus zero for a large class of targets.
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Theorem 1.3.1. Let (W,G, θ) be semi-positive. Assume that W ad-
mits an action by a torus T, commuting with the action of G and such
that the fixed points of the induced T-action on W//G are isolated.
Then the g = 0 cases of Conjectures 1.2.1 and 1.2.2 hold. Moreover, if
E is a convex G-representation such that for all θ-effective β we have
β(det(TW )) − β(W × det(E)) ≥ 0, then the conjectures also hold at
g = 0 for the E-twisted ε-quasimap theories of W//G.

The inclusion of E-twisting means that Theorem 1.3.1 covers the
compact Calabi-Yau targets which are realised as zero loci of sections
of homogeneous vector bundles on toric manifolds, on flag manifolds of
classical types, or on products of such. The proof of this result given in
§3 below can be summarized as follows: by first extending Dubrovin’s
genus zero reconstruction [D] to all ε-theories, we reduce to the case of
big J-functions, which was already established in [CK2].

The second evidence is the main result of the paper.

Theorem 1.3.2. Let X be a nonsingular quasi-projective toric variety
of dimension n, obtained as the GIT quotient of a semi-positive triple
(Cn+r, (C∗)r, θ). Then Conjectures 1.2.1 and 1.2.2 hold for X.

The GIT presentation of a toric variety considered in Theorem 1.3.2
is the standard one, coming from its fan, as in [Cox]. (However, as ex-
plained in §5.9.2 later, the result holds for any other semi-positive GIT
presentation (Cn+r′ , (C∗)r′ , θ′) of X; note that the quasimap theories
are different for different GIT presentations.)

It is easy to see that semi-positive toric varieties have I0(q) = 1.
When X is projective and Fano, we have in addition (for the standard
GIT presentation) that I1(q) = 0. The following Corollary is then an
immediate consequence Theorem 1.3.2.

Corollary 1.3.3. If X is a nonsingular projective Fano toric variety,
then its quasimap invariants are independent on ε:

F ε
g (t(ψ)) = F∞g (t(ψ)),

for all ε ≥ 0+.

More interesting is the case of toric Calabi-Yau targets, for which
Theorem 1.3.2 is highly relevant to the Physicists’ Mirror Symmetry
(see e.g., [H et. al.]) at genus g ≥ 1. For X a toric Calabi-Yau 3-fold,
consider the equality (1.2.1) for ε = 0+ and specialize at t(ψ) = 0.
If we use the string and divisor equations, the Gromov-Witten side
becomes precisely the A-model genus g pre-potential after applying
the mirror map. The Mirror Conjecture then implies that F 0+

g |t(ψ)=0
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is equal to the B-model genus g pre-potential, expanded near a “large
complex structure” point for the mirror of X.

The proof of Theorem 1.3.2 is given in sections 4 and 5 of the pa-
per. In fact, we formulate and prove a stronger cycle-level comparison
for the virtual classes under change of stability parameter from ∞ to
some ε ≥ 0+. The first statement of this kind was established by Mar-
ian, Oprea, and Pandharipande in [MOP] when the target W//G is a
Grassmannian. Our proof for toric targets is inspired by theirs, and
in particular uses crucially a genus-reduction lemma from [MOP], but
requires also several completely new ideas.

As we remark at the end of §5, the proof we give works for other in-
teresting non-compact Calabi-Yau GIT targets. In particular we obtain
the following result.

Theorem 1.3.4. Let X be the total space of the canonical bundle over
a Grassmannian, viewed as a GIT quotient in the canonical way. Then
Conjectures 1.2.1 and 1.2.2 hold for X. More generally, the same is
true for the total space of the canonical bundle over any type A partial
flag manifold.

1.4. Aknowledgments. The research of I.C.-F. was partially sup-
ported by the NSA grant H98230-11-1-0125 and the NSF grant DMS-
1305004. The research of B.K. was partially supported by NRF-2007-
0093859. In addition, I.C-F. thanks KIAS for financial support, excel-
lent working conditions, and an inspiring research environment. The
authors thank the referee for helpful suggestions and Hyenho Lho for
pointing out an error in an earlier version.

2. Quasimap CohFT

To fix notation, in this section we recall briefly (after [CKM]) the
Cohomological Field Theory defined by the moduli spaces of ε-stable
quasimaps.

2.1. Quotients. Consider a triple (W,G, θ) with W an affine com-
plex algebraic variety, G a reductive complex algebraic group acting
on W , and θ ∈ χ(G) a character of G. The G-equivariant line bundle
Lθ = W × Cθ, exhibits θ as a linearization of the action on the trivial
line bundle. Hence (W,G, θ) determines a GIT quotient W//G. It has
a projective morphism to the affine quotient W/affG = Spec(A(W )G).
The line bundle Lθ descends to a relative polarization on W//G, de-
noted by O(θ), which may be taken (without loss of generality) to be
relatively very ample over W/affG.
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We assume that the semi-stable and stable loci for the θ-linearization
coincide, W ss = W s, and that G acts freely on the stable locus. Fur-
ther, we also assume that W has at worst lci singularities and that W s

is smooth. Hence W//G = [W s/G] is a nonsingular open substack in
the quotient stack [W/G].

2.2. ε-stable quasimaps. Let C be a connected, at worst nodal, al-
gebraic curve. A map f : C −→ [W/G] has a (homology) class

β ∈ (Pic([W/G]))∨ = HomZ(Pic([W/G]),Z) = HomZ(PicG(W ),Z)

given by β(L) = deg f ∗L. The map f is a quasimap to W//G if it sends
the generic point of each irreducible component of C to W//G. We may
view the quasimap as a rational map from C to W//G. The (finitely
many) points of C which are sent by f to the complement of W//G in
[W/G] are called the base-points of the quasimap.

A class β ∈ (Pic([W/G]))∨ is said to be θ-effective if it is repre-
sented by a quasimap to W//G. For the purposes of this definition, the
domain curve is allowed to have finitely many connected components.
The θ-effective classes form a semigroup, denoted Eff(W,G, θ). By the
boundedness results in [CKM], for each d > 0 the set

{β ∈ Eff(W,G, θ) | β(Lθ) ≤ d}

is finite, see Remark 3.2.10 in loc.cit.
For each positive ε ∈ Q there is a stability condition on quasimaps; in

addition, there is an asymptotic stability condition, denoted ε = 0+,
in which ε is allowed to be arbitrarily small (but still positive), see
[CKM], also [CK2], §2.4.

From now on we assume that (g, k) 6= (0, 0). For ε ≥ 0+, let
Qε
g,k(W//G, β) denote the moduli space of ε-stable quasimaps of class

β from k-pointed genus g nodal curves to W//G. It is shown in [CKM]
that when the triple (W,G, θ) satisfies the assumptions of §2.1 above,
these moduli spaces are Deligne-Mumford stacks, proper over the affine
quotient W/affG, and carrying canonical perfect obstruction theories.
The lci condition on W is necessary for the perfectness of the ob-
struction theory when ε ≤ 1. The space Qε

g,k(W//G, β) is potentially
nonempty only when

2g − 2 + k + εβ(Lθ) > 0.

The virtual dimension is

vdim(Qε
g,k(W//G, β)) = β(det(TW )) + (1− g)(dim(W//G)− 3) + k,

where TW ∈ K◦G(W ) is the (virtual) G-equivariant tangent bundle.
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For each fixed class β the set Q>0 is divided into stability chambers
by finitely many walls 1, 1

2
, . . . , 1

β(Lθ)
such that the moduli spaces re-

main constant in each chamber. When ε ∈ (1,∞) one recovers the
Kontsevich moduli spaces of stable maps to W//G; we write ε =∞ for
these stability conditions. The asymptotic stability condition ε = 0+
corresponds to being in the first chamber (0, 1

β(Lθ)
] for all β.

For a long list of examples to which quasimap theory applies, see
§2.8 of [CK2].

2.3. ε-quasimap invariants, ε-CohFT. Let Q[Eff(W,G, θ)] be the
semigroup ring. We write qβ for the element corresponding to β ∈
Eff(W,G, θ). The Novikov ring associated to the triple (W,G, θ) is the
m-adic completion

Λ := ̂Q[Eff(W,G, θ)]

with respect to the maximal ideal m generated by {qβ | β 6= 0}.
Throughout the paper H∗(W//G,Q) and H∗(W//G,Λ) will denote the
even cohomology with the indicated coefficients.

In this subsection we assume that W//G is projective; the extension
to quasi-projective targets is discussed in the next subsection. We have
the intersection pairing

〈γ, δ〉 :=

∫
W//G

γδ

on cohomology. We extend it Λ-linearly to H∗(W//G,Λ).
Once and for all, fix homogeneous bases {γ1, . . . , γs} and {γ1, . . . , γs}

ofH∗(W//G,Q), dual with respect to the pairing 〈 , 〉. The cohomology
class of the diagonal ∆ ⊂ W//G×W//G is then

∑s
i=1 γi ⊗ γi.

2.3.1. Brackets and double brackets. Let ψi be the first Chern class of
the canonical line bundle on Qε

g,k(W//G, β) with fiber the cotangent line

to the domain curve at the ith marking. For any stability parameter
0+ ≤ ε ≤ ∞, the descendant invariants of ε-quasimap theory are
defined by

(2.3.1) 〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β =

∫
[Qεg,k(W//G,β)]vir

k∏
i=1

ev∗i (δi)ψ
ai
i ,

where δi ∈ H∗(W//G,Q), evi : Qε
g,k(W//G, β) −→ W//G are the eval-

uation maps at the markings, and g, k, a1, . . . ak ≥ 0 are integers such
that 2g − 2 + k + εβ(Lθ) > 0.

Remark 2.3.1. In Gromov-Witten theory, the name “invariants” for the
brackets (2.3.1) reflects the fact that they are symplectic invariants of
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the target W//G and in particular do not change under deformations of
the target W//G. The quasimap brackets depend on the pair of stacks
([W/G], [W s/G]), see Proposition 4.6.1 in [CKM]. Nevertheless, we
will use the same terminology in quasimap theory as well.

When dealing with generating series of invariants, it is convenient to
use a double bracket notation

〈〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k = 〈〈δ1ψ

a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k(t(ψ)) :=∑

m,β

qβ

m!
〈δ1ψ

a1
1 , . . . , δkψ

ak
k , t(ψk+1), . . . , t(ψk+m)〉εg,k+m,β.

(2.3.2)

Here, as in the Introduction, t(ψ) = t0 + t1ψ + t2ψ
2 + t3ψ

3 + . . . ,
with tj =

∑
i tjiγi ∈ H∗(W//G,Q). The double brackets are formal

functions on the large phase space with coordinates tji. We will often
need to specialize them to t1 = t2 = · · · = 0 and will write

〈〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k(t) = 〈〈δ1ψ

a1
1 , . . . , δkψ

ak
k 〉〉

ε
g,k |t=t

for the specializations, with t := t0 =
∑

i t0iγi.
Apriori the unstable terms are omitted from the sum (2.3.2), though

in many cases certain conventions will be made to include them as
well. When we do that, the appropriate conventions will be spelled out
explicitly. In this notation, the genus g potential (when g ≥ 1) is the
empty bracket

F ε
g (t(ψ)) = 〈〈 〉〉εg,0(t(ψ)),

and then (2.3.2) with δj = γij is the derivative ∂
∂ta1i1

. . . ∂
∂takik

F ε
g (t(ψ)).

2.3.2. ε-quasimap classes. Let

f : Qε
g,k(W//G, β) −→M g,k

be the composition of the forgetful morphism Qε
g,k(W//G, β) −→Mg,k

with the stabilization morphism Mg,k −→ M g,k. If 2g − 2 + k > 0,
define Λ-linear maps

Ωε
g,k : H∗(W//G,Λ)⊗k −→ H∗(M g,k,Λ),

Ωε
g,k(⊗kj=1δj) =

∑
β

qβΩε
g,k,β(⊗kj=1δj),

(2.3.3)

by setting

(2.3.4) Ωε
g,k,β(⊗kj=1δj) = f∗([Q

ε
g,k(W//G, β)]vir ∩

k∏
j=1

ev∗j (δj)).

The maps (2.3.3) are clearly equivariant for the actions of the symmet-
ric group Sk on the source and target.
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2.3.3. ε-CohFT. The boundary of Qε
g,k(W//G, β) is the complement

of the open stratum of quasimaps with irreducible and nonsingular
domain curve. It has a recursive structure, with strata indexed by
modular graphs and the virtual classes behave in a functorial way with
respect to this structure. These facts are well-known for the moduli
spaces of stable maps, and one sees immediately that their standard
proofs, as given in [B], are ε-independent. The general statement we
will use is the one appearing as Theorem 13 in [Ge], with the spaces
M g,k(W//G, β) replaced by general Qε

g,k(W//G, β).
In particular, we obtain virtual divisors covering the boundary as

follows. Let [k] := {1, 2, . . . , k}. Let

B(g, k) := {((g1, S1), (g2, S2)) | g = g1 + g2, [k] = S1

∐
S2 }.

be the set of ordered partitions of (g, k). For each σ ∈ B(g, k) put

D̃ε
σ :=

∐
β=β1+β2

Qε
g1,S1∪•(W//G, β1)×W//G Qε

g2,S2∪?(W//G, β2),

where the fiber product is over the evaluation maps at the additional

markings. Alternatively, D̃ε
σ is defined by the fiber product diagram

D̃ε
σ −−−→

∐
β1+β2=β Qε

g1,S1∪•(W//G, β1)×Qε
g2,S2∪?(W//G, β2)y yev•×ev?

W//G
∆−−−→ W//G×W//G.

There is a proper gluing map

D̃ε
σ

hσ−−−→ Qε
g,k(W//G, β),

and the boundary divisor Dε
σ is the stack-theoretic image of hσ. The

virtual classes of D̃ε
σ and of Dε

σ are defined by
(2.3.5)

[D̃ε
σ]vir := ∆!

∑
β1+β2=β

[Qε
g1,S1∪•(W//G, β1)]vir ⊗ [Qε

g2,S2∪?(W//G, β2)]vir,

(2.3.6) [Dε
σ]vir := (hσ)∗[D̃

ε
σ]vir.

Similarly, there is a proper gluing map

h0 : W//G×W//G×W//G Qε
g−1,[k]+•+?(W//G, β) −→ Qε

g,k(W//G, β),

(fiber product over the diagonal map ∆ and the pair (ev•, ev?)) whose
image gives a boundary divisor Dε

0 with virtual class

(2.3.7) [Dε
0]vir = (h0)∗∆

![Qε
g−1,[k]+•+?(W//G, β)]vir.
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This leads to the usual splitting properties for the brackets (2.3.1)
and the classes (2.3.4). For example, if [k] = S1

∐
S2, g1 +g2 = g, with

|Si| = ki, is a stable ordered partition, then
(2.3.8)

ρ∗Ωε
g,k(⊗kj=1δj) =

∑
i

Ωε
g1,k1+1((⊗j∈S1δj)⊗ γi)Ωε

g2,k2+1((⊗j∈S2δj)⊗ γi),

where

ρ : M g1,S1∪• ×M g2,S2∪? −→M g,k

is the gluing map on stable curves. Analogously,

(2.3.9) φ∗Ωε
g,k(⊗kj=1δj) =

∑
i

Ωε
g−1,k+2((⊗kj=1δj)⊗ γi ⊗ γi),

where (g − 1, k + 2) is stable and

φ : M g−1,k+2 −→M g,k

is again the gluing map. In other words, we have the following

Proposition 2.3.2. For each ε ≥ 0+ the maps (2.3.3) give the struc-
ture of a Cohomological Field Theory (CohFT) over Λ on H∗(W//G,Λ)
with the metric 〈 , 〉.

The primary invariants (2.3.1) in the stable range 2g− 2 + k > 0 are
given by the degree zero part of the CohFT,∑

β

qβ〈δ1, . . . , δk〉εg,k,β =

∫
Mg,k

Ωε
g,k(⊗kj=1δj).

