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Introduction

The Hochschild complex of an associative algebra A admits a degree 1 self-map, 
Connes–Rinehart’s boundary operator B. If A is Frobenius, the (proven) cyclic Deligne 
conjecture says that B is the ∆-operator of a BV-structure on the Hochschild complex of 
A. In fact B is part of much richer structure, namely an action by the chain complex of 
Sullivan diagrams on the Hochschild complex [57,27,29,31]. A weaker version of Frobenius 
algebras, called here A∞-Frobenius algebras, yields instead an action by the chains on the 
moduli space of Riemann surfaces [11,39,27,29]. Most of these results use a very appealing 
recipe for constructing such operations introduced by Kontsevich in [38]. Starting from a 
model for the moduli of curves in terms of the combinatorial data of fatgraphs, the graphs 
can be used to guide the local-to-global construction of an operation on the Hochschild 
complex of an A∞-Frobenius algebra A—at every vertex of valence n, an n-ary trace is 
performed.

In this paper we develop a general method for constructing explicit operations on 
the Hochschild complex of A∞-algebras “with extra structure”, which contains these 
theorems as special cases. In contrast to the above, our method is global-to-local: we 
give conditions on a composable collection of operations that ensures that it acts on the 
Hochschild complex of algebras of a given type; by fiat these operations preserve compo-
sition, something that can be hard to verify in the setting of [38]. After constructing the 
operations globally, we then show how to read-off the action explicitly, so that formulas 
for individual operations can also be obtained. Doing this we recover the same formulas
as in the local-to-global approach. Our construction can be seen as a formalization and 
extension of the method of [11] which considered the case of A∞-Frobenius algebras.
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Our main result, which we will explain now in more detail, gave rise to new compu-
tations, including a complete description of the operations on the Hochschild complex 
of commutative algebras [36], a description of a large complex of operations on the 
Hochschild complex of commutative Frobenius algebras [35] and a description of the 
universal operations given any type of algebra [62].

An A∞-algebra can be described as an enriched symmetric monoidal functor from a 
certain dg-category A∞ to Ch, the dg-category of chain complexes over Z. The category 
A∞ is what is called a dg-prop, a symmetric monoidal dg-category with objects the 
natural numbers. We consider here more generally dg-props E equipped with a dg-functor 
i : A∞ → E . Expanding on the terminology of Gerstenhaber–Voronov [18], we call such 
a pair E = (E , i) a prop with A∞-multiplication. An E-algebra is a symmetric monoidal 
dg-functor Φ : E → Ch. When E is a prop with A∞-multiplication, any E-algebra comes 
with a specified A∞-structure by restriction along i, and hence we can talk about the 
Hochschild complex of E-algebras.

We introduce in the present paper a generalization of the Hochschild complex which 
assigns to any dg-functor Φ : E → Ch a certain new functor C(Φ) : E → Ch. The 
assignment has the property that, for Φ symmetric monoidal, C(Φ) evaluated at 0 is the 
usual Hochschild complex of the underlying A∞-algebra. (The evaluation of C(Φ)(n)
can more generally be interpreted in terms of higher Hochschild homology as in [50]
associated to the union of a circle and n points.) This Hochschild complex construction 
can be iterated, and for Φ split monoidal,1 the iterated complex Cn(Φ) evaluated at 0
is the nth tensor power (C(Φ)(0))⊗n.

Our main theorem, Theorem 5.11, says that if the iterated Hochschild complexes of 
the functors Φ = E(e, −) admit a natural action of a dg-prop D of the form

Cn(E(e,−)) ⊗D(n,m) → Cm(E(e,−))

then the classical Hochschild complex of any split monoidal functor Φ : E → Ch is a 
D-algebra, i.e. there are maps

(
C(Φ)(0)

)⊗n ⊗D(n,m) →
(
C(Φ)(0)

)⊗m

associative with respect to composition in D. This action is given explicitly and is natural 
in E and D.

Before stating the theorem in more detail, we describe some consequences. Let O
denote the open cobordism category, whose objects are the natural numbers and whose 
morphisms from n to m are chains on the moduli space of the Riemann surfaces that 
are cobordisms from n to m intervals (or “open strings”). Taking E = O and D = C, the 
closed co-positive2 boundary cobordism category, Theorem 5.11 gives an integral ver-
sion of Costello’s main theorem in [11], i.e., an action of the chains of the moduli space 

1 I.e. such that the maps Φ(n) ⊗ Φ(m) → Φ(n + m) are isomorphisms (also known as strong monoidal).
2 Where the components of morphism each have at least one incoming boundary.
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of Riemann surfaces on the Hochschild chain complex of any A∞-Frobenius algebra.3
(See Theorem 6.2 and Corollary 6.3.) Reading off our action on the Hochschild chains, 
we recover the recipe for constructing such an action given by Kontsevich and Soibel-
man in [39], thus tying these two pieces of work together. We also get a version for 
non-compact4 A∞-Frobenius algebras by replacing O by the positive boundary5 open 
cobordism category and C with the positive and co-positive boundary category. (See 
Corollary 6.5.)

Applying Theorem 5.11 to the category E = H0(O), we obtain an action of the chain 
complex of Sullivan diagrams on the Hochschild complex of strict symmetric Frobenius 
algebras, recovering, with very different methods and after dualization, the main theorem 
of Tradler–Zeinalian in [57], see also [27,29,31]. (See Theorem 6.7.) In particular, in 
genus 0, this gives the cyclic Deligne conjecture first proved in [30], see also [54]. (See 
Proposition 6.9.) Again, there is a non-compact version, which includes the operations 
later constructed in [2] using Kontsevich’s method.

A consequence of our naturality statement, Theorem 5.13, is that the aforementioned 
HCFT structure constructed by Costello and Kontsevich–Soibelman factors through an 
action of Sullivan diagrams, when the A∞-Frobenius algebra happens to be strict. Sul-
livan diagrams model the harmonic compactification of moduli space [16, Prop. 5.1], so 
one can say that the action of moduli space compactifies in that case. New operations 
arise from the compactification, and we know that these act non-trivially already on very 
basic Frobenius algebras [62, Prop. 4.1 and Cor. 4.2]. On the other hand, a significant 
part of the homology of moduli space dies in the compactification, in particular the sta-
ble classes, which implies a significant collapse of the original structure when the algebra 
is strict. (See Proposition 2.14 and Corollary 6.8.)

We apply the above to the case of string topology for a simply-connected manifold 
M over a field of characteristic zero, using the strict Frobenius model of C∗(M) given 
by Lambrechts–Stanley [40,17], and obtain an HCFT structure on H∗(LM, Q) factoring 
through an action of Sullivan diagrams. We show in Proposition 6.11 that our con-
struction recovers the BV structure on H∗(LM) originally introduced by Chas–Sullivan. 
The vanishing of the action of the stable classes in the HCFT structure furthermore 
agrees with Tamanoi’s vanishing result in [56]. These vanishing results should though be 
contrasted with the non-vanishing results of [62] for classes coming from the compact-
ification, with non-trivial higher operations existing already on H∗(LSn). A different 
approach to moduli space or Sullivan diagram actions on H∗(LM) can be found in 
[19,13,52,51] (see also [7] in the equivariant setting). The papers [8,9] construct string 
topology actions using a more restricted definition of Sullivan diagrams. It is natural 
to conjecture that these geometrically defined string topology operations are likewise 
compatible with ours under the characteristic zero assumption. Yet a different approach 

3 Called an extended Calabi–Yau A∞ category in [11].
4 Loosely, these are non-counital A∞-Frobenius algebras.
5 Where the components of morphism each have at least one outgoing boundary.
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is given in [27,29,31], where Kaufmann constructs an action of Sullivan diagrams on the 
E1-page of a spectral sequence converging to H∗(LM). (The prop of open-closed Sul-
livan diagrams defined in [31] has its closed part isomorphic to the Sullivan diagrams 
considered here, see Remark 2.15.)

Further applications of our methods in the case of commutative and commutative 
Frobenius algebras where obtained by Klamt in [36,35]. Other interesting examples of 
families of algebras to consider would be algebras over Kaufmann’s prop of open Sullivan 
diagrams [31] (see Section 6.7), Hopf algebras, Poisson algebras and En-algebras, to name 
a few.

We now describe our set-up and tools in a little more detail and give a more precise 
formulation of the main theorem.

Recall from above that E is a dg-category, in fact a dg-prop, equipped with a functor 
i : A∞ → E , which will always be assumed to be the identity on the objects, the natural 
numbers. Recall also that the Hochschild complex of a functor Φ : E → Ch is defined 
here as a new functor C(Φ) : E → Ch.

To any such dg-category E , we associate in this paper a larger dg-category, its 
Hochschild core category CE . The category CE has objects pairs of natural numbers 
[ n
m ], has E as a full subcategory on the objects [ 0

m ], and with the morphisms from [ 0
m1 ]

to [ n
m2 ] the iterated Hochschild complex Cn(E(m1, −)) evaluated at m2. If E is the open 

cobordism category O, then CE is the open-to-open and open-to-closed part of the open-
closed cobordism category. Given a monoidal category Ẽ with the same objects as CE , 
we call it an extension of CE if it agrees with CE on the morphisms with source [ n

m ]
when n = 0. An extension of CE can be thought of as the full open-closed cobordism 
category, also including the closed-to-closed and closed-to-open morphisms.

