Homework #11 for MATH 8301: Manifolds and Topology

November 29, 2017

Due Date: Wednesday 6 December in class.

1. Recall from Hatcher (Prop 1.40 and just before it) that an action of a group G on a space \overline{X} is a covering space action if each $x \in \overline{X}$ has a neighborhood U such that all the images g(U) for varying $g \in G$ are disjoint. Then letting $X = \overline{X}/G$ be the quotient space under this action, the quotient map $\overline{X} \to X$ is a normal covering space, and the group of deck transformations $\operatorname{Aut}(\overline{X}/X) \cong G$ is isomorphic to G.

Each subgroup $H \subseteq G$ determines a composition of covering spaces $\overline{X} \to \overline{X}/H \to \overline{X}/G$. Show:

- (a) Every path-connected covering space between \overline{X} and \overline{X}/G is isomorphic to X/H for some subgroup $H \subseteq G$.
- (b) Two such covering spaces \overline{X}/H_1 and \overline{X}/H_2 of \overline{X}/G are isomorphic iff H_1 and H_2 are conjugate subgroups of G.
- (c) The covering space $\overline{X}/H \to \overline{X}/G$ is normal iff H is a normal subgroup of G, in which case the group of deck transformations of this cover is G/H.
- 2. Given a group G and a normal subgroup N, show that there exists a normal covering space $\overline{X} \to X$ with $\pi_1(X) \cong G$, $\pi_1(\overline{X}) \cong N$, and deck transformation group $\operatorname{Aut}(\overline{X}/X) \cong G/N$. You are welcome to assume that G is finitely presented if that's helpful.
- 3. Show that chain homotopy of chain maps is an equivalence relation.
- 4. Show that if X retracts onto a subspace $A \subseteq X$, then the map $H_*(A) \to H_*(X)$ is injective.
- 5. Let A be any finitely generated abelian group. Construct a chain complex C_* with the property that $H_0(C_*) \cong A$, but $H_j(C_*) = 0$ for all $j \neq 0$.