The genus zero potential F ε
0 (t) satisfies the WDVV equation and de-

termines the ε-quasimap Frobenius manifold. The ε-quantum product
is given by

γi ◦ε γj =
s∑
l=1

γl〈〈γi, γj, γl〉〉ε0,3(t).

The unit for this product is discussed in Remarks 2.3.5 and 3.1.4 below.
Including ψ-classes on M g,k in the integrals, the CohFT gives the

“ancestor” invariants

(2.3.10) 〈δ1ψ̄
a1
1 , . . . , δkψ̄

ak
k 〉

ε
g,k,β :=

∫
[Qεg,k(W//G,β)]vir

k∏
j=1

ev∗j (δj)ψ̄
aj
j ,

with ψ̄j := f ∗ψj,k and ψj,k the ψ class at the jth marking on M g,k.
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2.3.4. genus zero TRR. For m ≥ 0, 2g−2+k > 0, consider the forgetful
map

f : Qε
g,k+m(W//G, β) −→M g,k.

Fix j ∈ [k]. We have the following basic comparison of the classes ψj
and f ∗ψj,k.

Lemma 2.3.3. Let Aj ⊂ B(g, k+m) be the subset consisting of ordered
partitions σ = ((0, g), (S1, S2)) with j ∈ S1 and [k] \ {j} ⊂ S2. Then

(2.3.11) (ψj − f ∗ψj,k) ∩ [Qε
g,k(W//G, β)]vir =

∑
σ∈Aj

[Dε
σ]vir.

Proof. The argument in Gromov-Witten theory is not ε-dependent, so
will work in general. �

In Gromov-Witten theory, Lemma 2.3.3 is used to express descen-
dant invariants in terms of ancestors. This can be done for quasimap
invariants too, but we will not deal with it in this paper. Instead, we
note that another consequence of the Lemma, the genus zero Topolgical
Recursion Relation (TRR) holds for all stability parameters.

Corollary 2.3.4. (Genus zero TRR) For all ε ≥ 0+, all a1, a2, a3 ≥ 0
and all δ1, δ2, δ3 ∈ H∗(W//G,Q) we have

(2.3.12)

〈〈δ1ψ
a1
1 , δ2ψ

a2
2 , δ3ψ

a3
3 〉〉ε0,3 =

s∑
i=1

〈〈δ1ψ
a1−1
1 , γi〉〉ε0,2〈〈γi, δ2ψ

a2
2 , δ3ψ

a3
3 〉〉ε0,3.

Proof. Apply Lemma 2.3.3 for g = 0, k = 3, and use the fact that ψ1

vanishes on M0,3 = Spec(C). �

Remark 2.3.5. Gromov-Witten invariants satisfy additional structures
encoded in the string, dilaton, and divisor equations. The reason be-
hind these structures is that moduli of stable maps (ε = ∞) admit
forgetful lci morphisms

Q∞g,k+1(W//G, β) −→ Q∞g,k(W//G, β)

for which the virtual classes behave functorially. These morphisms
may fail to exist for stability parameters ε ≤ 1. Even when they do
exist, the virtual classes often are not compatible with the pull-back.
In particular, for a general target W//G, the unit cohomology class
1 will be the unit for the CohFT only in the Gromov-Witten range
of the stability parameter ε. The appropriate versions of string and
dilaton equations for all ε in the case of semi-positive triples (W,G, θ)
are discussed later in the paper.
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2.4. Equivariant theory and non-compact targets. Suppose that
W admits an additional action by an algebraic torus T ∼= (C∗)n, which
commutes with action of G. There are induced actions on [W/G], on
W//G, and on W/affG. The projective morphism W//G −→ W/affG is
T-equivariant. Further, there are also induced T-actions on the moduli
spaces Qε

g,k(W//G, β) (and on the graph spaces recalled in §3 below).
We will always assume in this paper that the locus of T-fixed points

in the affine quotient W/affG is proper. This assumption is automatic
if W//G is projective and holds for the natural torus actions on all
interesting examples of non-compact targets, such as quasiprojective
toric varieties, total spaces of bundles over projective quotients, and
Nakajima quiver varieties. It follows that the T-fixed loci in W//G and
in all the moduli spaces of stable quasimaps are also proper. In this
situation we get a T-equivariant version of the CohFT, see e.g. §6.3 in
[CKM] and all results in §2.3 (which may be viewed as corresponding
to the zero-dimensional torus T = {1}) are valid in this setting.

Precisely, let

Q[λ1, . . . , λn] = H∗T(Spec(C),Q)

and

K := Q(λ1, . . . , λn) = H∗T,loc(Spec(C),Q)

be the equivariant cohomology, respectively the localized equivariant
cohomology of a point. The cohomology ring of W//G is replaced by
the localized equivariant cohomology

H∗T,loc(W//G,Q) = H∗T(W//G,Q)⊗Q[λ1,...,λn] K,

while the Novikov ring is now Λ = K[[q]].
The pairing is defined by the localization formula

〈δ, γ〉 =

∫
W//GT

i∗(δγ)

e(N)
,

where i : W//GT ↪→ W//G is the inclusion of the fixed point locus and
e(N) is the T-equivariant Euler class of the normal bundle. Similarly,
the T-equivariant ε-quasimap invariants are defined by the virtual lo-
calization formula,

(2.4.1) 〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β :=

∫
[(Qεg,k(W//G,β))T]vir

i∗(
∏

j ev
∗
j (δj)ψ

aj
j )

e(Nvir)
,

with i : (Qε
g,k(W//G, β))T ↪→ Qε

g,k(W//G, β). Both the pairing and the
invariants take values in the field K (or in Λ, if we take the insertions
from H∗T,loc(W//G,Λ)).
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If W//G is projective and we take all insertions in the non-localized
equivariant cohomology H∗T(W//G,Q), then the T-equivariant invari-
ants may be defined without localization and take values in the ring
Q[λ1, . . . , λn]. Upon specializing λ1 = · · · = λn = 0 we recover the
non-equivariant theory from the previous subsection.

Remark 2.4.1. The properness of the moduli spaces over the affine
quotient implies immediately that the evaluation maps are proper, so
the push-forward (evi)∗ is well-defined for all targets. The invariant
(2.4.1) may then be defined as the pairing

(2.4.2)

〈
δ1, (ev1)∗

(
[Qε

g,k(W//G, β)]vir ∩
k∏
j=2

ev∗j (δj)
k∏
j=1

ψ
aj
j

)〉
.

2.5. Twisted theories. A G-representation E is called convex (re-
spectively, concave) if the equivariant vector bundle W × E on W is
generated by G-equivariant global sections (respectively, it has no non-
zero G-equivariant global sections). Vector bundles E := W s×G E on
W//G induced by representations will be called homogeneous. We fix
a 1-dimensional torus U ∼= C∗, acting trivially on W and by multipli-
cation on E.

Each choice of a representation E and of an invertible multiplica-
tive U-equivariant characteristic class c determines an (E, c)-twisted
ε-quasimap CohFT, see §6.2 of [CKM]. (We restrict here to bundles
arising from representations for simplicity, but general G-equivariant
bundles on W may be considered.) These generalize to arbitray stabil-
ity parameter ε the twisted Gromov-Witten CohFT’s studied by Coates
and Givental, [CG].

It is shown in [CKM], and explained again in §7.2.1 of [CK2], that
when W is smooth, the representation E is convex, and the class c
is the (equivariant) Euler class, the resulting genus zero twisted ε-
quasimap theory recovers (most of1) the ε-quasimap theory of the zero
locus Z//G ⊂ W//G of a regular section of E (after specializing the
invariants at λ = 0, where λ is the equivariant parameter for U).
For example, all Calabi-Yau complete intersections in toric varieties
are covered by this construction, but there are many more cases with
indecomposable bundle E when the group G is non-abelian.

When twisting by the inverse Euler class of a concave representation
E, the resulting theory coincides with the (untwisted) U-equivariant

1In the present context,“most of” means that the primary insertions are pulled-
back from the ambient W//G, and that the curve classes β are those corresponding
to (W,G, θ).
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theory of the total space of the bundle E over W//G, viewed as the
GIT quotient (W ×E)//G, in all genera, see Example 2.8.5 and §7.2.2
in [CK2]. If the base W//G is projective, one can specialize the (β 6= 0)
invariants at λ = 0. The typical examples we have in mind here occur
as follows: take a projective Fano triple (W,G, θ), with W a vector
space, and take E = det(W )∨. These are local Calabi-Yau targets, i.e.,
the total space of the canonical bundle of a Fano GIT quotient.

Unless specified otherwise, whenever we talk about twisting by E in
this paper, it should be understood as twisting by the Euler class.

3. Genus zero theory of semi-positive targets

Recall from [CK2] that a triple (W,G, θ) is called semi-positive if

β(det(TW )) ≥ 0

for every θ-effective class β ∈ Eff(W,G, θ).
The ε-wall-crossing for genus zero invariants with descendant inser-

tions at one point and any number of primary insertions is treated in
detail in [CK2] . In this section we recall first what those results say for
semi-positive targets, then we discuss the extension to the full genus
zero descendant theories in that case.

From now on, we will assume that W has an action by a torus T
satisfying the assumptions in §2.4 and will consider the T-equivariant
ε-quasimap theories (the torus is allowed to be trivial if W//G is pro-
jective). We write simply H∗(W//G) for the appropriate T-equivariant
(localized) cohomology group.

In addition, some of the results in this section are stated for both
untwisted and twisted theories of W//G. All arguments we give are
identical whether the twisting is present or not. Hence we do not
provide separate proofs, nor do we include the twisting in the notation
for brackets, double brackets etc.

3.1. Summary of results from [CK2].

3.1.1. Graph spaces, Jε-functions, and Sε-operators. Let 0+ ≤ ε be
a stability parameter. For each k ≥ 0, we have the graph space
QGε

0,k,β(W//G), see [CKM], §7.2 and [CK2], §2.6. It is the mod-
uli space of genus zero, k-pointed, ε-stable quasimaps whose domain
curve contains an irreducible component which is a parametrized P1.
The C∗-action on the parametrized component lifts to an action on
QGε

0,k,β(W//G). The fixed loci for this action are described e.g., in §4
of [CK2] and their geometry has played an important role in the study
of genus zero ε-wall-crossings in quasimap theory undertaken in [CK2]
(they will appear later in this paper, in the proof of Theorem 1.3.2).
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The (big) Jε-function is defined as a formal sum over all k ≥ 0
and β ∈ Eff(W,G, θ) of localization residues over certain distinguished
components of the C∗-fixed loci in graph spaces, pushed-forward to
W//G by evaluation maps, see Definition 5.1.1 in [CK2]. It takes the
form (for arbitrary targets)
(3.1.1)

Jε(q, t, z) = 1+
t

z
+

s∑
i=1

γi
∑

β 6=0,β(Lθ)≤1/ε

qβJεi,β(z)+
s∑
i=1

γi〈〈
γi

z(z − ψ)
〉〉ε0,1(t),

with z the generator of the C∗-equivariant cohomology of Spec(C) and
t =

∑
i t0iγi ∈ H∗(W//G). The first three summands account for the

missing unstable terms in the double bracket.
For ε =∞ the double sum disappears and we obtain Givental’s big J-

function in Gromov-Witten theory, with asymptotic expansion 1+ t
z

+
O(1/z2). For ε = 0+ we use the notation I(q, t, z) := J0+(q, t, z). For
intermediate values ε ∈ (0, 1], the double sum is a finite q-truncation
of the infinite double sum in the I-function.

Define the small Jε-function by restriction to t = 0,

(3.1.2) Jεsm(q, z) := Jε(q, 0, z).

In particular, we have the small I-function

(3.1.3) Ism(q, z) := I(q, 0, z) = 1 +
s∑
i=1

γi
∑
β 6=0

qβIi,β(z).

The double bracket vanishes at t = 0, since the spaces Q0+
0,1(W//G, β)

are empty for all β. The terms
∑

i γiIi,β(z) are obtained from residues
on the unpointed graph spaces QG0+

0,0,β(W//G). These residues have
been explicitly calculated in (almost) all interesting examples, giving
closed formulas for the small I-function.

Also define, for any γ ∈ H∗(W//G),

(3.1.4) Sεt (γ) :=
s∑
i=1

γi〈〈
γi

z − ψ
, γ〉〉ε0,2(t).

The convention

〈 γi

z − ψ
, γ〉ε0,2,0 = 〈γi, γ〉

is made for the unstable term (corresponding to m = 0, β = 0) in
〈〈...〉〉ε0,2. Directly from definitions, for every i = 1, . . . , s,

(3.1.5) z
∂

∂t0i
Jε(t) = Sεt (γi).
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It is shown in [CK2] that the formula (3.1.4) defines a family (with pa-
rameter t) of symplectic transformations on the symplectic space H =
H∗(W//G,Λ){{z, z−1}} appearing in Givental’s formalism of Gromov-
Witten theory, [G5].

The most general ε-wall-crossing formula in genus zero applies to
the operators Sεt , see Conjecture 6.1.1 and Theorem 7.3.1 in [CK2].
We state here a special case, as formulated in [CK2], Theorem 1.2.2.

Theorem 3.1.1. Assume that the T-action on W//G has isolated fixed
points. Then for every ε ≥ 0+ we have

(3.1.6) Sεt (1) = S∞τε(t)(1)

where the (invertible) transformation τ ε(t) is the following series of
primary ε-quasimap invariants

τ ε(t) =
s∑
i=1

γi〈〈γi,1〉〉(t)− 1 =

t+
s∑
i=1

γi
∑
β 6=0

∑
m≥0

qβ

m!
〈γi,1, t, . . . , t〉ε0,2+m,β.

(3.1.7)

Moreover, the same is true for E-twisted theories, where E is a convex
G-representation.

No positivity assumptions are made in Theorem 3.1.1 on (W,G, θ),
or on (W,E,G, θ) in the twisted case. Of course, the statement is
conjectured to hold irrespective of the existence of a torus action with
isolated fixed points. As already explained, the part of the Theorem
involving twisted theories covers such targets, since it concerns the
genus zero ε-quasimap theory of the zero locus of a regular section of
the bundle E and this zero-locus is generally not T -invariant.

3.1.2. The semi-positive case. When (W,G, θ) is semi-positive, no pos-
itive powers of z appear in Jε. Define Jε0(q) and Jε1(q) from the asymp-
totic expansion

(3.1.8) Jε(q, t, z) = Jε0(q)1 + (t+ Jε1(q))
1

z
+O

(
1

z2

)
.

In particular, we have q-series I0(q) and I1(q), with

Ism(q, z) = I0(q)1 + I1(q)
1

z
+O

(
1

z2

)
.

They satisfy I0(q) = 1 + O(q) ∈ Λ and I1 ∈ mH≤2(W//G,Λ). For
ε > 0, the coefficients Jε0(q) and Jε1(q) are polynomial truncations of
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the series I0 and I1,

(3.1.9) Jε0(q) = I0(q) (mod aε), Jε1(q) = I1(q) (mod aε),

where aε is the ideal in the Novikov ring generated by {qβ |β(Lθ) >
1
ε
}.

The Proposition below collects the results for semi-positive targets
from [CK2].

Proposition 3.1.2. Let (W,G, θ) be semi-positive and let ε ≥ 0+
arbitrary. Then

(i) The J-function and the S-operator are related by

Sεt (1) =
Jε(q, t, z)

Jε0(q)
.

(ii) The transformation (3.1.7) satisfies

τε(t) =
t+ Jε1(q)

Jε0(q)
.

In particular,

(3.1.10)
s∑
i=1

γi
∑
β 6=0

qβ〈γi,1〉ε0,2,β =
Jε1(q)

Jε0(q)
.

(iii) If the T-action on W//G has isolated fixed points, then

J∞
(
q,
t+ Jε1(q)

Jε0(q)
, z

)
=
Jε(q, t, z)

Jε0(q)
.

The same is true for E-twisted theories on W//G, where E is a convex
G-representation such that β(det(TW )) − β(W × det(E)) ≥ 0 for all
θ-effective β.