Main Theorem (Theorem 5.11 for Φ split symmetric monoidal, C unreduced). Let (E , i)
be a prop with A∞-multiplication and CE ↪→ Ẽ an extension of CE in the above sense. 
Then Ẽ acts naturally on the Hochschild complex of E-algebras: For any E-algebra A with 
C(A, A) its Hochschild complex, there are chain maps

C(A,A)⊗n1 ⊗A⊗m1 ⊗ Ẽ([ n1
m1 ], [ n2

m2 ]) −→ C(A,A)⊗n2 ⊗A⊗m2

which are natural in A and associative with respect to composition in Ẽ.

The same holds for a reduced version of the Hochschild complex.

How to apply the theorem in practice. This theorem applies to any prop with 
A∞-multiplication E and chosen extension Ẽ. In practice, one starts with such an E , 
which is the prop describing the type of algebra one is interested in. One can then con-
struct its Hochschild core category CE . This category is a bi-colored prop built to act on 
the pair (A, C∗(A, A)) for any E-algebra A. However, it only has non-trivial operations 
of the form A⊗m1 → C(A, A)⊗n2 ⊗A⊗m2 , encoded as morphisms from [ 0

m1 ] to [ n2
m2 ]. To 

construct operations on the Hochschild complex of E-algebras, one then needs to enhance 
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the bi-colored prop CE to a larger category Ẽ that also has non-trivial morphisms with 
source [ n1

m1 ] for at least some n1 ̸= 0. The theorem is thus saying that it suffices for 
the prop Ẽ to contain CE to ensure that Ẽ defines natural operations on the Hochschild 
complex of E-algebras.

For each of the applications discussed above we have explicit such extension cate-
gories Ẽ , and the prop D mentioned above in each case is the “closed-to-closed” part 
of Ẽ . These categories Ẽ are constructed using ad hoc methods coming from the ge-
ometry of the situation. Given any prop with A∞-multiplication (E , i), there exists a 
universal extension which is much larger than the extensions considered here (see [62]). 
In the particular cases where E = O or H0(O), it is however shown in [62, Rem. 2.4 
and Thm. B, C] that the universal extension is quasi-isomorphic to the props con-
structed here, so on the level of homology our small models do actually give all the 
operations.

The proof of the main theorem, inspired by, though independent of, [11], uses simple 
properties of the double bar construction, and a quotiented version of it to take care of the 
equivariant version of the theorem under the action of the symmetric groups. Our action 
is explicit thanks to the construction of an explicit pointwise chain homotopy inverse to 
the quasi-isomorphism of functors C(B(Φ, E , E)) → C(Φ). (See Proposition 5.9.) As an 
example of how our theory can be applied, we give in Section 6.5 explicit formulas for 
the product, coproduct, and ∆-operator on the Hochschild complex of strict Frobenius 
algebras.

The paper is organized as follows: Section 2 introduces the chain complexes of graphs 
used throughout the paper. In particular, our graph model for the open-closed cobordism 
category and a category of Sullivan diagrams are constructed and studied in this section. 
Section 3 gives some background on types of algebras occurring in the paper. The short 
Section 4 reviews a few properties of the double bar construction and its quotiented ana-
log. Section 5 then defines the Hochschild complex operator, examines its properties, and 
proves the main theorem. Section 6 gives applications: Section 6.1 gives the application to 
Costello’s theorem, and Section 6.2 describes how to deduce the Kontsevich–Soibelman 
approach from it. Sections 6.3 and 6.4 take care of the twisting by the determinant 
bundle and the positive boundary variation. In Section 6.5, we treat the case of strict 
Frobenius algebras and Sullivan diagrams, with the application to string topology given 
in Section 6.6. Section 6.7 gives the relationship the Kaufmann–Penner model for string 
interaction. Finally, Sections 6.8 and 6.9 consider A∞ and Ass × P-algebras for P an 
operad. Section 1 sets up some notation and Appendix A explains how to compute signs 
given operations represented by graphs.

1. Conventions and terminology

In the present paper, we work in the category Ch of chain complexes over Z, unless 
otherwise specified. We use the usual sign conventions so that the differential dV + dW
on a tensor product V ⊗W is (dV + dW )(v ⊗ w) = dV (v) ⊗ w + (−1)|v|v ⊗ dW (w).
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By a dg-category, we mean a category E whose morphism sets are chain complexes 
and whose composition maps E(m, n) ⊗ E(n, p) → E(m, p) are chain maps. A dg-functor
Φ : E → Ch is a functor such that the structure maps

cΦ : Φ(m) ⊗ E(m,n) → Φ(n)

are chain maps.6 For example, given any r ∈ Obj(E), the functor Φ(m) = E(r, m)
represented by r is a dg-functor.

2. Graphs and trees

In this section, we give the background definitions about graphs, chain complexes of 
graphs etc. necessary for the rest of the paper. In particular, we define black and white 
graphs and use them to give graph models of the moduli space of Riemann surfaces, and 
define the open cobordism category O, the open-closed cobordism category OC and the 
category of Sullivan diagrams SD.

Fat graphs were defined to give a combinatorial model of Teichmüller space and mod-
uli space [46,4]. Originally, these were considered for surfaces with punctures and later 
adapted to also model surfaces with fixed boundary components [48,12,20]. To relate 
these to the open and open-closed cobordism categories, we need to additionally be able 
to model the maps induced on moduli spaces by the gluing of surfaces along boundary 
intervals and circles. The gluing along boundary circles is easiest to describe using an 
asymmetrical model: our incoming and outgoing boundaries will be specified very dif-
ferently. Indeed, the outgoing boundary circles will be given by white vertices while the 
incoming boundary circles will be identified as edge cycles in the graph. (A symmetrized 
model of this cobordism category exists (see [62, Thm. 3.1]) but will not be relevant 
here.)

The model we use here is that of Costello [12,11] and Kontsevich–Soibelman [39]
(slightly reformulated), as this is the one that naturally occurs when considering the 
Hochschild complex of open field theories. These authors’ work naturally includes a model 
for gluing along boundary intervals; however they did not study the gluing of surfaces 
along boundary circles. For this, we will use the work of Egas [14]. Kaufmann–Penner 
have proposed in [33] a different (partially defined) gluing operation on moduli space to 
model open and closed string interactions. We defer to Section 6.7 a discussion of the 
differences of these approaches.

We will also be interested in a category of Sullivan diagrams that arises when con-
sidering the Hochschild complex of strict Frobenius algebras. The work of Egas–Kupers 
[16] shows that this category yields a model of the harmonic compactification of moduli 
space. Sullivan diagrams are classically defined as equivalence classes of fat graphs made 
out of circles and chords. We will show here that they can be seen as equivalence classes 

6 Equivalently, E is a category enriched in Ch, and Φ is an enriched functor.



N. Wahl, C. Westerland / Advances in Mathematics 288 (2016) 240–307 247

Fig. 1. Fat graph and black and white graphs.

of black and white graphs, which will allow us to define our category of Sullivan diagrams 
as a quotient of our cobordism category. Sullivan diagrams can moreover be described, as 
in the work of Kaufmann [27,29], in terms of arc systems in surfaces (see Remark 2.15).

We start the section by defining fat graphs, which will be used to model the open 
cobordism category, and then extend them to black and white graphs, that will model the 
open-closed cobordism category, both categories being defined subsequently. We define 
the subcategories A∞ and A+

∞ that will be used in Section 3 to define A∞- and unital 
A∞-algebras. We also define a subcategory of Annuli that will play a role in defining 
the Hochschild complex in Section 5. At the end of the section, we define a category of 
Sullivan diagrams and study its relationship to the open-closed cobordism category.

2.1. Fat graphs

By a graph G we mean a tuple (V, H, s, i) where V is the set of vertices, H the set of 
half-edges, s : H → V is the source map and i : H → H is an involution. Fixed points of 
the involution are called leaves. A pair {h, i(h)} with i(h) ̸= h is called an edge. We will 
consider graphs with vertices of any valence, also valence 1 and 2.

We allow the empty graph. We will also consider the following degenerate graphs 
which fail to fit the above description:

• The leaf consisting of a single leaf and no vertices.
• The circle with no vertices.

The leaf will appear in two flavors: as a singly labeled leaf and as a doubly labeled leaf. 
The circle will arise from gluing the doubly labeled leaf to itself.

