Homework #1 for MATH 8307: Algebraic Topology

February 17, 2015

Due Date: Wednesday 4 March in class.

- 1. Use the non-degeneracy of the cup-product pairing to inductively prove that there is an isomorphism of graded rings $H^*(\mathbb{C}P^n) \cong \mathbb{Z}[c]/c^{n+1}$, where dim(c) = 2. (Thanks, June!)
- 2. Let Σ_g be the closed, orientable surface of genus g; choose a fundamental class $[\Sigma_g] \in H_2(\Sigma_g)$. Recall that $H^1(\Sigma_g) \cong \mathbb{Z}^{2g}$.
 - (a) Show that there is a basis for $H^1(\Sigma_g)$ in which the Poincaré duality pairing is represented by the matrix

$$J_g := \left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array}\right).$$

where I is the $g \times g$ identity matrix.

(b) Define

 $\Gamma_g := \{f : \Sigma_g \to \Sigma_g \mid f \text{ is a homotopy equivalence, and } f_*[\Sigma_g] = [\Sigma_g] \} / \sim$

where $f \sim h$ if they are homotopic. Show that Γ_g forms a group under composition (this is called the *mapping class group* of Σ_g , although it is not usually defined in quite this way).

(c) Let $\operatorname{Sp}(2g, \mathbb{Z})$ denote the group of invertible, integral $2g \times 2g$ matrices M that preserve the bilinear form J_g (that is: $M^t J_g M = J_g$). This is called the (integral) symplectic group. Construct a homomorphism

$$\varphi: \Gamma_g \to \operatorname{Sp}(2g, \mathbb{Z})$$

using the induced map $f^*: H^1(\Sigma_g) \to H^1(\Sigma_g)$ of a homotopy equivalence.

(d) Prove that φ is an isomorphism when g = 1 (hint: use covering space theory). It is surjective but not injective when g > 1. Can you construct an element of the kernel (called the *Torelli group*)?

- 3. Let Ω_n denote the set of bordism classes of smooth, oriented¹, closed *n*-dimensional manifolds.
 - (a) Show that Ω_n is a group under the disjoint union operation (and identity given by the empty manifold).
 - (b) Show that $\Omega_0 \cong \mathbb{Z}$.
 - (c) Using the classification of 1 and 2-dimensional oriented manifolds, show that Ω_1 and Ω_2 are zero.
 - (d) Let \mathfrak{N}_n denote the corresponding bordism group of *unoriented* n-manifolds. Show that every element of \mathfrak{N}_n is 2-torsion.
- 4. For any space X, write $X \cup \{\infty\}$ for the one-point compactification of X. Prove that there is an isomorphism

$$H_c^*(X) \cong H^*(X \cup \{\infty\}, \{\infty\}).$$

¹An orientation of a connected 0-dimensional manifold M (i.e., a point), is a fundamental class: a choice of generator of $H_0(M) \cong \mathbb{Z}$.