(iv) Under the same assumption as in (iii), for n ≥ 2, a ≥ 0, and
i1, . . . , in ∈ {1, . . . , s},

(Jε0(q))n−2
∑
β≥0

qβ〈γi1ψa1 , γi2 , . . . , γin〉ε0,n,β =

∑
β≥0

qβ
∑
m≥0

1

m!

〈
γi1ψ

a
1 , γi2 , . . . , γin ,

Jε1(q)

Jε0(q)
, . . . ,

Jε1(q)

Jε0(q)

〉∞
0,n+m,β

.
(3.1.11)

Proof. For parts (i) and (ii), see [CK2], Corollary 5.5.3. Part (iii)
follows from (i), (ii), and Theorem 3.1.1. Part (iv) is obtained by
matching Taylor coefficients in (iii), see Corollary 1.5.2 in [CK2]. �

Remark 3.1.3. Equation (3.1.11) proves Theorem 1.3.1 in the case when
only one of the insertions is descendant and the rest are primaries. In
view of (iii), we may extend it to n = 1 by interpreting the left-hand
side as the coefficient of γi1/za+2 in Jεsm. With this interpretation we
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may therefore also extend the genus zero potential F ε
0 to include the

missing terms in qβtji for β(Lθ) ≤ 1/ε. The genus zero case of (1.2.1)
(and Theorem 1.3.1) will then be viewed as a matching of potentials
up to an additive constant.

Remark 3.1.4. Part (i) contains the statement

(3.1.12) 〈〈 γ

z − ψ
, δ, Jε0(q)1〉〉ε0,3(t) =

1

z
〈〈 γ

z − ψ
, δ〉〉ε0,2(t),

which says that Jε0(q)1 satisfies the string equation for one-point de-
scendants in ε-quasimap theory of a semi-positive target. In particular,
the same class is the unit for the ε-quantum multiplication (cf. Corol-
lary 5.5.4 in [CK2]).

Remark 3.1.5. As explained in [CK2], Remark 6.2.2, parts (iii) and (iv)
of Proposition 3.1.2 generalize the genus zero toric mirror theorems of
[G2].

3.2. Two descendant insertions. Denote by [∆] the cohomology
class of the diagonal

[∆] =
s∑
i=1

γi ⊗ γi ∈ H∗(W//G)⊗H∗(W//G).

Let z, w be formal variables and define

(3.2.1) V ε
t (z, w) :=

s∑
i,j=1

γi ⊗ γj〈〈
γi

z − ψ
,

γj

w − ψ
〉〉ε0,2(t).

The convention
s∑

i,j=1

γi ⊗ γj〈
γi

z − ψ
,

γj

w − ψ
〉ε0,2,0 =

[∆]

z + w

is made for the unstable term in the double bracket. We have

V ε
t (z, w)− [∆]

z + w
∈ H∗(W//G)⊗H∗(W//G)[[q, {t0j}, 1/z, 1/w]].

Theorem 3.2.1. For arbitrary GIT targets W//G,

(3.2.2) V ε
t =

Sεt (z)⊗ Sεt (w)([∆])

z + w
.

Remark 3.2.2. Combining Theorem 3.2.1 with Proposition 3.1.2(iii)
and (3.1.5) proves Theorem 1.3.1 in the case when two of the insertions
are descendant and the other insertions are primary. A very special
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case (twisted (0+)-theory of Pn, with two descendant and no primary
insertions) has also been proved by different methods in [Z].

In Gromov-Witten theory (ε =∞), the statement in Theorem 3.2.1
is well-known and its proof follows immediately from the WDVV and
string equations, see [G3], item (4) on p.117. In quasimap theory the
string equation is apriori missing, so this proof will not work. Instead,
we provide a localization argument which is a variant “with two equi-
variant parameters” of the proofs of Proposition 5.3.1 and Theorem
5.4.1 in [CK2].

Before going into details, we note first that the usual argument shows
that (3.2.2) and the string equation for invariants with two descendant
insertions are equivalent, in the presence of WDVV and the string equa-
tion for invariants with at most one descendant insertion. Hence, using
(3.1.12) and Theorem 3.2.1 we obtain again that, in the semi-positive
case, Jε01 satisfies the string equation for two-point descendants:

Corollary 3.2.3. For arbitrary semi-positive (W,G, θ) ,

(3.2.3) 〈〈Jε01,
γ

z − ψ
,

δ

w − ψ
〉〉ε0,3(t) =

z + w

zw
〈〈 γ

z − ψ
,

δ

w − ψ
〉〉ε0,2(t)

where the unstable term in the right-hand side double bracket is defined

to be 〈γ,δ〉
z+w

.

3.2.1. The Ã2-graph space. We will require a version of graph spaces
for which the domain curve has two parametrized components. To
construct it, consider the crepant resolution of the A2-singularity

π : Ã2 −→ Y0 = C2/Z3.

Ã2 is a smooth quasi-projective surface and the exceptional set of π is a
nodal curve D = E1∪E2. The two components are rational (−2)-curves
meeting in a point.

Since Ã2 is identified with the Z3-Hilbert scheme of C2, it has a
natural action by a two-dimensional torus S ∼= (C∗)2, induced from the

standard S-action on C2. There are exactly three S-fixed points in Ã2:
the node on D, and one additional fixed point on each component of
D. We denote the fixed points p0, pn, p∞, with p0 ∈ E1, pn = E1 ∩E2,
and p∞ ∈ E2. There are two compact one-dimensional S-orbit closures,
namely E1 and E2, and two noncompact ones, D0 passing through p0

and D∞ passing through p∞.
Let H∗S(pt) = Q[s1, s2], so that s1, s2 are the equivariant parameters.

We denote by z, respectively by w, the S-weights on E1, respectively
on E2 at the node pn. We have z = 2s1 − s2 and w = 2s2 − s1. The
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weights at the other fixed points are −z on E1 and 2z + w on D0 at
p0, and −w on E2 and 2w + z on D∞ at p∞. Note that the sum at

each fixed point is z + w = s1 + s2, reflecting the fact that Ã2 has a
holomorphic symplectic form induced by the standard form on C2.

Any nonconstant map from a projective curve to Ã2 must factor
through D. Fix β ∈ HomZ(PicG(W ),Z) and consider the moduli stack

M0,k([W/G]× Ã2, (β, 1, 1))

parametrizing maps from k-pointed, genus zero curves to [W/G]× Ã2,
of class (β, 1, 1). A geometric point in this stack is a tuple

((C, x1, . . . , xk), f, ϕ),

with (C, x1, . . . , xk) a prestable curve of genus zero, f : C −→ [W/G] a

map of class β, and ϕ : C −→ Ã2 a regular map such that ϕ∗[C] = [D].
In particular, the domain curve must have two distinguished irreducible
components C1 and C2 such that ϕ maps Ci isomorphically onto Ei and
contracts all other components of C.

Next, for each 0+ ≤ ε ≤ ∞ we introduce ε-stability in almost the
same way as for the usual graph spaces, see [CKM], Definition 7.2.1
and [CK2], §2.6. The only difference is that the ampleness part of
the stability condition does not involve either of the two distinguished
components in the domain. Precisely, we require that

ωC′(
∑

zi +
∑

yj)⊗ f ∗L⊗εθ
is ample on C ′, where C ′ is the closure of C \ (C1 ∪ C2), zi are the
markings on C ′ and yj are the nodes C ′ ∩ (C1 ∪ C2).

Imposing the ε-stability condition determines an open substack

(3.2.4) Qε
0,k(X, β; Ã2)

of M0,k([W/G] × Ã2, (β, 1, 1)), which we will call the Ã2-graph space.

The S-action on Ã2 induces a S-action on Qε
0,k(W//G, β; Ã2). Recall

that we also have a T-action on W ; it lifts as well to an action on the

Ã2-graph space. These two actions commute, so we have a T×S-action.

Proposition 3.2.4. The moduli space Qε
0,k(W//G, β; Ã2) has the fol-

lowing properties.

(1) It is defined for all ε ≥ 0+, k ≥ 0, and β ∈ Eff(W,G, θ).
(2) It is a separated Deligne-Mumford stack of finite type.
(3) It has a natural proper map to the affine quotient W/affG. In

particular, it is proper when W//G is projective.
(4) It carries a natural T×S-equivariant perfect obstruction theory.
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Proof. Part (1) is obvious. Parts (2) − (4) follow in a straightforward
manner using the arguments in [CKM].

For the properness in part (3) we use in addition that

(f, ϕ) : C −→ [W/G]× Ã2

factors through [W/G]×D.
In part (4), the relative obstruction theory over the smooth stack

M0,k of prestable curves is the direct sum of the relative obstruc-

tion theories for quasimaps to [W/G] and for maps to Ã2. The T-
equivariance comes from the first summand, while the S-equivariance
comes from the second summand. The absolute obstruction theory is
obtained as usual from the relative one via a distinguished triangle in
the derived category. �

3.2.2. Proof of Theorem 3.2.1. The Ã2-graph space comes with evalu-
ation maps

ẽvi : Qε
0,k(W//G, β; Ã2) −→ W//G× Ã2.

We write δv for the (T × S)-equivariant cohomology class δ ⊗ v ∈
H∗(W//G)⊗H∗S(Ã2) and simply δ for δ⊗1. (Recall that H∗(W//G) de-
notes T-equivariant cohomology, localized if needed, but we supressed

T from the notation.) Define (ε, Ã2)-double brackets by

〈〈δ1v1, . . . , δrvr〉〉(ε,Ã2)
0,r (t) =∑

β,k≥0

qβ

k!

∫
[Qε0,r+k(W//G,β;Ã2)]vir

r∏
l=1

ẽv∗l (δlvl)
r+k∏

m=r+1

ẽv∗m(t).

The integral in the above formula is understood as T × S-equivariant

push-forward to a point. By properness in the Ã2 direction, the in-
tegrals are well defined without localization for the S-action, so the
double bracket has no poles at the equivariant parameters for S, i.e.,
it takes values in

Λ[[{t0j}]][[s1, s2]] = Λ[[{t0j}]][[z, w]].

We also use the notation D0, D∞ ∈ H∗S(Ã2,Q) for the S-equivariant

divisor classes of the two noncompact one-dimensional S-orbits in Ã2

from the previous subsection. Their restrictions at the fixed points on

Ã2 are

D0|p0 = −z, D0|pn = D0|p∞ = 0, D∞|p0 = D∞|pn = 0, D∞|p∞ = −w.
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Now consider the generating series

Rε :=
s∑

i,j=1

γi ⊗ γj〈〈γiD0, γ
jD∞〉〉(ε,Ã2)

0,2 (t).

By definition, it is an element of H∗(W//G)⊗H∗(W//G)[[q, {t0j}, z, w]].
The coefficient of each monomial qβtα1

01 . . . t
αs
0s is polynomial in z and w.

One calculates

(3.2.5) Rε = (z + w)[∆] + higher order terms in q, t.

This is easily seen since we have

Qε
0,2(W//G, 0; Ã2) ∼= W//G×M0,2(Ã2, (1, 1)),

therefore the term we want to evaluate is [∆] times the equivariant

2-point Gromov-Witten invariant 〈D0, D∞〉Ã2

0,2,(1,1) of Ã2. By a simple

localization computation this Gromov-Witten invariant equals z + w.
In fact, we can evaluate the full series Rε by virtual localization for

the S-action only. The description of the S-fixed loci on the Ã2-graph

spaces Qε
0,2+k(W//G, β; Ã2), together with the fixed and moving parts

of the obstruction theory is similar to the description in the case of
“usual” graph spaces, for which details can be found in §4 of [CK2].

Let ((C, x1, x2, . . . , xk+2), f, ϕ) be S-fixed. Then the map f must
contract the distinguished components C1 and C2 to the same point
in W//G. The rest of the curve is contracted by ϕ to the fixed points

in Ã2. It follows that ϕ−1({p0, pn, p∞}) has exactly three connected
components, denoted C0, Cn, and C∞.

Due to the insertions of D0 and D∞, the only components of the
S-fixed locus that contribute to the localization computation are those
for which ϕ(x1) = p0 and ϕ(x2) = p∞. Each such component, denoted

F β0,βn,β∞
k0,kn,k∞

, corresponds to a pair of ordered splittings k = k0 + kn + k∞
and β = β0 + βn + β∞, with ki ≥ 0 and βi ∈ Eff(W,G, θ). It is
isomorphic to

(3.2.6)
Qε

0,1+k0∪•(W//G, β0)×W//GQε
0,kn∪{•,?}(W//G, βn)×W//GQε

0,1+k∞∪?(W//G, β∞),

where the first fiber product is with respect to the evaluation maps
ev•, the second fiber product is with respect to ev?. The unstable cases
(ki, βi) = (0, 0) are included in the above description by the conventions

Qε
0,1∪•(W//G, 0) = Qε

0,{•,?}(W//G, 0) = Qε
0,1∪?(W//G, 0) := W//G,

ev• = ev? := idW//G.
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The domain curves for the factors in (3.2.6) correspond to the three
connected components C0, Cn, and C∞.

The virtual class [F β0,βn,β∞
k0,kn,k∞

]vir, determined by the fixed part of the
(absolute) obstruction theory, is equal to the refined Gysin pull-back of
the virtual classes on the factors in (3.2.6) by the appropriate diagonal
map.

The Euler class of virtual normal bundle is determined by the moving
parts of H•(C,ϕ∗TÃ2

), and of the deformations and automorphisms of
the domain curve. It is easily obtained from the normalization sequence
for

C = C0 ∪ C1 ∪ Cn ∪ C2 ∪ C∞
by a standard calculation. After all cancellations, its inverse has the
form

(3.2.7)
1

e(Nvir)
=

(z + w)2

zw cont(0) cont(n) cont(∞)
,

where

cont(0) =

{
1, (k0, β0) = (0, 0),

(−z − ψ•), otherwise,

cont(n) =

{
z + w, (kn, βn) = (0, 0),

(z − ψ•)(w − ψ?), otherwise,

cont(∞) =

{
1, (k∞, β∞) = (0, 0),

(−w − ψ?), otherwise.

For example, the two factors of z +w in the numerator come from the
moving parts of H1(C1, ϕ

∗TÃ2
) and H1(C2, ϕ

∗TÃ2
).

Applying the virtual localization formula gives the factorization

〈〈γiD0, γ
jD∞〉〉(ε,Ã2)

0,2 (t) = (z + w)2×
s∑

l,m=1

〈〈γi, γl
−z − ψ•

〉〉ε0,2(t)〈〈 γl

z − ψ•
,

γm

w − ψ?
〉〉ε0,2(t)〈〈 γm

−w − ψ?
, γj〉〉ε0,2(t).

(3.2.8)

The double brackets in the right-hand side include the unstable terms,
as defined in (3.1.4) and (3.2.1).

Recall now from [CK2], Proposition 5.3.1, that the unitary property
of the Sε-operator states that its inverse is the operator defined by

(Sεt )
?(−z)(γ) =

∑
i

γi〈〈γi,
γ

−z − ψ
〉〉ε0,2(t).
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We then get from (3.2.8)

(3.2.9) Rε = (z + w)2((Sεt )
?(−z)⊗ (Sεt )

?(−w))(V ε
t (z, w)).

One checks immediately that in the right-hand side the terms of total
degree zero in z and w cancel out, so that the only term without a pole

is (z+w)2 [∆]
z+w

= (z+w)[∆]. On the other hand, Rε has no poles, since
it is a power series in z, w. We conclude that

(3.2.10) Rε = (z + w)[∆].

Now (3.2.10), (3.2.9), and the unitary property imply the formula
(3.2.2). Theorem 3.2.1 is proven.

3.3. TRR and the proof of Theorem 1.3.1. The following Propo-
sition, together with Proposition 3.1.2(iii) obviously implies Theorem
1.3.1.

Proposition 3.3.1. Let (W,G, θ) be an arbitrary semi-positive triple
and let n ≥ 2. If

(Jε0(q))n−2〈〈δ1ψ
a1
1 , . . . , δnψ

an
n 〉〉ε0,n(t) = 〈〈δ1ψ

a1
1 , . . . , δnψ

an
n 〉〉∞0,n

(
t+ Jε1(q)

Jε0(q)

)
holds when all except possibly one of the ai’s are equal to zero, then it
holds in general.