A fat graph is a graph G = (V, H, s, i) together with a cyclic ordering of each of the 
sets s−1(v) for v ∈ V . The cyclic orderings define boundary cycles on the graph, which 
are sequences of consecutive half-edges corresponding to the boundary components of 
the surface that can be obtained by thickening the graph. Fig. 1(a) shows an example 
of a fat graph with two boundary cycles (the dotted and dashed lines), where the cyclic 
ordering at vertices is that inherited from the plane. (Formally, if σ is the permutation 
of H whose cycles are the cyclic orders at each vertex of the graph, then the boundary 
cycles of G are the cycles of the permutation σ.i [20, Prop. 1].)
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2.2. Orientation

An orientation of a graph G is a unit vector in det(R(V 'H)). The degenerate graphs 
have a canonical formal positive orientation. Note moreover that any odd-valent (in 
particular trivalent) graph has a canonical orientation

v1 ∧ h1
1 ∧ . . . ∧ h1

n1 ∧ . . . ∧ vk ∧ hk
1 ∧ . . . ∧ hk

nk

where v1, . . . , vk is a chosen ordering of the vertices of the graph and hi
1, . . . , h

i
ni

is the 
set of half-edges at vi in their cyclic ordering.

2.3. Black and white graphs

A black and white graph is a fat graph whose set of vertices is given as V = Vb
∐

Vw, 
with Vb the set of black vertices and Vw the set of white vertices. The white vertices
are labeled 1, 2, . . . , |Vw| and are allowed to be of any valence (also 1 and 2). The black 
vertices are unlabeled and must be at least trivalent. Moreover, each white vertex is 
equipped with a choice of start half-edge, i.e. a choice of an element in s−1(v) for each 
v ∈ Vw. Equivalently, the set of half-edges s−1(v) at each white vertex v has an actual 
ordering, not just a cyclic ordering.

We define a [ p
m ]-graph to be a black and white graph with p white vertices and m

leaves labeled {1, . . . , m}. A [ p
m ]-graph may have additional unlabeled leaves if they are 

the start half-edge of a white vertex. Fig. 1(b) shows an example of a [ 2
3 ]-graph, with 

the start half-edges marked by thick lines.
To define the Hochschild complex, we will use the [ 1

n ]-graph, denoted ln, depicted in 
Fig. 1(c) which has a single vertex which is white, and n leaves labeled cyclically, with 
the first leave as start half-edge. (As ln has only one white vertex, we drop its label which 
is automatically 1 = |Vw|.)

A [ 0
m ]-graph is just an ordinary fat graph whose vertices are at least trivalent and 

which has m labeled leaves. Fig. 1(a) gives an example of a [ 0
3 ]-graph.

We will consider isomorphism classes of black and white graphs. If the graphs are 
oriented or have labeled leaves, we always assume this is preserved under the isomor-
phism. Note that when two black and white graphs are isomorphic, the isomorphism is 
unique whenever each component of the graph has at least one labeled leaf or at least one 
white vertex: starting with the leaf or the start half-edge of the white vertex, and using 
that the cyclic orderings at vertices are preserved, one can check by going around the 
corresponding component of the graph that the isomorphism is completely determined.

2.4. Edge collapses and blow-ups

For a black and white graph G and an edge e of G which is not a cycle and does 
not join two white vertices, we denote G/e the set of isomorphism classes of black and 
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Fig. 2. The two possible collapses of e in G.

Fig. 3. Differential applied to the graph l3 and to two graphs with an unlabeled start-leaf.

white graphs that can be obtained from G by collapsing the edge e, identifying its two 
end-vertices, declaring the new vertex to be white with the same label if one of the 
collapsed vertices was white—in particular, the number of white vertices is constant 
under edge collapse. Graphs in G/e have naturally induced cyclic orderings at their 
vertices. If the new vertex is black, the collapse is unique. If the new vertex is white, it 
has a well-defined start half-edge unless the start half-edge of the original white vertex 
is collapsed with e, in which case there is a collection of possible collapses of G along e, 
one for each choice of placement of the start half-edge at the new white vertex among 
the leaves originating from the collapsed black vertex of the original graph G. (See Fig. 2
for an example.)

If G is oriented, the graphs in G/e inherit an orientation as follows: If e = {h1, h2}
with s(h1) = v1, s(h2) = v2, and writing the orientation of G in the form v1 ∧ v2 ∧ h1 ∧
h2 ∧x1 ∧ . . .∧xk, we define the orientation of the collapsed graph to be v∧x1 ∧ . . .∧xk, 
where v is the vertex of the collapsed graph coming from identifying v1 and v2.

For an (oriented) black and white graph G, we call an (oriented) black and white 
graph G̃ a blow-up of G if there exists an edge e of G̃ such that G ∈ G̃/e. The first line 
in Fig. 3 shows all the possible blow-ups of the graph l3.

2.5. Chain complex of black and white graphs

Let BW-Graphs denote the chain complex generated as a Z-module by isomorphism 
classes of (not necessarily connected, possibly degenerate) oriented black and white 
graphs, modulo the relation that −1 acts by reversing the orientation. The degree of 
a black and white graph is



250 N. Wahl, C. Westerland / Advances in Mathematics 288 (2016) 240–307

deg(G) =
∑

v∈Vb

(|v|− 3) +
∑

v∈Vw

(|v|− 1),

where |v| denotes the valence of v. The degenerate graphs have degree 0. The map

d̂:G )→
∑

(G̃,e)
G∈G̃/e

G̃

summing over all blow-ups of G defines a differential on BW-Graphs. Indeed, we have

(d̂ )2(G) =
∑

(G̃,e)
G∈G̃/e

( ∑

(Ĝ,f)
G̃∈Ĝ/f

Ĝ
)

=
∑

(Ĝ,f,e)
G∈Ĝ/(f,e)

Ĝ

as any pair (G̃, e), (Ĝ, f) as above defines a triple (Ĝ, f, e) taking e ∈ Ĝ to be the inverse 
image of e ∈ G̃ under the collapse of f , and conversely, given a triple (Ĝ, f, e) as above, 
there is a unique G̃ in Ĝ/f with the property that G ∈ G̃/e. Indeed, if Ĝ/f contains 
several elements, they only differ by the placements of the start half-edge at a newly 
created white vertex, but only one of these placements can be compatible with the start 
half-edge of G at that vertex, also if e defines a further collapse of a black vertex to that 
white vertex. The fact that d̂2 = 0 then follows from checking that the orientations of 
Ĝ/f/e and Ĝ/e/f are opposite so that each term (Ĝ, f, e) cancels with the term (Ĝ, e, f).

Let [ p
m ]-Graphs now denote the chain complex generated as a Z-module by isomor-

phism classes of (not necessarily connected, possibly degenerate) oriented [ p
m ]-graphs, 

modulo the relation that −1 acts by reversing the orientation. Recall that [ p
m ]-graphs 

are black and white graphs with p white vertices and m labeled leaves, and that the only 
unlabeled leaves allowed in [ p

m ]-graphs are those which are start half-edge of a white 
vertex.

A black and white graph G with p white vertices and m labeled leaves has an underly-
ing [ p

m ]-graph ⌊G⌋ defined by ⌊G̃⌋ = G̃ unless G̃ has unlabeled leaves which are not the 
start half-edge of a white vertex. In such a leaf l is attached at a trivalent black vertex 
v, the vertex v and the leaf are forgotten in ⌊G̃⌋, and if such a leaf is attached at a white 
vertex (which will automatically be at least bivalent) or at black vertex of valence at 
least 4, we set ⌊G̃⌋ = 0. The orientation of ⌊G̃⌋ when ⌊G̃⌋ ̸= G̃ (or 0) is obtained by first 
rewriting the orientation of G in the form v ∧ l ∧ h1 ∧ h2 ∧ . . . for s−1(v) = (l, h1, h2) in 
that cyclic ordering, and then removing the first 4 terms.

We now define the differential on [ p
m ]-Graphs as dG = ⌊d̂G⌋. Fig. 3 shows three 

examples of differentials.

Lemma 2.1. d⌊G⌋ = ⌊d̂G⌋.

Proof. If G has unlabeled leaves at trivalent black vertices which are forgotten in ⌊G⌋, 
since trivalent black vertices cannot be expanded, d̂G will also have such unlabeled leaves 
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and it does not alter the differential if they are forgotten before or after we sum over all 
blow-ups. The case ⌊G⌋ ̸= 0 follows.

Suppose now that ⌊G⌋ = 0. If G has more than one unlabeled leaf at a high valent 
black vertex or non-start half-edge at a white vertex, it is immediate that ⌊d̂G⌋ is also 0 
as all terms in d̂G will also have unlabeled leaves of that type. If G has a single unlabeled 
leaf at a high valent black or white vertex, then d̂G will have exactly two terms Gl, Gr

such that the unlabeled leaf is at a black trivalent vertex, namely the blow-ups of that 
the vertex blowing out the leaf together with its left and its right neighbor respectively. 
One has that ⌊Gl⌋ = ⌊Gr⌋ with opposite orientations. ✷

Proposition 2.2. The map d is a differential.