Proof. It suffices to assume that the cohomology classes δi are elements
in our chosen basis of H∗(W//G).

We use induction on n. The base case n = 2 follows from Theorem
3.2.1, as we already pointed out in Remark 3.2.2.

Let n ≥ 3. Let j1, . . . , jn ∈ {1, 2, . . . , s}. By taking derivatives in
the TRR relation of Corollary 2.3.4 we get

〈〈γj1ψa1
1 , γj2ψ

a2
2 , . . . , γjnψ

an
n 〉〉ε0,n =

s∑
i=1

∑
S,T

〈〈γj1ψa1−1
1 , (γψa)S, γi〉〉ε0,2+|S|〈〈γi, γj2ψ

a2
2 , γj3ψ

a3
3 , (γψ

a)T 〉〉ε0,3+|T |.

(3.3.1)

The inner sum is over all partitions S
∐
T = {4, . . . , n}, while the no-

tation (γψa)S stands for the insertions γjlψ
al at the appropriate mark-

ings, with l running in S, and likewise for (γψa)T . The double brackets
are evaluated at t(ψ). By linearity, we may take the coefficients ti in
t(ψ) = t0 + t1ψ + t2ψ

2 + . . . to lie in H∗(W//G,Λ).
The relation (3.3.1) holds for all stability parameters. We specialize

it at t(ψ) = t0 = t for parameter ε, while for parameter∞ we multiply

it by Jε0(q)2−n and then specialize at t(ψ) =
t+Jε1 (q)

Jε0 (q)
. By the induction
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assumption the two right-hand sides of the resulting relations are equal,
hence the same is true for the two left-hand sides. This proves the
Proposition, hence Theorem 1.3.1 as well. �

3.4. The string and dilaton equations. We close this section with
a discussion of the versions of string and dilaton equations that hold
for a general stability parameter ε.

3.4.1. String. For the string equation, we have a completely general
result in genus zero: the class Jε0(q)1 satisfies the string equation for
the full genus zero descendant ε-stable quasimap theory.

Proposition 3.4.1. Let the semi-positive triple (W,G, θ) be arbitrary.
Then for every ε ≥ 0+ and n ≥ 2,

∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n , J

ε
0(q)1〉ε0,n+1,β =

∑
β

qβ
n∑
j=1

〈δ1ψ
a1
1 , . . . , δj−1ψ

aj−1

j−1 , δjψ
aj−1
j , δj+1ψ

aj+1

j+1 , . . . , δnψ
an
n 〉ε0,n,β.

(3.4.1)

Proof. Equation (3.4.1) is obtained by setting t = 0 in

〈〈δ1ψ
a1
1 , . . . , δnψ

an
n , J

ε
0(q)1〉〉ε0,n+1(t) =

〈〈δ1ψ
a1
1 , . . . , δj−1ψ

aj−1

j−1 , δjψ
aj−1
j , δj+1ψ

aj+1

j+1 , . . . , δnψ
an
n 〉〉ε0,n(t).

(3.4.2)

The case n = 2 of (3.4.2) is given by Corollary 3.2.3. The case n ≥ 3
follows then by induction, using the TRR equation (3.3.1). �

Remark 3.4.2. It is very easy to see that Conjecture 1.2.2 together with
the string equation in Gromov-Witten theory imply (3.4.1) for any
genus g. In fact, we conjecture that the ε-CohFT of a semi-positive
target is a cohomological field theory with unit 1ε := Jε01 over the
Novikov ring. This means explicitly the following: for all g, k with 2g−
2 + k ≥ 1 and arbitrary cohomology classes δ1, . . . , δk ∈ H2∗(W//G,Λ),
we conjecture that the maps (2.3.3) satisfy

Ωε
g,k+1((⊗kj=1δj)⊗ 1ε) = p∗Ωε

g,k(⊗kj=1δj),

where p : M g,k+1 −→M g,k is the forgetful map. We note that it should
be possible to prove Conjecture 1.2.1 in the case of semisimple theories
(such as the fully equivariant theories that appear in Theorems 1.3.2
and 1.3.4) by combining genus zero results as proved in the present
paper with the Givental/Teleman formula [G4, Te] for higher-genus
potentials. However, such an approach would require establishing first
the above conjecture about the unit of the ε-CohFT.
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3.4.2. Dilaton.

Lemma 3.4.3. Assume Conjecture 1.2.2 holds for the semi-positive
triple (W,G, θ) and the stability parameter ε ≥ 0+. Then (Jε01)ψ− Jε1
satisfies the dilaton equation for ε-stable quasimap theory:

∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n , (J

ε
0(q)1)ψ − Jε1(q)〉εg,n+1,β =

(2g − 2 + n)
∑
β

qβ〈δ1ψ
a1
1 , . . . , δnψ

an
n 〉εg,n,β,

(3.4.3)

the sums over all θ-effective β with 2g − 2 + n+ εβ(Lθ) > 0.

Proof. Using the dilaton equation in Gromov-Witten theory, this is an
elementary calculation which is left to the reader. �

Corollary 3.4.4. Under the same assumptions as in Theorem 1.3.1,
the dilaton equation (3.4.3) holds in genus zero.

Remark 3.4.5. For g = 0 and n = 2, by using Corollary 2.3.4 (at
t(ψ) = 0) and equation (3.1.10), it is easy to see that the ε-dilaton
equation ∑

β

qβ〈δ1ψ
a1
1 , δ2ψ

a2
2 , (J

ε
0(q)1)ψ − Jε1(q)〉ε0,3,β = 0

holds without any additional assumptions on the semi-positive triple
(W,G, θ).

4. Virtual classes and ε-wall-crossing

4.1. Overview. The semi-positive GIT targets in Theorems 1.3.2 and
1.3.4 share the common feature that their I-functions satisfy I0(q) = 1,
and hence Jε0(q) = 1 for all ε. For semi-positive toric varieties this can
be checked using the explicit formula for the small I-function, as given
in [G2], see Lemma 5.9.1 later in the paper, while for local Calabi-Yau
targets (as in Theorem 1.3.4) it is an easy general fact, see Remark
5.5.6 in [CK2]. Therefore, the statement to be proved reduces to the
identification of potentials after a shift by Jε1(q),

(4.1.1) F ε
g (t(ψ)) = F∞g (t(ψ) + Jε1(q)),



HIGHER GENUS QUASIMAP WALL-CROSSING 27

or, in the version of Conjecture 1.2.2, to∑
β

qβ〈δ1ψ
a1
1 , . . . , δkψ

ak
k 〉

ε
g,k,β =

∑
β

qβ
∞∑
m=0

1

m!
〈δ1ψ

a1
1 , . . . , δkψ

ak
k , J

ε
1(q), . . . , Jε1(q)〉∞g,k+m,β ,

(4.1.2)

for arbitrary (fixed) (g, k, ε), arbitrary integers a1, . . . ak ≥ 0, and ar-
bitrary cohomology classes δ1, . . . , δk ∈ H∗(W//G). The sums on both
sides are over all β with 2g − 2 + k + εβ(Lθ) > 0.

We upgrade in this section the numerical equality (4.1.2) to a stronger
statement at the level of virtual classes.

4.2. Shifted virtual classes. We will use the notations

X := W//G, X0 := W/affG, X := [W/G]

from now on for the three quotients associated to (W,G, θ).
Fix (g, k, ε). We write A := [k+m]\ [k] for m = 0, 1, 2, ... and denote

evA = (evk+1, . . . , evk+m) : M g,k∪A(X, β) −→ XA

the evaluation map.
For each θ-effective class β, let

[Jε1 ]β ∈ H≤2(X,Q)

denote the coefficient of the qβ-term of Jε1(q). Recall that Jε1 has no
constant term with respect to q, so this coefficient vanishes for β = 0.
It also vanishes if β(Lθ) > 1/ε by (3.1.9).

Define a generating series of ε-shifted virtual classes
(4.2.1)∑

β

qβ
∞∑
|A|=0

1

|A|!
∑

β0+
∑
a∈A βa=β

[M g,k∪A(X, β0)]vir ∩ ev∗A (⊗a∈A[Jε1 ]βa) .

As we remarked above, [Jε1 ]βa can be nonzero only when βa 6= 0. Hence,
for each β, only finitely many terms contribute to the coefficient of qβ.

Our goal is to compare (4.2.1) with the corresponding generating
series ∑

β

qβ[Qε
g,k(X, β)]vir.

We will do so after push-forward via natural maps to a common target.
Let ι : X −→ PN be the (T-equivariant) embedding over the affine

quotient induced by the relative polarization O(θ) (to unburden the
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notation we write simply PN for the relative projective space PNX0
). It

induces for each stability parameter ε′ a morphism

(4.2.2) ιε′ : Qε′

g,k(X, β) −→ Qε′

g,k(PN , d(β)),

where the degree d(β) is equal to β(Lθ), see §3.1 of [CK2].
In addition, for ε′ > ε′′, there are “contraction of rational tails”

morphisms
cε
′′

ε′ : Qε′

g,k(PN , d(β)) −→ Qε′′

g,k(PN , d(β)),

described in [MOP], [T] (and also recalled in §3.2.2 of [CK2]). When
ε′ =∞ we write cε

′′
= cε

′′
∞ and when ε′′ = 0+ we write cε′ = c0+

ε′ .
Let now (g, k, ε, β) be fixed, with 2g − 2 + k + εβ(Lθ) > 0. For each

A and each decomposition β = β0 +
∑

a∈A βa there is a morphism

b{βa} : Qε
g,k∪A(PN , d(β0)) −→ Q0+

g,k(P
N , d(β)),

see [CK2], §3.2.3. Informally, the map b{βa} replaces each marking
a ∈ A with a base-point of length d(βa). If in addition βa(Lθ) ≤ 1/ε
for all a ∈ A, then b{βa} factors as

Qε
g,k∪A(PN , d(β0))

bε{βa}−→ Qε
g,k(PN , d(β))

cε−→ Q0+
g,k(P

N , d(β)).

We have the (T-equivariant) composition

(4.2.3) (
∐

A,β0,βa

bε{βa}◦c
ε◦ι∞) :

∐
A,β0,βa

M g,k∪A(X, β0) −→ Qε
g,k(PN , d(β)).

Theorem 4.2.1. Let X be a semi-positive nonsingular quasi-projective
toric variety of dimension n, viewed as a GIT quotient Cn+r//θ(C∗)r in
the standard way, as in Theorem 1.3.2. Let T ∼= (C∗)n+r be the natural
“big” torus acting on X. Then

(ιε)∗[Q
ε
g,k(X, β)]vir =∑

A,β0,βa

1

|A|!
(bε{βa} ◦ c

ε ◦ ι∞)∗
(
[M g,k∪A(X, β0)]vir ∩ ev∗A(⊗a∈A[Jε1 ]βa)

)
.

(4.2.4)

More generally,

(ιε)∗

(
[Qε

g,k(X, β)]vir ∩
k∏
i=1

ev∗i δi

)
=

∑
A,β0,βa

1

|A|!
(bε{βa} ◦ c

ε ◦ ι∞)∗

(
[M g,k∪A(X, β0)]vir ∩ ev∗A(⊗a∈A[Jε1 ]βa)

k∏
i=1

ev∗i δi

)
(4.2.5)

for all δ1, . . . , δk ∈ H∗T,loc(X,Q).
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Corollary 4.2.2. If X is a nonsingular projective Fano toric variety,
then

(ιε)∗

(
[Qε

g,k(X, β)]vir ∩
k∏
i=1

ev∗i δi

)
= (cε◦ι∞)∗

(
[M g,k(X, β)]vir ∩

k∏
i=1

ev∗i δi

)
.

Since the ψ-classes on both sides are pulled-back from Qε
g,k(PN , d(β)),

Theorem 4.2.1 immediately implies equation (4.1.2), and hence Theo-
rem 1.3.2. In fact, Theorem 4.2.1 gives the stronger identification of
the T-equivariant ε-quasimap CohFT with the ε-shifted T-equivariant
Gromov-Witten CohFT.

Theorem 4.2.1 holds in fact for any semi-positive GIT presentation
(Cn+r, (C∗)r, θ) of a toric variety, see §5.9.2. It is instructive to check
it directly for the simplest nontrivial example.

Example 4.2.3. Consider the GIT triple (C,C∗, θ), with

θ = 1 ∈ Z ∼= χ(C∗).

The quotient X is a single point. A quasimap from a curve C to the
quotient stack [C/C∗] of class is specified by a line bundle L of degree d
on C and a global section 0 6= u ∈ H0(C,L), up to a constant nonzero
multiple, i.e., by a divisor of degree d on C. In particular d ≥ 0 is the
class of the quasimap. The base-points are the zeroes of the section u.
Hence the cone Eff(C,C∗, θ) is canonically identified with N and the
Novikov ring is the ring of power series Q[[q]].

The Gromov-Witten moduli spaces are empty for d 6= 0 and are
equal to the moduli spaces of stable curves M g,k for d = 0. The virtual
class is just the fundamental class.

Let us consider now the stability condition ε = 0+. For d ≥ 0 we
have

Q0+
g,k(X, d) ∼= M g,k|d/Sd.

Here the notation for the mixed moduli spaces M g,k|d is taken from
§4.1 of [MOP]. They are a special case of Hassett’s moduli spaces
of weighted stable curves, [H], and parametrize nodal genus g curves
with two sets of markings {x1, . . . , xk} and {x̂1, . . . , x̂d}, such that the
markings in the first set are distinct, away from the nodes of C and
from the markings x̂j, while the markings in the second set are away
from the nodes, but x̂j and x̂k are allowed to coincide. The quotient is
by the symmetric group Sd, which acts by permuting the second kind
of markings. Again, the virtual class is the fundamental class.

Similarly, we have the identification

QG0+
0,0,d(X) ∼= (P1)d/Sd ∼= Pd
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for the unpointed graph space. From this, the small I function is easily
computed to be

Ism(q) = eq/z,

hence I1(q) = q.
From the above discussion, the only splitting d = d0 +

∑
a da that

contributes to the right-hand side of equation (4.2.4) has d0 = 0 and
da = 1 for all a ∈ A, so that A = [d]. The sum reduces to the single
term

1

d!
(b{1,...,1} ◦ c)∗([M g,k+d]).

There is a canonical birational map

h : M g,k+d −→M g,k|d,

constructed in [H] and one checks easily that

b{1,...,1} ◦ c : M g,k+d = M g,k∪A(X, 0) −→ Q0+
g,k(X, d) = M g,k|d/Sd

coincides with the Hassett contraction h followed by the projection to
the quotient by Sd. The equality (4.2.4) now follows.

The above argument generalizes immediately to all stability param-
eters ε, and to all GIT presentations (Cr, (C∗)r, θ), with r ≥ 2 and
θ = (1, . . . , 1) ∈ Zr ∼= χ((C∗)r) of the point target X. For example,
the small I function is Ism = e(q1+···+qr)/z. Note that the number of
Novikov parameters changes with the GIT presentation.

4.3. The geometric shifting. There is a better, more geometric way
to describe the shifted virtual classes. Namely, for fixed (g, k, ε, β),
define the “mixed” moduli stack M

ε

g,k(X, β) as
(4.3.1)

M
ε

g,k(X, β) :=
∞∐
|A|=0

∐
β0+

∑
a∈A βa=β

M g,k∪A(X, β0)×XA

∏
a∈A

Qε
0,1∪a(X, βa),

where the fiber products are taken over the evaluation maps at the
markings indexed by A. As before, we take the second disjoint union
over splittings β0 +

∑
a∈A βa = β with βa 6= 0 for all a ∈ A, so that

only finitely many nonempty fiber products appear in the right-hand
side.

We have the cartesian square

M
ε

g,k(X, β)
π1−−−→

∐
A,β0,βa

M g,k∪A(X, β0)×
∏

a∈A Qε
0,1∪a(X, βa)

π2

y yevMA ×evQεA∐
AX

A ∆−−−→
∐

AX
A ×XA
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where ∆ is the diagonal map. It endows M
ε

g,k(X, β) with a natural
virtual class given by
(4.3.2)

[M
ε

g,k(X, β)]vir = ∆!
∑

A,β0,βa

[M g,k∪A(X, β0)]vir ⊗ (⊗a[Qε
0,1∪a(X, βa)]

vir)

|A|!
.

The division by |A|! is included to make the markings in A unordered.
Fix A and a splitting β = β0 +

∑
a∈A βa. Let

p = pA,β0,βa : M g,k∪A(X, β0)×XA

∏
a∈A

Qε
0,1+a(X, βa)→M g,k∪A(X, β0)

be the projection.

Lemma 4.3.1. We have

p∗∆
!([M g,k∪A(X, β0)]vir ⊗ (⊗a∈A[Qε

0,1∪a(X, βa)]
vir)) =

[M g,k∪A(X, β0)]vir ∩ (evMA )∗ (⊗a∈A[Jε1 ]βa) .

Hence ∑
β

qβp∗[M
ε

g,k(X, β)]vir

equals the generating series of ε-shifted virtual classes (4.2.1).

Proof. Consider the fiber product diagram with cartesian squares

MA ×XA

∏
a∈A Qε

a
π1−−−→ MA ×

∏
a∈A Qε

a

p

y yid×evQ
ε

A

MA

(id,evMA )
−−−−−→ MA ×XA

evMA

y yevMA ×id

XA ∆−−−→ XA ×XA,

where we have used the shorthand notations MA = M g,k∪A(X, β0) and
Qε
a = Qε

0,1+a(X, βa). The middle horizontal arrow is the embedding as

the graph of the evaluation map evMA , so it is a regular embedding. By
standard properties of the refined Gysin maps we have

p∗∆
!([MA]vir⊗(⊗a∈A[Qε

a]
vir)) =

∆!(id× evQ
ε

A )∗([MA]vir ⊗ (⊗a∈A[Qε
a]

vir)) =

(id, evMA )!([MA]vir ⊗ (evQ
ε

A )∗(⊗a∈A[Qε
a]

vir)) =

[MA]vir ∩ (evMA )∗(⊗a∈A(eva)∗[Q
ε
a]

vir).
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It remains to recall from equation (3.1.10) in Proposition 3.1.2 (ii) that

Jε1(q) =
∑
β 6=0

qβ(ev1)∗[Q
ε
0,2(X, β)]vir

to conclude the Lemma. �

Let

s : M
ε

g,k(X, β) −→ Qε
g,k(PN , d(β))

denote the composition of the projection p with the morphism (4.2.3).
From Lemma 4.3.1 we obtain that Theorem 4.2.1 is equivalent to

Theorem 4.3.2. Let X be a toric GIT target as in Theorem 4.2.1.
Then

(ιε)∗

(
[Qε

g,k(X, β)]vir ∩
k∏
i=1

ev∗i δi

)
= s∗

(
[M

ε

g,k(X, β)]vir ∩
k∏
i=1

ev∗i δi

)
,

for all (g, k, β, ε) with 2g − 2 + k + εβ(Lθ) > 0.

There is a parallel construction for graph spaces. Define the mixed
graph space MGε

0,k(X, β) to be

∞∐
|A|=0

∐
β0+

∑
a∈A βa=β

MG0,k∪A(X, β0)×XA

∏
a∈A

Qε
0,1∪a(X, βa),

with virtual class

[MGε
0,k(X, β)]vir =

∆!
∑

A,β0,βa

[MG0,k∪A(X, β0)]vir ⊗ (⊗a[Qε
0,1∪a(X, βa)]

vir)

|A|!
.

Here MG0,k∪A(X, β0) denotes the usual graph space in Gromov-Witten
theory. The analog of Lemma 4.3.1 holds for these graph spaces, with
the same proof.

We also have morphisms

(
∐

A,β0,βa

bε{βa} ◦ c
ε ◦ ι∞) :

∐
A,β0,βa

MG0,k∪A(X, β0) −→ QGε
0,k(PN , d(β)),

s = (
∐

A,β0,βa

bε{βa} ◦ c
ε ◦ ι∞ ◦ p) : MGε

0,k(X, β)→ QGε
0,k(PN , d(β)),

and

ιε : QGε
0,k,β(X) −→ QGε

0,k(PN , d(β)).
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5. Proof of Theorem 4.2.1

5.1. Overview. The idea of the proof, inspired by the work of Mar-
ian, Oprea, and Pandharipande, who treated the case of Grassmannian
targets in [MOP], is to apply T-localization to both the shifted stable
map virtual class and to the quasimap virtual class and then match the
push-forward of the localization residues lying over the same T fixed
locus in the space of quasimaps to PN . A genus independence lemma
from [MOP] is used to reduce the general case to genus zero. The
genus zero toric case requires new ideas, even in the case of Fano tar-
gets when no shifting of virtual classes occurs. We handle it by using
C∗-localization on graph spaces and a localized version of Givental’s
uniqueness lemma.

As the complete argument is somewhat involved, to keep notation
lighter and make the main ideas clear, we present full details in the
case ε = 0+. The extension to general ε is a routine matter, as we
indicate in §5.9.1. The proof is split over several subsections.

5.2. Toric targets. Quasimaps to toric targets in their standard GIT
presentation were first introduced in [CK1] and we very briefly recall
the description given there to fix some notation. Note that the toric
varieties were assumed to be projective in [CK1] to ensure properness
of the moduli spaces, but the description is exactly the same in our
more general situation.

Let X be a smooth quasi-projective toric variety of dimension n,
given by a nonsingular fan Σ in NR, with N an n-dimensional lattice.
Let Σ(1) denote the set of rays (1-dimensional cones) of Σ and put r :=
|Σ(1)|−n. Assume that the rays span NR ∼= Rn and that r ≥ 1. Denote
by CΣ(1) the vector space spanned by the 1-dimensional cones and by
G the r-dimensional complex torus (C∗)r. The fan data determines an
action of G on CΣ(1) and a “chamber ” in χ(G) with the property that
for any character in this chamber we have X ∼= CΣ(1)//θG. We fix such
a character θ with O(θ) relatively very ample over the affine quotient.

The coordinates on CΣ(1) give “homogeneous coordinates” (zρ)ρ∈Σ(1)

on X.
The “big” torus T = (C∗)Σ(1) acts on CΣ(1) by scaling of coordinates

and this action descends to the quotient stack X = [CΣ(1)/G]. The in-
duced action on X has isolated T-fixed points, naturally corresponding
to the maximal cones σ ∈ Σ(n). In terms of homogeneous coordinates
the fixed point pσ is described by

zρ = 1, if ρ 6⊂ σ, zρ = 0, if ρ ⊂ σ.
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The 1-dimensional T-orbits in X are isolated and correspond to cones
of dimension n− 1 in the fan. We will say that such an orbit is closed
if the corresponding cone is the intersection of two maximal cones σ1

and σ2. Such an orbit is a P1 joining the two T-fixed points pσ1 and
pσ2 .

Let ξρ be the character of the (C∗)r-action on the corresponding
coordinate axis in CΣ(1). The associated T×G-equivariant line bundle

Lρ := CΣ(1) × Cξρ

descends to the T-equivariant line bundle Lρ on X. For each maximal
cone σ in the fan, the set {ξρ, ρ 6⊂ σ} is a basis of the character group
χ(G) ∼= Pic([CΣ(1)/G]).

A quasimap to the quotient stack [CΣ(1)/G] may be described by the
data

(5.2.1) ((C, x1, . . . , xk), {Lρ}ρ∈Σ(1), {uρ}ρ∈Σ(1))

where (C, x1, . . . , xk) is a prestable genus g pointed curve, Lρ, ρ ∈ Σ(1),
are line bundles on C, and uρ ∈ H0(C,Lρ) are global sections, subject
to the nondegeneracy condition

(uρ(x))ρ∈Σ(1) ∈ (CΣ(1))s

for all but finitely many points x ∈ C. For any maximal cone σ ∈ Σ(n),
the line bundles Lρ, ρ 6⊂ σ uniquely determine all the other. The
sections uρ are determined up to the action of G. If β is the class of
the quasimap, we put

dρ := deg(Lρ) = β(ξρ) ∈ Z.

The set {dρ | ρ ∈ Σ(1)} determines the class β. Since

det(T[CΣ(1)/G]) = ⊗ρ∈Σ(1)Lρ,

semi-positivity of the triple (CΣ(1),G, θ) translates into the condition∑
ρ∈Σ(1)

dρ ≥ 0

for all quasimaps to [CΣ(1)/G].

Remark 5.2.1. For this standard GIT presentation we described above,
the unstable locus for the linearization θ has codimension at least 2
and Pic(X) = Pic([CΣ(1)/G]) via restriction. The basis {ξρ, ρ 6⊂ σ}
restricts to the Z-basis

{Lρ = OX(Dρ), ρ 6⊂ σ}
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of Pic(X), with Dρ the toric divisor in X given by the equation zρ = 0.
Further, semi-positivity of the triple (CΣ(1),G, θ) is equivalent to the
semi-positivity of the anti-canonical class of the toric variety X, as
−KX =

∑
ρ∈Σ(1) Dρ and Eff(CΣ(1),G, θ) coincides with the semigroup

of integral points in the Mori cone of effective curves in X.

The notation Qg,k(X, β) will be used from now on for the moduli
space of (0+)-stable quasimaps to X. A C-point in Qg,k(X, β) is spec-
ified by the data (5.2.1), such that the base-points

{x ∈ C | (uρ(x))ρ∈Σ(1) ∈ (CΣ(1))us}

are away from nodes and markings, and satisfying the (0+)-stability

deg(ωC(
∑
i

xi)⊗ Lεθ) > 0, ∀ε ∈ Q>0.

The line bundle Lθ is obtained by writing θ in the basis {ξρ, ρ 6⊂ σ} (for
some maximal cone σ) and taking the corresponding tensor product of
the Lρ’s.

We describe in the next two subsections the T-fixed loci in the moduli
spaces M g,k(X, β) and Qg,k(X, β) and their contributions to virtual
localization formulas, following [K], [GP], and [MOP].

5.3. T-fixed loci.

5.3.1. T-fixed loci for stable maps. Connected components of the T-
fixed loci in M g,k(X, β) are labeled by decorated graphs Γ = (V,E). If
(C,x, f) is T-fixed, the corresponding graph Γ is obtained as follows.

Vertices in v ∈ V correspond to the connected components Cv of
f−1(XT).

Edges e ∈ E correspond to irreducible components Ce of the domain
curve C which are not contracted by f . These components Ce are
rational curves and the restriction fe of f to each of them is a multiple
cover of a 1-dimensional closed T-orbit in X of some degree δe, ramified
only over the two torus fixed points in the orbit.

We decorate each vertex v ∈ V with the triple (σv, gv, kv), where
σv = f(Cv), gv is the arithmetic genus of Cv (we set gv = 0 if the
corresponding connected component of f−1(XT) is a single point), and
kv is the set of markings carried by Cv. A vertex v is non-degenerate if

2gv − 2 + val(v) > 0,

where val(v) is the sum of (the cardinality of) kv and the number of
edges incident to v.
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Each edge e ∈ E is decorated with the pair (Orbe, δe) consisting of
the image Orbe ∈ {closed 1-dim T-orbits in X} of Ce under f and the
covering number δe ∈ N≥1, so that δe[Orbe] = f∗[Ce].

Note that the resulting graph is connected, without self-edges, and
that we have the compatibility conditions

1− χ(Γ) +
∑
v

gv = g,
∐
v

kv = {1, . . . , k}

and ∑
e∈E

δe[Orbe] = β.

Up to a finite quotient by automorphisms, the component FΓ at-
tached to the decorated graph Γ is isomorphic to∏

v∈V

M gv ,val(v),

with the factors corresponding to degenerate vertices treated as points.
Conversely, given a decorated graph satisfying the compatibility con-

ditions above, one obtains a T-fixed stable map by taking for each ver-
tex v a stable curve Cv in the corresponding moduli space, for each
edge e the covering map fe : Ce −→ P1 ∼= Orbe of degree δe, ramified
over 0 and ∞, and gluing along the graph incidences.

5.3.2. T-fixed loci for stable quasimaps. There is a similar description
for the T-fixed locus of Qg,k(X, β). The difference is that this time
the graphs Γ′ will have no tail edges, but instead carry an additional
decoration of base-points. Here a tail edge is an edge for which one of its
adjacent vertices has valency 1. The extra decoration is an assignment
to each v ∈ V of a tuple of nonnegative integers

(dρ,v ∈ N, ρ ∈ Σ(1), ρ 6⊂ σv).

The component FΓ′ attached to the graph Γ′ is isomorphic to∏
v∈V

M gv ,val(v)|
∑
ρ6⊂σv dρ,v

up to a finite quotient. The (Hassett) mixed moduli spaces M g,m|d are
described in Example 4.2.3. The automorphism group for each vertex
contains the product of symmetric groups

∏
ρ 6⊂σv Sdρ,v which acts by

permuting the second kind of markings.
A vertex of Γ′ is non-degenerate if it satisfies the stability condition

2gv − 2 + val(v) + ε(
∑
ρ 6⊂σv

dρ,v) > 0, for every ε ∈ Q>0.
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For degenerate vertices, the corresponding factors in FΓ′ are again
treated as points

The quasimap elements in FΓ′ are constructed as follows. First, we
view dρ,v also as an index set with dρ,v elements such that dρ,v are
mutually disjoint. For an element in

∏
v∈V M gv ,val(v)|

∑
ρ 6⊂σv dρ,v

, let Cv
be the corresponding mv-pointed genus gv curve Cv with markings xi
and additional base-point markings x̂i, i ∈ ∪ρdρ,v. For ρ 6⊂ σv, put

Lρ = OCv(
∑
i∈dρ,v

x̂i)

with the canonical section uρ, whose divisor of zeroes is
∑

i∈dρ,v x̂i. The
remaining Lρ’s are determined in terms of Lρ, ρ 6⊂ σv, and we set uρ = 0
for ρ ⊂ σv. We obtain a stable toric quasimap by gluing the resulting
quasimaps (Cv, xi ∈ mv,Lρ, uρ), v ∈ V along graph incidences with the
2-pointed genus 0 map data (Ce ∼= P1, 0,∞; fe) corresponding to the
edges e.

Note that for each vertex the quasimap (Cv, xi ∈ mv,Lρ, uρ) carries
the class βv determined by

βv(Lρ)) = dρ,v, ρ 6⊂ σv.

Hence the compatibility condition that must be satisfied by the addi-
tional decoration is ∑

v∈V

βv +
∑
e∈E

δe[Orbe] = β.

5.4. Virtual normal bundles.

5.4.1. Stable maps. For graphs Γ as in §5.3.1, let Nvir
Γ denote the vir-

tual normal bundle to the corresponding T-fixed component FΓ ⊂
M g,k(X, β). The multiplicative inverse of its T-equivariant Euler class,
lifted to

∏
v∈V M gv ,val(v), is obtained by a standard computation. In the

form given in [MOP], it is written as a product of contributions from
vertices, edges, and flags (v, e) consisting of a vertex and an incident
edge

1

e(Nvir
Γ )

=
∏
v

MapCont(v)
∏
e

MapCont(e)
∏
(v,e)

MapCont(v, e).

(5.4.1)

The above grouping is made so that the edge and flag contributions (as
well as the contributions of degenerate vertices) are pure weights, i.e.,
they are pulled back from H∗T,loc(SpecC), while each non-degenerate
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vertex contribution is in H∗T,loc(M gv ,val(v)). Furthermore, for such a
vertex

MapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)

1∏
e
w(e)
δe
− ψe

(5.4.2)

where E is the Hodge bundle, e denotes the (equivariant) Euler class,
and TσvX is the T-representation on the tangent space to X at the
fixed point indexed by σv. The product in the denominator is over all
edges incident to v, w(e) denotes the weight of the T-representation on
the tangent space TσvOrbe, and ψe is the Chern class of the cotangent
line bundle on M gv ,val(v) at the marking corresponding to e.