Proof. This follows directly from the lemma using the fact that d̂ is a differential: d2G =
d⌊d̂G⌋ = ⌊(d̂ )2G⌋ = 0. ✷

2.6. The open cobordism category O

For us, the open cobordism category is a dg-category with objects the natural numbers, 
thought of as representing disjoint unions of intervals, and morphism given by chain 
complexes with homology that of the moduli spaces of Riemann cobordisms between the 
intervals. The composition is induced by the composition of cobordisms, i.e. gluing along 
the intervals. Here, we follow the terminology of Moore–Segal [45], amongst others.

Fat graphs, without leaves, were invented to define a cell decomposition of Teichmuller 
space (see the work of Bowditch–Epstein [4], Harer [24], Penner [46,47]), and the chain 
complex [ 0

0 ]-Graphs defined above is the corresponding cellular complex of the quotient 
of Teichmuller space by the action of the mapping class group, namely the coarse moduli 
space of Riemann surfaces. Similarly, fat graphs with leaves define a chain complex for the 
moduli space of surfaces with fixed boundaries, or with fixed intervals in their boundaries 
(see Penner [48,49], Godin [20], Costello [11, Sect. 6] and [12]). As already remarked in 
2.3, graphs with labeled leaves have no symmetries. The same holds for Riemann surfaces 
as soon as part of the boundary of the surface is assumed to have a fixed Riemann 
structure. It follows that the moduli space, being the quotient of Teichmuller space by 
a free action of the mapping class group of the surface, is a classifying space for that 
mapping class group, and the chain complex of [ 0

m ]-graphs of that surface type when 
m > 0 computes the homology of the (now fine) moduli space as well as the homology 
of the corresponding mapping class group.

Let S be a surface and I a collection of intervals in its boundary. If we de-
note by M(S, I) the moduli space of Riemann surfaces with a fixed structure on an 
ε-neighborhood of I (with the convention that M(S1 × I, ∅) = ∗ = M(D2, ∅), and 
the moduli space is the coarse moduli space for other surfaces with no intervals in their 
boundary), we have the following:
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Fig. 4. Morphisms of O(3, 5) and A∞(6, 2).

Theorem 2.3. There is an isomorphism

H∗([ 0
m ]-Graphs) ∼=

⊕

(S,I)
H∗(M(S, I))

where (S, I) ranges over all (possibly disconnected) oriented surfaces S with I a collection 
of m labeled intervals in ∂S. Here, each component of S must have nonempty boundary.

While the many references indicated above give similar such combinatorial models for 
moduli space, one may explicitly extract this result from [12], via the enumeration of 
the cells in Costello’s cellular model for moduli space after Proposition 2.2.3 in [12] with 
s = 0. An alternative reference, with a different proof, is the restriction to the open part 
of [14, Thm. A] as [ 0

m ]-Graphs are the same as “open fat graphs” in the terminology 
of that paper. We can thus use [ 0

m ]-graphs to provide a model for the open cobordism 
category, which we do now.

Let O be the symmetric monoidal dg-category with objects the natural numbers 
(including 0) and morphisms from m to n the chain complex

O(m,n) := [ 0
m+n ]-Graphs

of fat graphs with m + n labeled leaves. See Fig. 4 for examples of morphisms in O.
Relabeling the (m +j)th leaf of a graph in O(m, n) by jout as in the figure, composition 

G2 ◦G1 is defined by gluing the leaf jout of G1 with the jth leaf of G2, so that the two 
leaves form an edge in the glued graph. (More formally, we compose graphs by unioning 
vertices and half edges and altering the involution so that the glued leaves are mapped 
to each other under the involution.) The orientation is obtained by juxtaposition (wedge 
product). The rule for gluing the exceptional graphs is as follows:
– Gluing a leaf labeled on one side has the effect of removing the corresponding leaf 
of the other graph if this is a degree 0 operation (i.e. if the leaf was attached to a 
trivalent vertex)—otherwise the gluing just gives 0. If the trivalent vertex is v with 
half edges h1, h2, h3 attached to it in that cyclic order, and the graph has orientation 
v ∧ h1 ∧ h2 ∧ h3 ∧ x1 ∧ . . . ∧ xk, then the glued graph has orientation x1 ∧ . . . ∧ xk.
– Gluing a doubly labeled leaf has the effect of relabeling the leaf of the other graph if 
the labels of the leaf are incoming and outgoing. If both labels are incoming or outgoing, 
it attaches the corresponding leaves of the other graph together so they form an edge.
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The fact that this gluing is compatible with the gluing of Riemann surfaces along 
the intervals I is [11, Prop. 6.1.5] (see also [14, Thm. 3.30] for a different proof). 
This can be understood as follows: Fat graphs come from a cell decomposition of 
Teichmüller space, a fat graph in a surface defining a dual decomposition of the 
surface into polygons. When the fat graph has leaves, the endpoints of the leaves 
should be placed in the boundary of the surface. Such graphs are dual to a polyg-
onal decomposition of the surface with an interval around each leaf in the bound-
ary of the surface being always part of the decomposition. The gluing along leaves 
then corresponds in Teichmüller space to gluing such polygonal decompositions along 
such specified intervals, remembering the interval in the decomposition of the glued 
surface.

Remark 2.4. We note that this gluing along open boundaries does not agree with the 
one defined in [31,33], at least not under the most natural equivalence between the arc 
model used in those papers (restricting to the case of a single brane) and the dual fat 
graph model we use. Indeed, the gluing there is defined along intervals between marked 
points defined by the leaves, instead of around such points as we do. These boundary 
intervals between leaves correspond in the graph to sequences of edges between leaves, 
and the gluing is thus a gluing along sequences of edges. Despite the different starting 
point, we expect that their gluing, where it is defined, also models the gluing of Riemann 
surfaces along boundary intervals. We refer to Section 6.7 for a further discussion of the 
Kaufmann–Penner model.

The symmetric monoidal structure of O is defined by taking disjoint union of graphs. 
The identity morphisms and the symmetries in the category are given by (possibly empty) 
unions of doubly labeled leaves.

2.7. The categories A∞ and A+
∞

We let A∞ denote the subcategory of directed forests in O, i.e. A∞ has the same 
objects as O, the natural numbers, and the chain complex A∞(m, n) of morphisms 
from m to n is generated by graphs which are disjoint unions of n trees with a total 
of m1 + · · · + mn = m incoming leaves, with each mi > 0, in addition to the root of 
the tree which is labeled as an outgoing leaves. Here we allow the degenerate graphs 
consisting of single leaves labeled both sides (as one input and one output), as well as 
the empty graph defining the identity morphism on 0. We let A+

∞ denote the slightly 
larger category where also the leaf labeled on one side as an output is allowed. See Fig. 4
(b) for an example of a morphism in A∞.

In 3.1, we will relate these categories to A∞- and unital A∞-algebras.
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2.8. The open-closed cobordism category OC

The open-closed cobordism category is a dg-category with objects pairs of natural 
numbers, thought of as representing disjoint unions of intervals (open boundaries) and 
circles (closed boundaries), and with morphisms defined as chain complexes on the moduli 
spaces of Riemann cobordisms between the collections of intervals and circles. Compo-
sition is again induced by composing cobordisms, i.e. gluing surfaces. We give here a 
model of this category with morphisms sets given by chain complexes of black and white 
graphs. The white vertices will model outgoing closed boundary components while in-
coming closed boundaries will be modeled by cycles of edges in the graph starting at 
leaves (and determined by such leaves), and open boundaries will be modeled by leaves 
elsewhere in the graph. This asymmetric description of the morphisms is necessary for 
being able to define the composition—we need the boundary circles on one side to be 
disjointly embedded in some way, a property achieved by the white vertices which are 
by definition disjoint when distinct. But the particular choice of model made here really 
comes from studying the Hochschild complex of the open category O (most particularly 
Lemma 6.1), and this is why the same model appears both in the work of Costello and 
of Kontsevich–Soibelman in [11,39].

Let OC denote the dg-category with objects pairs of natural numbers [ n
m ], for m, n ≥ 0

representing m intervals and n circles, and with morphisms

OC([ n1
m1 ], [ n2

m2 ]) ⊂ [ n2
n1+m1+m2 ]-Graphs

the subcomplex of [ n2
n1+m1+m2 ]-graphs with the first n1 leaves sole labeled leaves in 

their boundary cycle, representing cobordisms from m1 intervals and n1 circles to m2
intervals and n2 circles. Theorem 2.6 below says that the chain complex OC([ n1

m1 ], [ n2
m2 ])

does indeed compute the homology of the moduli space of Riemann structures on such 
cobordisms. Note that these moduli spaces are classifying spaces for the mapping class 
groups of the corresponding surfaces fixing marked circles and intervals in their boundary. 
Now the mapping class group of a surface fixing an interval in some boundary component 
(or several intervals) is isomorphic to the mapping class group fixing the whole boundary. 
This is a way of understanding how the moduli of surfaces with a fixed boundary circle 
can be given by the graph complex for a surface with a single leaf in its boundary 
component, given that we already know from the open cobordism category that leaves 
model fixed intervals.