5.4.2. Stable quasimaps. Let FΓ′ ⊂ Qg,k(X, β) be a component of the
T-fixed locus, corresponding to a graph Γ′ as in §5.3.2. Our goal in
this subsection is to provide an expression simlar to (5.4.1)-(5.4.2) for
the multiplicative inverse 1/e(N vir

Γ′ ) of the T-equivariant Euler class of
the absolute virtual normal bundle, lifted to

∏
v∈V M gv ,val(v)|

∑
ρ 6⊂σv dρ,v

.
For the computation we will make use of the detailed description of

the obstruction theory for quasimaps from §5 of [CK1]. At a point
(C, x1, . . . , xk, {Lρ}, {uρ}) of FΓ′ , the obstruction theory relative to
Mg,k (governing deformations of the pairs (Lρ, uρ) of line bundles with
sections) is the virtual T-representation

H•(C,Q) := H0(C,Q)−H1(C,Q),

where Q is defined by the Euler sequence on C

(5.4.3) 0→ O⊕(|Σ(1)|−dimX)
C →

⊕
ρ

Lρ → Q→ 0.

The absolute obstruction theory has an additional piece, consisting of
the deformations and the automorphisms of the pointed domain curve
(C, x1, . . . , xk).

By definition, N vir
Γ′ is the moving part of the absolute obstruction

theory. Accordingly, the inverse of its Euler class is the product of
two contributions. One factor is obtained from the moving part of
the deformation space of (C, x1, . . . , xk) (automorphisms of the pointed
domain contribute only to the T-fixed part of the obstruction theory).
It has the same expression as in the case of stable maps:

(5.4.4)
∏
(v,e)

1

(w(e)
δe
− ψe)

.

It remains to calculate the other factor, which is the inverse of the
T-equivariant Euler class of the moving part of H•(C,Q). For this,
note first that on each non-contracted component Ce of C, the Euler
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sequence (5.4.3) is pulled-back via the map fe from the Euler sequence
presenting the tangent bundle of X, while on contracted components
Cv, the monomorphism in the sequence is the composition

⊕
ρ 6⊂σv OCv

⊕ρ 6⊂σ
∑
i∈dρ,v x̂i //

⊕
ρ6⊂σv Lρ

(id,0)
//
⊕

ρ Lρ .

Using the normalization sequence for the domain curve C, the contri-
bution we seek is the product of three factors, namely the moving parts
of ∏

v∈V

e (H1(Cv, Q))

e (H0(Cv, Q))
(5.4.5)

∏
e∈E

e (H1(P1, f ∗e TX))

e (H0(P1, f ∗e TX))
(5.4.6) ∏

flags(v,e)

e (TσvX) .(5.4.7)

The moving part in (5.4.6) and the factor (5.4.7) contribute only pure
weights, equal to the analogous contributions in the stable map case.

Finally, we analyze H•(Cv, Q). Each Lρ has a unique expression

Lρ = ⊗ρ′ 6⊂σvL
⊗av,ρ,ρ′
ρ′ ,

where av,ρ,ρ′ are integers. Then Lρ = OCv(x̂ρ), where x̂ρ is the divisor∑
ρ′ 6⊂σv av,ρ,ρ′(

∑
i∈dρ′,v

x̂i) on Cv. It follows that

Q|Cv = (⊕ρ⊂σvOCv(x̂ρ))⊕
(
⊕ρ 6⊂σvOCv(x̂ρ)|x̂ρ

)
.

The second term has trivial linearization and its H0 gives the fixed
part of H•(Cv, Q). As for the first term, for each ρ ⊂ σv let

Orbσv ,ρ

denote the one dimensional T-orbit corresponding to the (n − 1)-
dimensional cone spanned by σv \ {ρ} (this orbit need not be closed),
so that

TσvX = ⊕ρ⊂σvTσvOrbσv ,ρ

as T-representations. The linearization of Lρ = OCv(x̂ρ) is given by
the weight of the representation TσvOrbσv ,ρ. Write x̂ρ = x̂+

ρ − x̂−ρ , with
x̂+
ρ and x̂−ρ effective divisors. From the equality

[OCv(x̂ρ)] = [OCv(x̂+
ρ )|x̂+

ρ
]− [OCv(x̂+

ρ )|x̂−ρ ] + [OCv ]
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in the K-group of Cv, we obtain the contribution of the moving part
of (5.4.5) to the inverse Euler class in the form

e(E∨ ⊗ TσvX)

e(TσvX)

∏
ρ⊂σv e(H0(Cv,OCv(x̂+

ρ )|x̂−ρ )⊗ TσvOrbσv ,ρ)∏
ρ⊂σv e(H0(Cv,OCv(x̂+

ρ )|x̂+
ρ

)⊗ TσvOrbσv ,ρ)
.(5.4.8)

Combining all these, we obtain the desired factorization

1

e(Nvir
Γ′ )

=
∏
v

QmapCont(v)
∏
e

QmapCont(e)
∏
(v,e)

QmapCont(v, e).

(5.4.9)

The contributions from edges and flags are pure weights and match
the corresponding factors in (5.4.1):
(5.4.10)

QmapCont(e) = MapCont(e), QmapCont(v, e) = MapCont(v, e).

The same is true about the contributions from degenerate vertices.
By (5.4.4) and (5.4.8), the contribution from a non-degenerate vertex

is

QmapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)

1∏
e
w(e)
de
− ψe

Qv,(5.4.11)

with

Qv =

∏
ρ⊂σv e(H0(Cv,OCv(x̂+

ρ )|x̂−ρ )⊗ TσvOrbσv ,ρ)∏
ρ⊂σv e(H0(Cv,OCv(x̂+

ρ )|x̂+
ρ

)⊗ TσvOrbσv ,ρ)
.(5.4.12)

We conclude this subsection by noting that the identification of
the fixed part inH•(Cv, Q) withH0(Cv,⊕ρ6⊂σvOCv(

∑
i∈dρ,v x̂i)|

∑
i∈dρ,v x̂i

)

shows that the virtual fundamental class of FΓ′ induced by the fixed
part of the absolute obstruction theory is the fundamental class itself.

5.5. Localization. Fix (g, k, β) with 2g−2+k ≥ 0. Let Qg,k(PN , d(β))
be the moduli space of (0+)-stable quasimaps of degree d(β) to PNX0

.
Denote

b ◦ c ◦ ι∞ := (
∐

A,β0,βa

b0+
{βa} ◦ c

0+ ◦ ι∞).

We describe next the induced maps (b◦ c◦ ι∞)T and ιT0+ on the T-fixed
loci.

Let pσ ∈ XT ⊂ (PN)T be a T-fixed point, corresponding to a maxi-
mal cone σ.

The locus Fpσ of T-fixed points in Qg,k(PN , d(β)) which are sup-
ported at pσ (i.e., those for which the regular map freg : C −→ PN
induced by the quasimap is a constant map to pσ) is parametrized by
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the quotient of the mixed moduli space M g,k|d(β) by the action of the
symmetric group Sd(β) permuting the second kind of markings.

Consider first (for all A and all splittings β = β0 +
∑

a∈A βa) the
components

FΓ ⊂M g,k∪A(X, β0)

of the fixed point loci which are mapped into Fpσ by b ◦ c ◦ ι∞. They
correspond to graphs Γ = (V,E) of the following type:

• the vertex set V = {v0} ∪ V ′ contains a distinguished vertex v0

with σv0 = σ;
• the distinguished vertex has genus gv0 = g, all other vertices

have genus gv = 0 and Γ has no cycles;
• the markings in [k] are all assigned to the distinguished ver-

tex v0, while there is no restriction on the assignement of the
markings in A.

Let E0 ⊂ E denote the subset of edges in Γ incident to the distin-
guished vertex v0. Each such edge is the root of a tree Te such that the
graph Γ is the join of all the Te’s at v0. Let A(v0), respectively A(e),
denote the subsets of markings from A at v0, respectively at the ver-
tices of Te. Each Te parametrizes T-fixed genus zero stable maps to X
with markings A(e)∪•, which send the marking • to pσ. A stable map
in FΓ is obtained by gluing these to a stable curve in M g,k∪A(v0)∪E0 . We
denote by βe the homology class carried by a stable map parametrized
by the tree Te with root e ∈ E0, so that β0 =

∑
e∈E0

βe.

The map (b ◦ c ◦ ι∞)T restricted to FΓ contracts each tree Te into a
base-point of length d(βe) +

∑
a∈A(e) d(βa), and replaces each marking

a ∈ A(v0) by a base-point of length d(βa). It follows that, up to finite
quotients, (b ◦ c ◦ ι∞)T on FΓ equals the composition

(5.5.1) gΓ ◦ p : M g,k∪A(v0)∪E0 × (
∏
v 6=v0

M0,val(v)) −→M g,k|d(β),

where

p : M g,k∪A(v0)∪E0 × (
∏
v 6=v0

M0,val(v)) −→M g,k∪A(v0)∪E0

is the projection and

gΓ : M g,k∪A(v0)∪E0 −→M g,k|A(v0)∪E0 −→M g,k|d(β),

with the first arrow the Hassett contraction map, and the second arrow
a composition of diagonal maps increasing the multiplicity of markings
e ∈ E0 by d(βe) +

∑
a∈A(e) d(βa) and of markings a ∈ A(v0) by d(βa).

Next we look at components FΓ′ ⊂ Qg,k(X, β) mapped to Fpσ by
ιT0+. Since rational tails are not allowed, the graphs Γ′ have a single
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vertex v0 and no edges. The vertex is decorated by σv0 = σ, gv0 = g,
all markings in [k], and a set of integers {dρ,v0 ; ρ 6⊂ σ}. The locus FΓ′

is isomorphic to the quotient(
M g,k|

∑
ρ 6⊂σ dρ,v0

)
/
∏
ρ 6⊂σ

Sdρ,v0 ,

where the product of symmetric groups
∏

ρ6⊂σ Sdρ,v0 acts by permuting
the second kind of markings in the obvious way.

In terms of the basis {ξρ | ρ 6⊂ σ}, the linearization θ is expressed as

θ =
∑
ρ 6⊂σ

nρ,σξρ,

with positive integers nρ,σ.
The restriction of ιT0+ to FΓ′ is descended to the corresponding quo-

tients by symmetric groups from the composition of diagonal maps

(5.5.2) M g,k|
∑
ρ6⊂σ dρ,v0

−→M g,k|d(β)

which increase the multiplicity of each point in dρ,v0 by the factor nρ,σ.
For general graphs Γ and Γ′ for which the genus and/or the markings

in [k] are distributed among several vertices, the map (b ◦ c ◦ ι∞)T is a
product of maps of type (5.5.1) and ιT0+ is a product of maps of type
(5.5.2).

We apply the virtual localization formula to the (0+)-shifted stable
map virtual class:∑

A,β0+βa=β

1

|A|!
[M g,k∪A(X, β0)]vir ∩ ev∗A(⊗a[I1]βa) =

∑
A,β0+βa=β

1

|A|!
i∗
∑

Γ

[FΓ] ∩ i∗ev∗A(⊗a[I1]βa)

e(Nvir
Γ )

.

(5.5.3)

Similarly,

(5.5.4) [Qg,k(X, β)]vir = i∗
∑
Γ′

[FΓ′ ]

e(Nvir
Γ′ )

.

In both formulas i denotes the inclusion of the T-fixed loci. In the
stable map formula (5.5.3), the restrictions i∗ev∗a[I1]βa contribute pure
weight factors cont(a) to the vertices.

First, we write the vertex contribution as

MapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)

1∏
e not collapsed

w(e)
δe
− ψe

Mv,(5.5.5)
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where the factor Mv is the product of 1/(w(e)
δe
− ψe) over the collapsed

edges incident to v and of the contributions from the A-markings at
v. Next, as in [MOP], for each non-degenerate vertex v the factor Mv

absorbs the contributions in (5.4.1) coming from all edges and vertices
(including their A-markings) of all trees Te which are collapsed to v by
the map (b ◦ c ◦ ι∞)T. The final form of the vertex contribution is then
given by (5.5.5) with Mv of the form

(5.5.6) Mv =
∏

e collapsed to v

cont(Te)
w(e)
δe
− ψe

∏
a∈A(v)

cont(a).

We now compare (5.5.5) with the quasimap vertex contribution

QmapCont(v) =
e(E∨ ⊗ TσvX)

e(TσvX)

1∏
e
w(e)
de
− ψe

Qv

from (5.4.11). The first two factors in each formula are pulled back via
(b ◦ c ◦ ι∞)T and ιT0+ respectively. From the projection formula and the
matching of the pure weight contributions from non-collapsed edges
and flags in (5.4.10), we conclude that Theorem 4.2.1 follows from the
following Lemma.

Lemma 5.5.1. For each T-fixed locus Fpσ ⊂ Qg,k(PN , d(β))T as de-
scribed in this subsection, the equality

(5.5.7)
∑

A,β0+βa=β

1

|A|!
∑

FΓ 7→Fpσ

(b ◦ c ◦ ι∞)T∗Mv0 =
∑

FΓ′ 7→Fpσ

(ιT0+)∗Qv0

holds in H∗T,loc(M g,k|d(β)/Sd(β)).

We will prove the lemma in two steps. First we use §7.6 of [MOP]
to reduce to a statement in genus zero. The genus zero case is then
handled by proving a localized version of Givental’s Uniqueness Lemma
and an inductive argument.

5.6. MOP Lemma and reduction to genus zero. The mixed mod-
uli spaces M g,k|d carry cotangent line classes ψi, i = 1, . . . , k, and

ψ̂j, j = 1, . . . d. In addition, there are diagonal classes

DJ ∈ H2(|J |−1)(M g,k|d,Q)

for J ⊂ {1, . . . , d} with |J | 6= ∅, corresponding to the locus where the
markings {x̂j}j∈J coincide.

By the cotangent calculus in [MOP], each side of (5.5.7) can be

written as a polynomial expression in ψ̂j andDJ (with coefficients in the
field K = Q({λρ, ρ ∈ Σ(1)}), depending on σ and β, but independent
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on the genus g and the number k of usual markings. For the left-hand
side, this follows from §4.3 of [MOP] and the description (5.5.1) of
b ◦ c ◦ ι∞, while for the right-hand side we use the formula (5.4.12) for
Qv and §4.6 in [MOP], together with (5.5.2).

Furthermore, these two polynomials are symmetric in the variables
ψ̂j and may be written in canonical form as in §4.4 of [MOP]. This
means that each monomial is rewritten in the form

ψ̂s1J1
ψ̂s2J2

. . . ψ̂slJlDJ1DJ2 . . . DJl

with Ji mutually disjoint and

ψ̂Ji = ψ̂j|DJi , ∀j ∈ Ji.

The canonical forms are also symmetric in the ψ̂j’s. Denote by P∞β,σ
the canonical form of the left-hand side of (5.5.7), and by P 0+

β,σ the
canonical form of the right-hand side of (5.5.7). We will show that
P ε
βv ,σv

as an abstract polynomial does not depend on ε ∈ {0+,∞}.
Fix k ≥ 3, d ≥ 0, and 1 ≤ ` ≤ k − 2. Let

P = (P1, ...,P`)

be a set partition of {1, ..., d} with |Pi| ≥ 1. Let τ := (t1, ..., t`) be
an ordered partition of k − 2 − ` (the integers ti are nonnegative, but
may be zero). Following [MOP, Lemma 6], we associate to the above
data a chain-type topological stratum S(τ,P) on M0,k|d. When ` ≥
2, the generic element in the stratum has ` irreducible components,
R1, . . . , R`, attached tail to head in a chain of rational curves, with the
markings distributed as follows:

• R1 carries t1 + 2 markings and the base-point markings in P1.
• Ri carries ti + 1 markings and the base-point markings in Pi,

for i = 2, ..., `− 1.
• R` carries t` + 2 markings the base-point markings in P` .