One can think of the composition of two graphs on closed boundaries as being induced 
by “gluing” the outgoing circles represented by white vertices of the one graph along the 
cycles in the other graph representing incoming circles. In many respects, this resembles 
the composition law in the cactus operad. In practice, this means that for each white 
vertex, we will attach the half-edges at that white vertex in all possible ways (giving the 
right degree) along the corresponding cycle of the other graph, with the start half-edge at 
the “start leaf” of that cycle (i.e. the leaf defining it), and respecting the cyclic ordering. 
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Fig. 5. Compositions in OC. (Note that we interpret the same graph in two different ways in the first and 
second composition.)

Formally, given graphs G1 ∈ OC([ n1
m1 ], [ n2

m2 ]) and G2 ∈ OC([ n2
m2 ], [ n3

m3 ]), their composition 
is defined as the sum G2 ◦G1 =

∑
⌊G⌋ over all possible black and white graphs G that 

can be obtained from G1 and G2 by:

(1) removing the n2 white vertices of G1,
(2) identifying the start half-edge of the ith white vertex vi of G1 with the ith leaf λi

of G2,
(3) attaching the remaining leaves in s−1(vi) to vertices of the boundary cycle of G2

containing λi, respecting the cyclic ordering of the leaves,
(4) attaching the last m2 labeled leaves of G1 to the leaves of G2 labeled n2 + 1, . . . ,

n2 + m2, respecting the order,

where ⌊G⌋ is defined as in Section 2.5. (Unlabeled leaves are produced during the gluing 
operation in the following situation: if the ith white vertex of G1 has an unlabeled start 
half-edge, the ith leaf λi of G2 becomes unlabeled in the glued graph.)

The orientation of G2 ◦ G1 is obtained by juxtaposition after removing the white 
vertices vi and their start half-edges hi from the orientation of G1 ordered as pairs vi∧hi, 
and then removing quadruples v ∧ l ∧ h1 ∧ h2 as in 2.5 for each forgotten unlabeled leaf. 
Fig. 5 give two examples of compositions in OC.

Lemma 2.5. The composition of graphs defined above is a chain map

OC([ n1
m1 ], [ n2

m2 ]) ⊗OC([ n2
m2 ], [ n3

m3 ]) −→ OC([ n1
m1 ], [ n3

m3 ]).

Moreover it is associative.
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Proof. Given G1, G2 as above, we need to check that

d(G2 ◦G1) = G2 ◦ dG1 + (−1)|G1|dG2 ◦G1.

Recall from 2.5 that dG = ⌊d̂G⌋, for d̂ the differential in black and white graphs. We 
have similarly G2 ◦ G1 = ⌊G2◦̂G1⌋ where G2◦̂G1 denotes the composition of graphs as 
black and white graphs, without taking the underlying [ p

m ]-graphs.
We first check that d̂(G2◦̂G1) = G2◦̂d̂G1 + (−1)|G1|d̂G2◦̂G1. Call a vertex of G2◦̂G1

special if it comes from a vertex of one of the first n2 boundary cycles of G2. The left-hand 
side has terms coming from

(1) blowing up at a non-special vertex,
(2) blowing up at a special vertex in such a way that the newly created vertices are 

either
white,
black with no half-edges of G2, or
black with at least two half-edges of G2,

(3) blowing up at a special vertex in such a way that one of the newly created vertices 
is black with exactly one half-edge of G2 attached to it.

The terms of type (1) and (2) are exactly the terms occurring in G2◦̂d̂G1 +
(−1)|G1|d̂G2◦̂G1 as black and white graphs, i.e. before taking the underlying [ p

m ]-graphs 
⌊G⌋. Indeed, type (1) terms correspond to blowing up at vertices of G1 or G2 which are 
not affected by the gluing, and type (2) terms correspond either to blowing up a vertex 
of G2 on a incoming cycle and then attach edges of G1, or, in the case where one of the 
vertices is black with no half-edges of G2 attached to it, this correspond to blowing-up 
at a white vertex of G1 and then glue the resulting graph to G2. This covers all the 
possibilities.

The fact that the signs agree follows from the fact that the parity of the degree of a 
graph is the same as the parity of the number of vertices and half-edges in the graph, i.e. 
that (−1)|G1| = (−1)|V1|+|H1| = (−1)|V1|+|H1|−2|(V1)w| for (V1)w the set of white vertices 
of G1. Indeed, a vertex contributes with an odd degree precisely when it has even valence, 
that is when the vertex plus its half-edges give an odd number.

We are left to check that the terms of type (3) cancel in pairs. A “bad” newly created 
vertex has exactly two half-edges attached to it which are not from G1: one from G2 and 
one newly created half-edge. Any such graph occurs a second time as a term of type (3) 
with the role of these two edges exchanged and one checks that the signs cancel.

Now d(G2 ◦G1) = d⌊G2◦̂G1⌋ = ⌊d̂(G2◦̂G1)⌋ by Lemma 2.1. Using the above calcula-
tion, we thus get d(G2◦G1) = ⌊G2◦̂d̂G1⌋ +(−1)|G1|⌊d̂G2◦̂G1⌋. Now ⌊G2◦̂d̂G1⌋ = G2◦dG1
as unlabeled leaves attached to trivalent black vertices of G1 will still be attached at 
trivalent black vertices in the composition, and those attached to higher valent black 
vertices or to white vertices will still be attached to such. We are left to check that 
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⌊d̂G2◦̂G1⌋ = dG2 ◦G1. In this case if G2 has an unlabeled leaf at a trivalent black ver-
tex of an incoming cycle, there will be terms in d̂G2◦̂G1 with this leaf is attached to a 
higher valent black vertex, namely the terms where leaves of G1 are attached at that 
vertex. These terms vanish in ⌊d̂G2◦̂G1⌋ and are not present in dG2 ◦G1 as the vertex 
is forgotten in dG2.

We check associativity. Suppose G1, G2, G3 are three composable graphs and consider 
the compositions G3◦(G2◦G1) and (G3◦G2) ◦G1. The identifications of leaves represent-
ing open boundaries will be the same in both cases. For closed boundaries, one checks 
that each term in the first composition corresponds exactly to a term in the second com-
position and vice versa: The identification of start-leaves is fixed, and the same in both 
cases. If we first remove the white vertices of G1, some leaves of G1 might be attached to 
white vertices of G2. When those white vertices are removed in the further composition 
with G3, the leaves of G1 that were attached to a white vertex of G2 will be attached in 
all possible ways, respecting their position in between leaves of G2, to the corresponding 
boundary circle in G3. If we start by composing G2 and G3, the incoming boundary cy-
cles of G2 with white vertices will become incoming boundary cycles of G3 ◦G2 partially 
in the old G3. Attaching now G1 along such a boundary cycle, we see exactly all the 
terms that occurred before. Indeed, the leaves of G1 will either be attached only to black 
vertices of the old G2, or some of them might be attached to vertices of G3, in all possible 
ways, in between old edges of G2 that where previously attached to a white vertex. Left 
is to check that taking the underlying black-and-white graph gives the same result in 
both cases: If G in the composition G2 ◦ G1 satisfies ⌊G⌋ = 0, then a start-leaf of G1
was attached to a higher valence black vertex of G2 or a white vertex of G2. Any graph 
G′ obtained from G by further attaching G3 will then have that start-leaf attached to 
a higher valence black vertex or a white vertex of the composed graph, and hence also 
give 0. On the other hand, if G′ in the composition G3 ◦ G2 satisfies ⌊G′⌋ = 0, then a 
start-leaf of G2 was attached to a higher valence black vertex of G3 or a white vertex of 
G3, and it will remain attached to such a vertex after any further gluing of G1. ✷

Finally, we verify that the morphism complexes in OC do indeed compute the homol-
ogy of the moduli space of open-closed Riemann cobordisms.

Theorem 2.6. OC([ n1
m1 ], [ n2

m2 ]) is the cellular complex of a space weakly homotopy equiv-
alent to the disjoint union of coarse moduli spaces7 of Riemann surfaces of every genus, 
with

• m1 + m2 labeled open boundary components,
• n1 + n2 labeled closed boundary components,

7 Here we employ again the convention that the moduli space of a disk with a single free boundary is a 
point, as is the moduli of an annulus with two free boundaries.
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• any number of free boundary components (at least one per component with no open 
or incoming closed boundary)

Moreover, the composition of graphs defined above is compatible under this equivalence 
with the maps of moduli spaces induced by gluing surfaces along open and closed boundary 
components.

In particular, this theorem identifies the components of OC with the topological types 
of open-closed cobordisms.

The equivalence to moduli space in the case n1 = 0 was proved by Costello [11, 
Prop. 6.1.3] using certain flow on moduli space. Costello denotes this chain complex G in 
[11] and describes it in terms of discs (corresponding here to black vertices) and annuli 
with marked points (corresponding here to white vertices with start half-edges). The 
description in terms of graphs can be found in [12] for the category O after Proposi-
tion 2.2.3, though in [12] the white vertices are used to model punctures and do not have 
start half-edges.

We extract this result instead from the work of Egas [14], who proves the complete 
statement using, instead of Costello’s flow, a direct relationship between fat graphs and 
black and white graphs.