The usual markings x1, . . . xk are distributed in order from left to right.
When ` = 1, the stratum is simply the entire space M0,k|d.

Lemma 5.6.1. [MOP, §7.6] Fix an integer d > 0. Consider formal

variables ψ̂j for j = 1, . . . , d and DJ for nonempty J ⊂ {1, ..., d}. Let

∆ be a polynomial in ψ̂j, DJ , in canonical form. For every k ≥ 3, we
may view ∆ as a class in H∗T,loc(M0,k|d). Then ∆ = 0 as an abstract
polynomial if and only if∫

S(τ,P)

µ(ψ1, ..., ψk)∆ = 0
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for every topological stratum S(τ,P) as above and every monomial µ

in ψi. Further, if ∆ is symmetric in the ψ̂j’s, then only vanishing of
the integral on M0,k|d/Sd is required to conclude that ∆ vanishes as an
abstract polynomial.

Proof. This is essentially Lemma 6 in [MOP]. Their statement is for-
mulated to require the vanishing of the integrals over all possible topo-
logical strata in M0,k|d, however, the proof they give shows that it
suffices to consider only strata of the form S(τ,P). (Moreover, one
may also restrict to a very special kind of monomials µ(ψ1, ..., ψk), but
we will not need this fact.) �

Applying Lemma 5.6.1 to ∆ = P∞β,σ−P 0+
β,σ, the proof of Lemma 5.5.1

is reduced to proving the following Lemma.

Lemma 5.6.2. For every k ≥ 3, every chain-type topological stratum
S(τ,P) ⊂M0,k|d(β), and every polynomial

µ(ψ) = µ(ψ1, ..., ψk)

with coefficients in the field K = H∗T,loc(SpecC), the genus zero inter-
section number

(5.6.1) P ε
β,σ(k, τ,P , µ) :=

∫
S(τ,P)

P ε
β,σ(ψ̂j, DJ)µ(ψ)

does not depend on ε.

5.7. Uniqueness Lemma. Up to this point, the argument for proving
Theorem 4.2.1 has been entirely parallel to the one given in [MOP] for
the analogous statement in the case of Grassmannian targets. In their
situation no shifting of virtual classes is needed, and the ε-independence
of (5.6.1) is an immediate consequence of the fact that in genus zero
the moduli spaces of stable maps and stable quasimaps to the Grass-
mannian are smooth and irreducible, of the expected dimension.

The latter property fails for our toric targets. Even for the Fano
cases, which do not require the shifting of virtual classes, a new idea
is needed to complete the proof. To this end we will use graph spaces
and localization with respect to their additional C∗-action to obtain a
localized version of Givental’s uniqueness lemma.

For k, d ≥ 0 denote by P1[k|d] the moduli space parameterizing stable
genus 0 curves with a rigid P1 component, k usual markings, and d
ordered base-point markings. By matching the stability conditions we
get

P1[k|d]/Sd = QG0,k,d(P0),
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the quasimap graph space with target P0 = C//C∗ (and stability pa-
rameter ε = 0+).

The T-fixed locus of QG0,k,d(β)(PN) whose elements are supported
only on pσ ∈ XT ⊂ (PN)T may be viewed as QG0,k,d(β)(pσ = C//C∗),
and is therefore isomorphic to P1[k|d(β)]/Sd(β). We will denote it by
P1[k|d(β)]σ.

Let MG0,k,β(X) denote the usual stable map graph spaces. Consider
the (0+)-shifted virtual class

[MGshifted
0,k,β (X)]vir :=

∑
A,β0+βa=β

1

|A|!
[MG0,k∪A,β0(X)]vir ∩ ev∗A(⊗a[I1]βa)

and take its T-localization residue supported only at pσ under the
contraction map b ◦ c ◦ ι∞ on graph spaces. It is given by

Resσ([MGshifted
0,k,β (X)]vir) =

(5.7.1)

(b ◦ c ◦ ι∞)T∗

( ∑
A,β0+βa=β

1

|A|!
∑

Γ

[GΓ]

e(Nvir
GΓ

)
∩ (ev∗A(⊗a[I1]βa))|GΓ

)
,

the inner sum over all T-fixed components GΓ in G0,k∪A,β0(X) which
are mapped to P1[k|d(β)]σ by b ◦ c ◦ ι∞.

The residue (5.7.1) is an element of the localized T×C∗-equivariant
homology group HC∗×T,T-loc

∗ (P1[k|d(β)]), where only the T-parameters
are inverted.

The T-fixed loci GΓ correspond to decorated graphs Γ = (V,E) with
a distinguished vertex v0, labelled by σ and carrying all markings in [k],
as in §5.5. Up to a finite quotient by automorphisms, the component
GΓ is isomorphic to the product

P1[val(v0)]×
∏
v 6=v0

M0,val(v).

Here P1[val(v0)] is the Fulton-MacPherson moduli space of stable genus
zero marked curves with a rigid component.

Consider the action by C∗ on a component GΓ. The fixed points are
obtained by taking two stable maps to X which are supported at pσ
under b ◦ c ◦ ι∞, each with one extra marking, and attaching them to
the rigid P1 at 0 and ∞ using the respective additional markings.

It follows that the components of the C∗-fixed loci in GΓ are isomor-
phic to products FΓ1 × FΓ2 , where

• each FΓi is a T-fixed component in M0,Bi∪Ai∪•(X, β
i
0) supported

at pσ under b ◦ c ◦ ι∞ ,
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• B1

∐
B2 = {1, ..., k}, A1

∐
A2 = A and β1

0 + β2
0 = β0,

• the graphs Γ1 and Γ2 satisfy Γ1 ?Γ2 = Γ, where the operation ?
means joining at the two distinguished non-degenerate vertices
and deleting the two additional markings from the decoration
of the resulting graph.

For fixed B1

∐
B2 = {1, ..., k} and β1 + β2 = β we collect together

all components FΓ1 × FΓ2 with the given splitting of the markings in
[k] and with

β1
0 +

∑
a∈A1

βa = β1, β2
0 +

∑
a∈A2

βa = β2.

The map b ◦ c ◦ ι∞ on the (C∗ ×T)-fixed locus∐
B1

∐
B2=[k]

β1+β2=β

FΓ1 × FΓ2

in the disjoint union of graph spaces is the composition the product of
contraction maps on moduli of unparametrized stable maps with the
inclusion

(5.7.2) M0,B1∪•|d(β1)/Sd(β1) ×M0,B2∪•|d(β2)/Sd(β2) ↪→ P1[k|d(β)]σ.

In the stable cases B1, B2 6= ∅, the inclusion is obtained by attaching
two stable quasimaps to pσ ∈ PN at 0 and ∞ on the rigid P1. If for
example B1 = ∅, the inclusion is obtained by taking a degree d(β1)
quasimap from the rigid P1 to pσ which has at 0 a base-point of mul-
tiplicity d(β1), and gluing to it at ∞ a stable quasimap to pσ from
M0,k∪•|d(β2).

Applying C∗-localization and summing over all (A, β0, βa) gives a
factorization expression

Resσ([MGshifted
0,k,β (X)]vir) =

(5.7.3)

=
∑

B1
∐
B2=[k]

β1+β2=β

1

[TpσX]

(
P∞σ,β1

[M0,B1∪•|d(β1)]

z(z − ψ•)

)
?

(
P∞σ,β2

[M0,B2∪•|d(β2)]

−z(−z − ψ•)

)
,

where ? means the operation

? : H∗(M0,B1∪•|d(β1))⊗H∗(M0,B2∪•|d(β2))→ H∗(P1[k|d(β)])

induced by the inclusion (5.7.2).
The notation in the formula (5.7.3) requires more explanation. We

write P∞σ,βi [M0,Bi∪•|d(βi)] to indicate that P∞σ,βi , which is independent of
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the number k of usual markings, is evaluated in H∗T,loc(M0,Bi∪•|d(βi)) by
taking the cap product with the fundamental class.

The product of denominators z(z − ψ•)(−z)(−z − ψ•) is the (well-
known) C∗-equivariant Euler class of the normal bundle to

M0,B1∪•|d(β1
0) ×M0,B2∪•|d(β2

0)

in P1[k|d(β)], with ψ• the cotangent line classes at the additional mark-
ings of M0,Bi∪•|d(βi), and z the equivariant parameter.

The formula (5.7.3) is correct as written for the stable cases B1, B2 6=
∅, but for the unstable cases the notation is abused and should be
understood as the following convention:

(
P∞σ,β1

[M0,•|d(β1)]

z(z − ψ0)

)
:= i∗σ[J(q, I1(q), z)]β1 ,(

P∞σ,β2
[M0,•|d(β2)]

−z(−z − ψ∞)

)
:= i∗σ[J(q, I1(q),−z)]β2 ,

(5.7.4)

where iσ : {pσ} → X is the inclusion and [J(q, I1(q), z)]β is the co-
efficient of qβ in the mirror map-transformed small J-function of X.
Precisely,

J(q, I1, z) = 1 +
I1(q)

z
+∑

(β′,m)6=(0,1)

qβ
′

m!
(ev•)∗

[M0,m∪•(X, β
′)]vir ∩

∏m
j=1 ev

∗
j (I1(q))

z(z − ψ•)
.

(5.7.5)

Note that by this definition i∗σ[J(q, I1(q), z)]β is an element of

H∗T,loc(SpecC)[[1/z]] = Q({λρ})[[1/z]].

However, its appearance as a localization contribution in the factoriza-
tion (5.7.3) for k = 0 shows that the 1/z-series can be summed to a
rational function in H∗C∗×T,loc(SpecC) = Q({λρ}, z).

The same argument for the quasimap graph space QG0,k,β(X) pro-
duces the factorization
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Resσ([QG0,k,β(X)]vir) =

(5.7.6)

= (ι0+)∗
∑

Γ′:Supp(Γ′)=pσ

[GΓ′ ]

e(Nvir
GΓ′

)
=

=
∑

B1
∐
B2=[k]

β1+β2=β

1

[TpσX]

(
P 0+
σ,β1

[M0,B1∪•|d(β1)]

z(z − ψ•)

)
?

(
P 0+
σ,β2

[M0,B2∪•|d(β2)]

−z(−z − ψ•)

)
.

Again a convention is used in the unstable cases:

P 0+
σ,β1

[M0,•|d(β1)]

z(z − ψ•)
:= i∗σIβ1(z),(5.7.7)

P 0+
σ,β2

[M0,•|d(β2)]

−z(−z − ψ•)
:= i∗σIβ2(−z),

with Iβ(z) the degree β part of the small I-function of the toric variety
X. It is given explicitly (see [G2], or §7 of [CK1]) by the formula

i∗σIβ(z) =
∏

ρ∈Σ(1)

∏0
j=−∞(i∗σc

T
1 (Lρ) + jz)∏dρ

j=−∞(i∗σc
T
1 (Lρ) + jz)

.

We may view i∗σIβ either as an element of Q({λρ}, z) or, by expanding
the geometric series, as an element in Q({λρ})[[1/z]].

Given a monomial µB(ψ) =
∏

i∈B ψ
αi
i and ε ∈ {0+,∞}, we define

(5.7.8) 〈 1

z(z − ψ•)
, µB(ψ)〉ε,pσ0,B∪•,β :=

∫
M0,B∪•|d(β)

P ε
σ,β1

z(z − ψ•)
µB(ψ).

For the unstable cases B = ∅, we use the same convention as before:

〈 1

z(z − ψ•)
〉∞,pσ0,•,β := i∗σ[J(q, I1(q), z)]β, 〈 1

z(z − ψ•)
〉0+,pσ
0,•,β := i∗σIβ(z).

In all cases, it is an element in the field

H∗C∗×T,loc(SpecC) = Q({λρ}, z).

The notation with superscript σ is chosen to reflect that (5.7.8) for
ε = 0+ is the localization contribution from T-fixed loci supported
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only over pσ to the degree β part in the generating series of descendant
invariants

(5.7.9) 〈〈 1

z(z − ψ•)
, µB(ψ)〉〉0+

0,B∪•(t)|t=0,

and the same is true when ε =∞ for the series

(5.7.10) 〈〈 1

z(z − ψ•)
, µB(ψ)〉〉∞0,B∪•(t+ I1(q))|t=0.

Note that the two series are equal by Theorem 1.3.1, but for B 6= ∅ this
does not directly imply the sharper equality of the local contributions
(5.7.8) at each pσ.

However, for B = ∅ the series (5.7.9) is the small I-function of X,

IXsm(q, z) = 1 +
∑
β 6=0

qβ
∏

ρ∈Σ(1)

∏0
j=−∞(cT1 (Lρ) + jz)∏dρ
j=−∞(cT1 (Lρ) + jz)

,

while the series (5.7.10) is the mirror-map transform J(q, I1, z) of the
small J-function of X, see (5.7.5). Their equality (which is of course
the celebrated Givental’s toric Mirror Theorem, [G2]) does give the
required local equality

(5.7.11) i∗σ[J(q, I1(q), z)]β = i∗σIβ

for all fixed points pσ ∈ XT and all θ-effective β.
The following Lemma proves in particular (5.6.1) of Lemma 5.6.2 for

the largest strata S(τ,P) = M0,B∪•|d(β). It is a variant of Givental’s
Uniqueness Lemma (Proposition 4.5 in [G2], or Lemma 3 in [Kim]).

Lemma 5.7.1. (Localized Uniqueness Lemma) For every B (possibly
empty), every monomial µB in ψ-classes, and every θ-effective class β,
the localized intersection number (5.7.8) is independent of ε ∈ {0+,∞}.

Proof. We prove the Lemma by induction on β and k = |B|. We first
observe that:

(a) For B = ∅, the lemma reduces to (5.7.11), hence it is true by
Givental’s Theorem.

(b) For any B and β = 0, the lemma is true. Indeed, the terms
with |B| = 1 vanish on both sides, while for |B| ≥ 2 the moduli spaces
coincide with M0,B∪• ×X and are therefore ε-independent.

Suppose that the lemma holds true for β′ < β and for k′ < k. Let
k ≥ 1 and β ≥ 0.
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Let y be a formal variable with relation y2 = 0. For a polynomial
C∗-equivariant cohomology class µ(ψ) = ψα1

1 ...ψαkk on P1[k|d(β)], let

Dµ,∞
k,β,σ :=

∫
Resσ([MGshifted

0,k,β (X)]vir)

µ(ψ)ec1(U)y,(5.7.12)

where U = U(Lθ) is the universal (T × C∗)-equivariant line bundle
described in §3.3 of [CK2] and c1 is the equivariant first Chern class.
Similarly, put

Dµ,0+
k,β,σ :=

∫
Resσ([QG0,k,β(X)]vir)

µ(ψ)ec1(U)y.(5.7.13)

Since they are defined without localization with respect to the C∗-
action, the quantities Dµ,ε

m,β,σ have no pole in z, i.e., we have

Dµ,ε
m,β,σ ∈ H

∗
T,loc[y]/(y2)[[z]].

By the factorized expressions we obtain

Dµ,ε
k,β,σ =

∑
B1

∐
B2=[k]

β1+β2=β

e(w(O(θ)pσ )−d(β2)z)y

[TpσX]
×

〈 1

z(z − ψ•)
, µB1〉

pσ ,ε
0,B1∪•,β1

〈 1

z(z − ψ•)
, µB2〉

pσ ,ε
0,B2∪•,β2

,

where w(O(θ)pσ) is the weight of the T-representation on the fiber of
O(θ) at pσ.

Consider the difference

∆(Dµ,ε
k,β,σ) := Dµ,∞

k,β,p −D
µ,0+
k,β,p.

By the induction hypothesis we get

∆(Dµ,ε
k,β,σ) =

ew(O(θ)pσ )y

[TpσX]

(
∆(〈 1

z(z − ψ•)
, µ〉ε,pσ0,k∪•,β)

+e−d(β)zy∆(〈 1

−z(−z − ψ•)
, µ〉ε,pσ0,k∪•,β)

)
,

where

∆(〈 1

±z(±z − ψ•)
, µ〉ε,pσ0,k∪•,β) :=

〈 1

±z(±z − ψ•)
, µ〉∞,pσ0,k∪•,β − 〈

1

±z(±z − ψ•)
, µ〉0+,pσ

0,k∪•,β.