Proof. Theorem B of [14] says that the chain complex of black and white graphs has 
homology 

∐
S H∗(B Mod(S)), where S runs over all open-closed cobordisms S with at 

least one boundary which is not outgoing closed, and Mod(S) denotes the mapping 
class group of S. As Mod(S) has the homotopy type of the coarse moduli space, by 
the contractibility of Teichmüller space, this yields the equivalence claimed. Now [14, 
Thm. 4.41] shows that the composition of graphs induces the composition of moduli 
space induced by gluing surfaces. ✷

Note also that Theorem 3.1 of [62] shows that OC identifies as a quasi-isomorphic sub-
category of the category of formal operations on the Hochschild complex of O-algebras, 
where a formal operation is defined as a natural transformation of the iterated generalized 
Hochschild complex functor, and composition is composition of natural transformations. 
This shows that the gluing defined here also identifies with the composition of the uni-
versal formal operations on the Hochschild complex of O-algebras.

2.9. Annuli

We introduce in this section a chain complex of annuli that will play an important 
role in our definition of the Hochschild complex: tensoring with this chain complex will 
be used to give the degree shift in the Hochschild complex and define the Hochschild 
differential. This will facilitates both keeping track of the signs, and making sure the 
actions we define are given by chain maps.
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Fig. 6. Annulus.

This chain complex of annuli is closely related to the annular part of the category D
described in [11, Sec. 6]. Further, it resembles a chain complex used in [39, Sec. 11.2] to 
describe the action of the Hochschild cochains of an algebra on its Hochschild chains. 
We will however not consider the Hochschild cochains in this paper, and the complex 
of annuli used here should rather be thought of as simply modeling the map A⊗m →
C∗(A, A) =

⊕
n≥1 A

⊗n.
Let OCA([ 0

m ], [ 1
0 ]) ⊂ OC([ 0

m ], [ 1
0 ]) denote the component of the annuli with m open 

incoming boundaries on one side, and one closed outgoing boundary on the other side. 
Each generating graph in this chain complex is build from a white vertex (the outgoing 
circle) by attaching trees, with possibly one unlabeled leaf as start half-edge for the white 
vertex. Inside this chain complex, we can consider the sub-chain complex L(m) of graphs 
with no unlabeled leaf. Fig. 6 shows an example of an graph in L(12). Let Ln = ⟨ln⟩
denote the free graded Z-module on a single generator in degree n − 1, the graph ln of 
Fig. 1(c). By cutting the graphs around their white vertex, the complex L(m) can be 
described as

L(m) =
⊕

n≥1
A∞(m,n) ⊗ Ln

with differential d = dA∞ + dL, where dA∞ is the differential of A∞ and

dL : A∞(m,n) ⊗ Ln −→ A∞(m,n) ⊗
⊕

1≤k<n

A∞(n, k) ⊗ Lk −→
⊕

1≤k<n

A∞(m, k) ⊗ Lk,

where the first map takes the differential of ln in OC([ 0
m ], [ 1

0 ]) and reads off the blown-up 
graphs as elements of A∞(n, k) ⊗Lk for various k < n, and the second map is composition 
in A∞.

We will use the notation

dL(ln) =
∑

k<n

fn,k ⊗ lk ∈
⊕

1≤k<n

A∞(n, k) ⊗ Lk

for this decomposition of the differential of ln in OC.

2.10. The category of Sullivan diagrams SD

Sullivan chord diagrams are usually defined as fat graphs built from a disjoint union 
of circles by attaching chords, or trees, which should be thought of as “length 0” edges, 
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Fig. 7. Equivalent Sullivan diagrams, with one admissible cycle which in each case is the outside of the round 
circle.

in such a way that the original circles are still cycles in the resulting graph. One has to 
be aware that authors sometimes restrict to non-degenerate diagrams, those such that 
collapsing the chords does not change the homotopy type of the graph (as in for example 
[8,9,27]). There are also marked and unmarked versions, and there can be variations in 
the way the markings are handled (as in e.g. [52]). We consider here a chain complex 
of general Sullivan diagrams, also degenerate ones. Our definition is in the spirit of [7]
and agrees with that of [57] as well as the normalized “closed” Sullivan diagrams of [31]. 
Such Sullivan diagrams model a harmonic compactification of moduli space (see [16]).

We start the section by giving a formal definition of Sullivan diagrams, relate it to 
the informal definition above, and build a chain complex of such diagrams. Then we will 
show that Sullivan diagram can be identified with a quotient complex of black and white 
graphs, which is the way they occur in the present paper. This will enable us to define 
an “open-closed” category SD of Sullivan diagrams directly as a quotient of the category 
OC. We will then prove a few facts about the map quotient OC → SD, as well as explain 
how our category of Sullivan diagrams relates to the one defined in [31].

We call a fat graph p-admissible (in the spirit of [19]) if p of its boundary cycles are 
disjoint embedded circles in the graph. We call these p special cycles admissible cycles
and represent them as round circles when drawing such a graph.

Definition 2.7. An (oriented) [ p
m ]-Sullivan diagram is an equivalence class of (oriented) 

p-admissible fat graphs with p +m leaves, where the first p leaves are distributed as 1 per 
admissible boundary cycle and the remaining m leaves lie in the other cycles. Two such 
graphs G1, G2 are equivalent if they are connected by a zig-zag of edge collapses between 
p-admissible fat graphs, collapsing edges which are not in the p admissible cycles, for 
edge collapses as defined in 2.4. (Fig. 7 shows four equivalent [ 1

2 ]-Sullivan diagrams.)

To a fat graph, one can associate a surface by thickening the graph. As edge collapses 
respect the topological type of the associated surface, a Sullivan diagram still has an 
associated topological type.

For a [ p
m ]-Sullivan diagram G, we let Ea denote the set of edges lying on the admissible 

cycles of G. The degree of G is then defined as

deg(G) = |Ea|− p.
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Fig. 8. A Sullivan diagram with 6 admissible cycles modeling a 6-lobed cactus.

For example, the Sullivan diagrams of Fig. 7 are of degree 4 −1 = 3, while the left picture 
in Fig. 9 is a Sullivan diagram of degree 6 − 2 = 4.

Let [ p
m ] −SD denote the chain complex generated as a graded Z-module by all oriented 

[ p
m ]-Sullivan diagrams, modulo the relation that −1 acts by reversing the orientation. 

The boundary map in [ p
m ] − SD is defined on generators by

dG =
∑

e∈Ea

G/e,

the sum of all collapses of G along edges in the admissible boundary cycles8 of G, with 
G/e defined in 2.4.

This chain complex is isomorphic to the complex Cyclic Sullivan Chord Diagrams
considered by Tradler–Zeinalian in [57, Def. 2.1]. Their diagrams are build from disjoint 
circles (our admissible cycles) by attaching trees (the chords or non-admissible edges), 
whereas we allow the chords to be unions of graphs. However, collapsing non-admissible 
edges, one can alway push the vertices of the representing graph to only lie on the 
admissible cycles. Hence a Sullivan diagram in our sense is always equivalent to one as in 
[57] which is a union of admissible cycles together with chords which are edges attached 
directly to the cycles. The equivalence relation in [57] corresponds this way to the one 
defined here.

Remark 2.8. The chain complex of [ p1 ]-Sullivan diagrams of topological type a surface of 
genus 0 with p + 1 boundary components is a cellular complex for the pth space of the 
normalized cactus operad [60,26]. Indeed, such a Sullivan diagram is made out of p circles 
attached to each other in a tree-like fashion, exactly representing a cell in the normalized 
cactus operad. (See Fig. 8.) This statement can also be found in [34, Sec. 3.1.1] or [28]
in the “spineless” version (corresponding to not having start half-edges at the white 

8 It is worth noting that we have already effectively collapsed the remaining edges by the equivalence 
relation.
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vertices in our language), and [63] with the spines, both in terms of bipartite black and 
white trees, which give a slightly different description of the same chain complex. (See 
also [26].)

The following theorem relates Sullivan diagrams to black and white graphs. In the 
proof, we will use the equivalence relation in Sullivan diagrams in the opposite way from 
what we used to relate our definition to that of [57]: we will represent Sullivan diagrams 
by the graphs in their equivalence class with the maximum number of vertices not on 
the admissible cycles.

Theorem 2.9. The chain complex [ p
m ] − SD of [ p

m ]-Sullivan diagrams is the quotient of 
[ p
m ]-Graphs by the graphs with black vertices of valence at least 4 and by the boundaries 

of such graphs.

Proof. We first note that every Sullivan diagram can be represented by a graph with only 
trivalent vertices, except for the vertices where the leaf of an admissible cycle is attached, 
which may be 4-valent. Indeed, if the graph has a higher valence vertex away from the 
admissible cycles, one can blow it up in any manner one likes and obtain an equivalent 
graph with trivalent vertices replacing the higher valence vertex. If there is a higher 
valence vertex on an admissible cycle, it has exactly two contiguous half-edges of that 
admissible cycle attached to it, unless the leaf of the admissible cycle is at that position, 
in which case it has three such. Any blow-up of that vertex which keeps the half-edges of 
the admissible cycle together produces an equivalent graph with the property we want. 
For the purpose of the proof, we call such graphs essentially trivalent.

Two essentially trivalent Sullivan diagrams are equivalent if and only if they are equiv-
alent through such Sullivan diagrams and diagrams with exactly one 4-valent vertex 
which is away from the cycles: a single valence 4 vertex at a time suffices since we can 
do collapses and blow-ups one at a time, and no additional valence 4 (or 5) vertices on 
the admissible cycles are necessary because there is only one way of blowing-up such a 
vertex if the two (or three) half-edges of the admissible cycles have to stay together, up 
to collapses and blow-ups away from the admissible cycle.

Given an essentially trivalent [ p
m ]-Sullivan diagram, we get a [ p

m ]-graph by collapsing 
the admissible cycles to white vertices. If the leaf of the ith admissible cycle is at a 
3-valent vertex, we place an unlabeled start-leaf at that position on the ith white vertex, 
and if it is at a 4-valent vertex, we remove it and define the remaining half-edge after 
the collapse to be start half-edge. (See Fig. 9 for an example.)

Given a [ p
m ]-graph, one can similarly obtain an essentially trivalent [ p

m ]-Sullivan 
diagram by expanding the white vertices to circles and placing leaves at the spots corre-
sponding to start-edges. These two maps are inverses of one another, and the equivalence 
relations agree under the maps by the above remarks.

Note moreover that the degrees agree: the degree of a [ p
m ]-graph G is 

∑
v∈Vb

|v| − 3 +∑
v∈Vw

|v| −1. As all black vertices of the graphs occurring here are trivalent, the first sum 
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Fig. 9. Essentially trivalent Sullivan diagram (with admissible cycles the inside of the round circles) and the 
corresponding black and white graph.

gives 0. On the other hand, the valence of a white vertex in G is the number of admissible 
edges on the corresponding admissible cycle of the associated Sullivan diagram.

We are left to check that the boundary maps also agree. Given an essentially trivalent 
Sullivan diagram, the boundary map in [ p

m ]-SD is a sum of Sullivan diagrams, each 
with a higher valence vertex on an admissible cycle. Blowing up that vertex in the only 
possible manner to obtain an essentially trivalent graph corresponds exactly under the 
equivalence above to a term in the differential of the associated [ p

m ]-graph, and all the 
terms of the differential of this [ p

m ]-graph that do not have valence 4 or more black 
vertices will occur this way. ✷

Recall from 2.8 that the open-closed category OC has objects pairs of natural numbers 
[ n
m ] and morphisms complexes OC([ n1

m1 ], [ n2
m2 ]) ⊂ [ n2

n1+m1+m2 ]-Graphs, the subcomplex 
of graphs with the first n1 leaves alone in their boundary cycles. As composition in OC
can only increase the valence of black vertices, it still gives a well-defined composition 
when quotienting out by the graphs with black vertices of valence 4 or more. Hence, 
using the above theorem, we can simply define the category of Sullivan diagrams as a 
quotient category of OC:

Definition 2.10. Let SD be the category with objects pairs of natural numbers [ n
m ], with 

m, n ≥ 0, and morphisms from [ n1
m1 ] to [ n2

m2 ] the quotient of OC([ n1
m1 ], [ n2

m2 ]) by the graphs 
having black vertices of valence higher than 3 and by the boundary of such graphs.

Note that in terms of “classical” Sullivan diagrams, as in Definition 2.7, admissible 
cycles are considered here as outgoing boundary circles, while incoming boundary circles 
are ordinary cycles in the graph. The composition of Sullivan diagrams G1, G2 is defined 
in classical terms by gluing the ith admissible cycle G1 to the ith incoming cycle of a 
graph G2 by attaching the edges which had boundary points on this admissible cycle 
of G1 to edges of admissible cycles of G2 lying on its ith incoming cycle, in all possible 
way respecting the cyclic ordering. This is because, in terms of black and white graphs, 
composition is defined by attaching the edges of the first graph at vertices of the second 
along the corresponding cycle in all possible ways, but attaching edges at black vertices 
creates vertices of valence 4 or higher, and hence is trivial in Sullivan diagrams. On the 
other hand, attaching edges at white vertices corresponds to attaching at admissible 
edges in the classical picture.
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By definition, we have a quotient functor

π : OC → SD

A direct consequence of Theorem 2.9 is the following:

Proposition 2.11. The quotient functor π: OC → SD induces an isomorphism

H0(OC([ n1
m1 ], [ n2

m2 ])) ∼= H0(SD([ n1
m1 ], [ n2

m2 ]))

for each n1, m1, n2, m2.

From Remark 2.8, we have in addition that the component of SD([ 1
0 ], [ p0 ]) of Sul-

livan diagrams of underlying topological type a genus 0 surface with p + 1 boundary 
components is quasi-isomorphic to the same component in OC([ 1

0 ], [ p0 ]), as both have 
homology that of the framed little discs, i.e. the pth component of the BV operad. As is 
to be expected, the map π on this component is a quasi-isomorphism.

Proposition 2.12. On the component of a surface of genus 0 with p + 1 boundary compo-
nents, the map π : OC([ 1

0 ], [ p0 ]) → SD([ 1
0 ], [ p0 ]) is a quasi-isomorphism.

This result is closely related to [63, Thm. 6.6] and [34, Prop. 3.15] is its spineless 
version. As this result is easiest proved once our machinery is set-up, we postpone its 
proof to Section 6.5 at which time we will have all the ingredients in place.

In general, the map π is however not a quasi-isomorphism. Given a topological type 
of surface, the chain complex of Sullivan diagrams of that topological type computes the 
homology of a certain harmonic compactification of moduli spaces of Riemann surfaces 
of that type. More precisely, SD is a cellular chain complex for a space of metric Sullivan 
diagrams SD (see [16, Def. 3.16]) and the following holds for this space

Theorem 2.13. SD is homeomorphic to the unimodular harmonic compactification of 
moduli space and the map OC → SD models the inclusion of moduli space in its com-
pactification.

Proof. As in [14,16], let Fatad denote the category of admissible fat graphs under edge 
collapses and MFatad the space of metric admissible fat graphs. Then the map in 
the statement identifies as a chain version of the map |Fatad | ≃−→ MFatad → SD

in [16, Thm. 1.1] under the identification [14, Thm. 4.38] of OC as a chain model for 
|Fatad |. Indeed, Theorem 4.38 of [14] uses a filtration of |Fatad| by mixed degree (see 
Definition 4.13 in that paper) to show that black and white graphs define a quasi-cell 
decomposition of |Fatad |. The mixed degree is also well-defined for Sullivan diagrams 
seen as equivalence classes of admissible fat graphs (as in our Definition 2.7), and the 
quasi-cell decomposition becomes an actual cell decomposition by SD in the case of 
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Sullivan diagrams. The quotient map from admissible fat graphs to Sullivan diagrams 
respects these decompositions and is, in terms of the decomposition, the map in the 
statement. ✷

As we will see below, the case described in Proposition 2.12 above is rather particular, 
and in fact this map annihilates a large part of the known homology of moduli space in 
positive genus. Despite this, this map stays of main interest to us both because it is a 
compactification, and because it will play a role in the present paper when studying the 
action of the homology of moduli space on the Hochschild complex of strict Frobenius 
algebras (see Corollary 6.8). Before getting to our vanishing result, we first given an 
example that illustrates that this map is also not be surjective in homology in general.

The chain complex of Sullivan diagrams is a lot smaller than that of all fat graphs, or 
all [ p

m ]-graphs, and hence computations of its homology are more approachable. It is for 
example not hard to compute that the component of the pair of pants in SD([ 2

0 ], [ 1
0 ])

is a complex that computes the homology of S3 × S1. The corresponding component of 
OC computes the homology of the framed disk operad fD(2) ≃ S1 × S1 × S1. The map 
OC → SD in this case is induced by the canonical embedding of the first two S1-factors 
as a standard torus in the 3-sphere.

Note that Sullivan diagrams are more fundamentally asymmetric in their inputs/out-
puts than black and white graphs. Indeed, from Proposition 2.12 we have that 
SD([ 1

0 ], [ 2
0 ]) ≃ OC([ 1

0 ], [ 2
0 ]), and hence

H∗(SD([ 1
0 ], [ 2

0 ])) ∼= H∗(OC([ 1
0 ], [ 2

0 ])) ∼= H∗(OC([ 2
0 ], [ 1

0 ])) " H∗(SD([ 2
0 ], [ 1

0 ])).

We refer to [62, Sec. 4] and [15, Paper C] for further computations of homology of 
Sullivan diagrams.