Since the ψ-classes are nilpotent in H∗C∗×T,loc(M0,k+1|d(β)), we con-

clude that 〈 1
z(z−ψ•) , µ〉

ε,pσ
0,k+1,β for ε ∈ {0+,∞} are polynomials in 1/z,
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divisible by (1/z)2. Hence we may write

∆(〈 1

z(z − ψ•)
, µ〉ε,pσ0,k+1,β) = z−2a(C1

1

z
+ C2),

with a ≥ 1.
On the other hand, we have observed that Dµ,ε

k,β,p and therefore

∆(Dµ,ε
k,β,σ) =

ew(O(θ)pσ )y

[TpσX]
z−2a

(
C1

1

z
+ C2 + (1− d(β)zy)(−C1

1

z
+ C2)

)
has no pole in z. This immediately implies C2 = C1 = 0 and concludes
the proof. �

5.8. Conclusion of the proof of Theorem 4.2.1. In this section
we prove Lemma 5.6.2 for all strata S(τ,P). As explained already, this
implies that Lemma 5.5.1 is true and finishes the proof of Theorem
4.2.1. The argument will use induction and is based on a splitting
property enjoyed by P ε

β,σ(k, τ,P , µ) which we discuss next.

Given a stratum S(τ,P) ⊂ M0,k|d(β) as in §5.6, we say that P is
compatible with β if there exists a splitting β = β1 + · · · + β` with
nonzero θ-effective βi, and such that |Pi| = d(βi).

For such a compatible stratum and a fixed 1 ≤ m ≤ ` − 1, we split
the stratum at the mth node. Precisely, set

τ ′ = (t1, . . . , tm), τ ′′ = (tm+1, . . . t`));

P ′ = (P1, . . . ,Pm)), P ′′ = (Pm+1, . . . ,P`);
k′ + 1 = t1 + · · ·+ tm +m+ 2, k′′ + 1 = tm+1 + · · ·+ t` + `−m+ 2;

d′ = |P1|+ . . . |Pm|, d′′ = |Pm+1|+ . . . |P`|.
By the compatibility assumption, the (finite) subset

R(P , β) := {(β′, β′′) | β′ + β′′ = β, d(β′) = d′, d(β′′) = d′′}
of Eff(CΣ(1),G, θ)× Eff(CΣ(1),G, θ) is nonempty. We have a cartesian
diagram

S(τ ′,P ′)× S(τ ′′,P ′′) −−−→ M0,k′+1|d(β′) ×M0,1+k′′|d(β′′)y y
S(τ,P) −−−→ M0,k|d(β),

where the horizontal maps are the inclusions and the vertical maps
are obtained by gluing the last marking on the first factor to the first
marking on the second factor.

Finally, given a monomial µ(ψ) = ψα1
1 . . . ψαkk we write µ = µ′µ′′ with

µ′(ψ) = ψα1
1 . . . ψ

αk′
k′ and µ′′(ψ) = ψ

αk′+1

k′+1 . . . ψαkk
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Lemma 5.8.1. (Splitting Lemma) Let k ≥ 3, β 6= 0, ε ∈ {0+,∞},
and let S(τ,P) ⊂M0,k|d(β) be a chain-type stratum.

(i) If P is not compatible with β then for every monomial µ(ψ) the
intersection number

P ε
β,σ(k, τ,P , µ) :=

∫
S(τ,P)

P ε
β,σ(ψ̂j, DJ)µ(ψ)

vanishes.
(ii) If P is compatible with β then

P ε
β,σ(k, τ,P , µ) =(5.8.1)

=
∑

(β′,β′′)∈R(P,β)

P ε
β′,σ(k′ + 1, τ ′,P ′, µ′)P ε

β′′,σ(k′′ + 1, τ ′′,P ′′, µ′′).

Proof. By an easy induction it suffices to assume ` = 2. We discuss
the stable map case ε =∞; the quasimap case is similar (and easier).

Let P = (P ′,P ′′), τ = (t′, t′′), so that k′ = t′ + 2 and k′′ = t′′ + 2.
The corresponding stratum S(τ,P) is the image of the finite gluing
morphism

j : M0,k′+1|d′ ×M0,1+k′′|d′′ −→M0,k|d(β).

Let F(k, β, σ) denote the set of graphs parametrizing T-fixed loci
in
∐

A,β0+
∑
a βa=βM0,k∪A(X, β0) supported at pσ under the contraction

(b ◦ c ◦ i∞)T, as described in §5.5. For a graph Γ ∈ F(k, β, σ) let E0 be
the set of edges incident to the distinguished vertex v0. Each e ∈ E0 has
attached to it the class βe of the map from the corresponding rational
tail Te. As explained in (5.5.1), the contraction map on FΓ is essentially

gΓ : M g,k∪A(v0)∪E0 −→M g,k|A(v0)∪E0 −→M g,k|d(β),

where the second map increases the multiplicity of each e ∈ E0 by
d(βe) +

∑
a∈A(e) d(βa) and of each a ∈ A(v0) by d(βa). If the image of

gΓ intersects the stratum, then there are set partitions E0 = E ′0
∐
E ′′0

and A(v0) = A′(v0)
∐
A′′(v0) such that

d′ = d

∑
e∈E′0

βe +
∑
a∈A(e)

βa

+
∑

a∈A′(v0)

βa

 ,

d′′ = d

∑
e∈E′′0

βe +
∑
a∈A(e)

βa

+
∑

a∈A′′(v0)

βa

 .

Part (i) of the Lemma follows immediately from this, since the nonva-
nishing of the intersection number requires that the image of gΓ meets
S(τ,P) for at least one graph Γ.
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Now let β be compatible with P and let (β′, β′′) ∈ R(P , β). Applying
the ? operation described in §5.7 to Γ′ ∈ F(k′ + 1, β′, σ) and Γ′′ ∈
F(1 + k′′, β′′, σ) we obtain a graph Γ = Γ′ ? Γ′′ ∈ F(k, β, σ), encoding
the gluing map

h : M0,k′+1∪E′0∪A′(v0) ×M0,1+k′′∪E′′0∪A′′(v0) −→M0,k∪E0∪A(v0).

Here k = k′+k′′, E0 = E ′0
∐
E ′′0 , and A(v0) = A′(v0)

∐
A′′(v0). Further,

we think of [k′ + 1] as the set {1, 2, . . . , k′} ∪ {•} and of [1 + k′′] as
{•} ∪ {k′ + 1, k′ + 2, . . . k′ + k′′}, with the gluing done at the special
markings •.

The diagram

M0,k′+1∪E′0∪A′(v0) ×M0,1+k′′∪E′′0∪A′′(v0)
h−−−→ M0,k∪E0∪A(v0)

gΓ′×gΓ′′

y ygΓ

M0,k′+1|d(β′) ×M0,1+k′′|d(β′′)
j−−−→ M0,k|d(β),

is cartesian, hence

(5.8.2) j∗(gΓ)∗ = (gΓ′ × gΓ′′)∗h
∗.

By (5.5.6), the restriction of P∞β,σ to S(τ,P) is computed by∑
Γ∈F(k,β,σ)

j∗(gΓ)∗
∏
e∈E0

cont(Te)
w(e)
δe
− ψe

∏
a∈A(v0)

cont(a).

Since ψe pulls-back under h to ψe ⊗ 1 for e ∈ E ′0 and to 1 ⊗ ψe for
e ∈ E ′′0 , part (ii) of the Lemma follows from (5.8.2) by summing over
graphs. �

We are now in position to prove Lemma 5.6.2 and therefore complete
the proof of Theorem 4.2.1.

Consider first the case when the class β 6= 0 is primitive, i.e., if
β = β′ + β′′ with β′, β′′ ∈ Eff(CΣ(1),G, θ), then either β′ = 0, or
β′′ = 0. In this case, for every k and µ, we have P ε

β,σ(k, τ,P , µ) = 0
whenever ` ≥ 2, by Lemma 5.8.1 (a), while for ` = 1, the statement is
given by the Uniqueness Lemma (Lemma 5.7.1).

Let now β > 0 be arbitrary. Assume that if 0 6= β′ ∈ Eff(CΣ(1),G, θ)
is such that β− β′ is also nonzero and θ-effective, then P ε

β′,σ(k, τ,P , µ)

is independent of ε for every k, every stratum S(τ,P) ⊂ M0,k|d(β′),
and every monomial µ(ψ) (or, equivalently by Lemma 5.6.1, that when
written in canonical form, P 0+

β′,σ = P∞β′,σ as abstract polynomials). Given

a stratum S(τ,P) ⊂ M0,k|d(β), if ` = 1, we are done by Lemma 5.7.1.
Otherwise, we split it at the first node and apply Lemma 5.8.1 (b) to
conclude by induction.
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5.9. Remarks on the proof and generalizations.

5.9.1. Other stability parameters for toric targets. Even though we have
restricted to the asymptotic stability condition ε = 0+, essentially the
same argument works for general ε. The required equality (5.7.11)
between Jεsm(q, z) and the mirror transform J(q, Jε1 , z) is provided by
Proposition 3.1.2(ii). (In the case of the [MOP] proof for Grassman-
nian targets, the extension to general ε is done in Toda’s paper [T].)

5.9.2. Other GIT presentations of a toric variety. For any GIT triple of
the form (Cn+r,G, θ) with G ∼= (C∗)r, satisfying our usual assumptions
that all semistable points are stable and G acts freely on the stable
locus, the quotient X = Cn+r//θG is a nonsingular quasi-projective
toric variety of dimension n, see e.g., [Dol], §12. Now set

Σ(1) := [n+ r] = {1, 2, . . . , n+ r},
and write CΣ(1) for Cn+r. For a subset σ ⊂ [n+ r] of cardinality n, let

p̃σ := (zρ) ∈ CΣ(1), zρ =

{
1 if ρ /∈ σ
0, if ρ ∈ σ

.

Put
Σ(n) := {σ ⊂ [n+ r] | |σ| = n and p̃σ is θ-stable}

and let pσ ∈ X denote the image of p̃σ under the quotient map. With
the torus T = (C∗)Σ(1) acting on CΣ(1) as before, we have a bijection
Σ(n) −→ XT, σ 7→ pσ.

If n ≥ 1, the (isolated) 1-dimensional T-orbits in X at pσ are in
bijection with the subsets τ of σ of cardinality n− 1 and are given by
the vanishing of the corresponding homogeneous coordinates zρ, ρ ∈ τ .
Such a T-orbit is a P1 if it contains another fixed point pσ′ , i.e., if
τ = σ ∩ σ′ for some σ′ ∈ Σ(n).

With this expanded interpretation of the notations, the proof of The-
orem 4.2.1 is valid for all such general semi-positive GIT presentations.

The small I-function associated to the triple (Cn+r,G, θ) is given by
the same formula

(5.9.1) Ism(q, z) = 1 +
∑
β 6=0

qβ
n+r∏
ρ=1

∏0
j=−∞(cT1 (Lρ) + jz)∏dρ
j=−∞(cT1 (Lρ) + jz)

,

as it can be easily seen that the computation from §7.2 of [CK1]
works for all GIT presentations. Recall that the class β runs over
Eff(Cn+r,G, θ) and dρ = β(ξρ) ∈ Z.

Note that it is possible now that the unstable locus contains com-
ponents of codimension 1 (of the form {zρ = 0}, for some ρ ∈ Σ(1)),
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and then r = rk(χ(G)) > rk(Pic(X)). Consequently, Eff(Cn+r,G, θ)
may contain strictly the Mori cone of X if the GIT presentation is
non-standard. In this case, the I-function (5.9.1) will depend on ad-
ditional “ghost” Novikov parameters, and in particular will differ from
the “usual” small I-function coming from the standard GIT presenta-
tion.

Semi-positivity of the triple (Cn+r,G, θ) still implies semi-positivity
of the anti-canonical class of X, but the converse is not necessarily
true. For example, P2 has a well-known GIT presentation C4//θ(C∗)2

(obtained by variation of GIT from the standard presentation of the
Hirzebruch surface F1) for which (C4, (C∗)2, θ) is not semi-positive. We
conclude the discussion by noting the following elementary fact.

Lemma 5.9.1. If the triple (Cn+r,G, θ) is semi-positive, then the cor-
responding small I-function (5.9.1) has I0 = 1.

Proof. Let β 6= 0. By semi-positivity,
∑

ρ dρ ≥ 0. The power of 1/z

appearing in the qβ-term is equal to∑
ρ

dρ + #{ρ | dρ < 0} ≥
∑
ρ

dρ ≥ 0.

If we would have only equalities in the above chain, then dρ = 0 for all
ρ, which is impossible since β 6= 0. Hence the power of 1/z is strictly
positive. �

5.9.3. Other targets. It is clear that Theorem 4.2.1 will be true, with
the same proof, for all GIT targets X = W//G corresponding to a
semi-positive triple (W,G, θ) and satisfying the following properties:

(1) The small I-function of X has I0 = 1.
(2) The T-action on X has only isolated fixed points and isolated

1-dimensional T-orbits. (The isolated fixed points assumption
insures that Proposition 3.1.2(ii) will again provide the needed
matching (5.7.11) of small J-functions.)

(3) The push-forward under cε ◦ ιε of the T-vertex contributions on
the qusimap moduli spaces Qε

g,k(X, β) (i.e., the right-hand side

of equation (5.5.7)) can be written as a polynomial P ε(ψ̂,DJ)

in ψ̂j and DJ (with coefficients in H∗T,loc(SpecC)) which is in-
dependent on g and k.

For the “local Grassmannians” (i.e., the total space of the canon-
ical bundle over Grass(r, n)) the first two properties are immediate
and the third is essentially shown in [MOP], [T]. One can also easily
check the third property when considering more general type A flag
manifolds in place of Grassmannians. In particular, we have a proof
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of Theorem 1.3.4 as well. Note that explicit closed formulas for the
small I-functions of these targets are easily obtained from the results
in [BCK1], [BCK2], [CKS]. For example, the T-equivariant small I for
the local Grass(r, n) is

Ism = 1 +
∑
d>0

qd

(
nd−1∏
k=0

(−n(
r∑
i=1

Hi) + λ0 − kz)×

∑
d1+···+dr=d

(−1)(r−1)d
∏

1≤i<j≤r(Hi −Hj + (di − dj)z)∏
1≤i<j≤r(Hi −Hj)

∏r
i=1

∏di
l=1

∏n
j=1(Hi + λj + lz)

)
,

(5.9.2)

where H1, . . . , Hr are the Chern roots of S∨, the dual of the tautolog-
ical subbundle (of rank r) 0 −→ S −→ O⊕n, and λ0, λ1, . . . , λn are
the equivariant parameters for the torus T ∼= C∗ × (C∗)n. Here the
first factor is the torus acting by scaling on the fibers of the canoni-
cal bundle, while the factor (C∗)n is the standard torus acting on the
Grassmannian.
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[MOP] A. Marian, D. Oprea, and R. Pandharipande, The moduli space of stable
quotients, Geometry & Topology, 15 (2011), 1651–1706.

[Te] C. Teleman, The structure of 2D semi-simple field theories, Invent. Math.
188(3) (2012), 525–588.

[T] Y. Toda, Moduli spaces of stable quotients and wall-crossing phenomena, Com-
positio Math. 147 (2011), 1479–1518.

[Z] A. Zinger, Double and triple Givental’s J-functions for stable quotient invari-
ants, arXiv:1305.2142.

School of Mathematics, University of Minnesota, 206 Church St.
SE, Minneapolis MN, 55455, and

School of Mathematics, Korea Institute for Advanced Study, 85
Hoegiro, Dongdaemun-gu, Seoul, 130-722, Korea

E-mail address: ciocan@math.umn.edu

School of Mathematics, Korea Institute for Advanced Study, 85
Hoegiro, Dongdaemun-gu, Seoul, 130-722, Korea

E-mail address: bumsig@kias.re.kr