The fact that SD is a (quite drastic) quotient of OC makes one expect that, in ho-
mology, the projection π kills many classes. We make this precise by analysing the map 
componentwise: denote by

πS : OCS([ n1
m1 ], [ n2

m2 ])) −→ SDS([ n1
m1 ], [ n2

m2 ]))

the functor π : OC → SD restricted to the component of morphisms of type S, where S
is a generator in H0OCS([ n1

m1 ], [ n2
m2 ])) ∼= H0SDS([ n1

m1 ], [ n2
m2 ])), i.e. a topological type of 

cobordism.
We have the following general vanishing result:

Proposition 2.14. Suppose m1 +m2 +n1 > 0 and S is a generator of H0OC([ n1
m1 ], [ n2

m2 ]))
which is a connected surface of genus g. Then there exists S′ ∈ H0OC([ n1

m1 ], [ 0
m2+1 ]))

and a map f : OCS′([ n1
m1 ], [ 0

m2+1 ])) → OCS([ n1
m1 ], [ n2

m2 ])) which is an isomorphism in 
homology in degrees ∗ ≤ 2g

3 and such that the image of the composition

OCS′([ n1
m1 ], [ 0

m2+1 ])) f−→ OCS([ n1
m1 ], [ n2

m2 ])) π−→ SDS([ n1
m1 ], [ n2

m2 ]))
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Fig. 10. The surfaces S and P ◦ S′ ∼= S.

is concentrated in degree 0. In particular, the stable classes of positive degree map to 0
under the map H∗(π) : H∗(OC) → H∗(SD).

Here by a stable class, we mean a class in that lives in H∗(OCS([ n1
m1 ], [ n2

m2 ])) in 
the range of degrees ∗ ≤ 2g

3 for g the genus of the component of lowest genus in S. 
The terminology stable is justified by the fact that the map H∗(OCS([ n1

m1 ], [ n2
m2 ])) →

H∗(OCP◦S([ n1
m1 ], [ n3

m2 ])) induced from composition in OC with a chosen element [P ] ∈
H0(OCT ([ n2

m2 ], [ n3
m2 ])) for P a pair of pants (union some identities) glued along one of two 

circles, induces an isomorphism in this range of degrees. This is a consequence of Harer’s 
stability theorem ([23], with the improved range of [3,53] and [61] for punctures in S). In-
deed, OCS([ n1

m1 ], [ n2
m2 ]) is a chain complex computing the homology of the mapping class 

groups Mod(S) := π0 Diff(S rel ∂in ∪ ∂out) and composition with [P ] corresponds to the 
map induced on the homology of the mapping class groups by gluing P and extending 
the diffeomorphisms S to P ◦ S by the identity on P , which is the way the stabilization 
maps are classically defined.

The map f in the proposition in the case m1 = m2 = n1 = 0 is a little more subtle. 
An analogous statement can be made though using in place of f a map that replaces a 
fixed boundary by a free boundary, which is not an isomorphism in homology stably.

Proof. The idea of the proof is as follows: Sullivan diagrams have their non-zero de-
gree concentrated at white vertices, i.e. outgoing closed boundaries, as black vertices in 
Sullivan diagrams can only be of valence 3. Now any surface with n2 outgoing closed 
boundary components and b + 1 other fixed boundary components can be constructed 
from a surface with b +1 boundary components by attaching an n2-legged pair of pants. 
Homological stability says that adding such an n2-legged pair of pants in degree 0 induces 
an isomorphism in homology of the corresponding moduli spaces. Hence any homology 
class in the stable range can be written “without using white vertices” and hence must 
map to zero in Sullivan diagrams unless it is of degree 0.

We make this argument precise now.
Suppose first that m1+m2 > 0. Then S′ can be obtained from S by gluing discs on the 

n2 closed outgoing boundaries of S and adding a open outgoing boundary on a boundary 
component containing some other open boundary. We can reconstruct the topological 
type of S from S′ by gluing a n2-legged pair of pants P along an open boundary as 
shown in Fig. 10. Choosing a degree 0 representative of P in OC([ 0

1 ], [ n2
0 ])), the map f



N. Wahl, C. Westerland / Advances in Mathematics 288 (2016) 240–307 267

above is just induced by composition with P in OC. The fact that it is an isomorphism 
in homology in the given range follows from the stability theorem of [3,53] (and [61] for 
a version with punctures). Indeed, a neighborhood of P union the boundary component 
of S′ it is attached to is an (n2 +1)-legged pair of pants. As the boundary of S′ that P is 
attached to has a fixed interval, it may as well be assumed to be completely fixed. Then 
attaching P along an interval is seen to be equivalent to attaching an (n2 + 1)-legged 
pair of pants along the whole boundary, which is a composition of stabilization maps.

The fact that the composition πS ◦ f lands in degree 0 follows from the following two 
facts:

1) the diagram

OC([ n1
m1 ], [ 0

m2+1 ]))
f=P◦ −

π

OC([ n1
m1 ], [ n2

m2 ]))

π

SD([ n1
m1 ], [ 0

m2+1 ]))
π(P )◦ −

SD([ n1
m1 ], [ n2

m2 ]))

commutes as π is a functor,
2) the complex SD([ n1

m1 ], [ 0
m2+1 ])) is concentrated in degree 0 as graphs in this complex 

have no white vertices.
For n1 > 0, we have an isomorphism OCS([ n1

m1 ], [ n2
m2 ])) ∼= OCS̄([ n1−1

m1+1 ], [ n2
m2 ])), and 

similarly for SD, for S̄ the surface obtained from S by replacing an incoming closed 
boundary by an incoming open boundary, alone on that component. This reduces the 
case m1 + m2 = 0 with n1 > 0 to the previous one. ✷

We end by mentioning an alternative definition of Sullivan diagrams.

Remark 2.15 (Sullivan diagrams as arcs in a surface). In [31, Sec. 2.3, 6.3], Kaufmann 
defines an open-closed category of arc families of Sullivan types Sullc/o1 (with the “1” in-
dicating a normalized version). We explain here how this category relates to the category 
SD we defined in this section. Briefly, we have that the cellular chain complex of Sullc/o1
is isomorphic to a subcategory of SD when restricted to the closed part and switching 
the role of incoming and outgoing boundaries. We explain this in more details now.

For simplicity, we restricted to the case of a single brane. A windowed surface F with 
m1 (resp. n1) incoming open (resp. closed) boundaries and m2 (resp. n2) outgoing open 
(resp. closed) boundaries is a surface with m1+m2+n1+n2 marked points in its boundary 
such that the last n1+n2 are alone on their boundary component, together with a labeling
as n1 “in” and n2 “out” of those boundaries and of m1 “in” and m2 “out” of the arcs in 
between the other marked points in the boundary of F . An arc family of Sullivan type with 
m1/n1 incoming open/closed boundaries and m2/n2 outgoing open/closed boundaries is 
then defined as a weighted collection of arcs in such a surface F , where the arcs start at 
the incoming boundaries and end at the outgoing boundaries, and such that the sum of 
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Fig. 11. A Sullivan diagram described by a system of arcs in a surface, the dual Sullivan diagram in the 
surface, and the same Sullivan diagram without the surface.

the weights at each incoming boundary is equal to 1. (See the first picture in Fig. 11 for 
an example with one incoming and two outgoing closed boundaries.) These arc systems 
are considered modulo the action of the mapping class group of F . When m1 = m2 = 0, 
one can reconstruct a classical metric Sullivan diagram (an element of the space SD
of Theorem 2.13) from such a collection of arcs by having a circle for each incoming 
closed boundary with a edge of length the associated weight for each arc starting at 
that boundary. The chords are then obtained by choosing a fat graph representative of 
each component of the surface F cut along the arcs, with a leaf for each of the marked 
points. (See Fig. 11 for an example.) A collection of k1 + · · · + kn2 arcs corresponds to 
a cell ∆k1−1 × · · · × ∆kn2−1 represented by a diagram of degree k1 + · · · + kn2 − n2
in our definition above. The boundary of the cells in the arc description is defined by 
forgetting arcs. This corresponds to gluing surfaces in the complement of the arcs, which 
corresponds to collapsing an edge in the classical description.

This shows how to get from an arc family to a Sullivan diagram in the case of closed 
boundaries. The map is injective but not quite surjective. Indeed, our closed Sullivan 
diagrams are slightly more general in that, in terms of arc families, we allow arcs that 
end at unmarked boundary components. In Section 6.7, we will discuss the full category 
of open-closed arc families of Sullivan type, in their relation to the Kaufmann–Penner 
model of open-closed string interactions.

3. Algebras

In this section, we describe the main types of algebras we will consider in the present 
paper. We use the formalism of props of MacLane [41, §24], and describe algebraic 
structures via symmetric monoidal functors from given symmetric monoidal categories: 
recall that a prop, product and permutation category, in the category Ch is a symmetric 
monoidal dg-category with objects the natural numbers, and an algebra over that prop 
is a symmetric monoidal functor from that category to Ch. We describe in this section 
the main props we will use, and give descriptions of their algebras. (A good introductory 
reference for props and operads is [59].)
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If E is a symmetric monoidal category and Φ : E → Ch is a functor, we say that Φ is 
symmetric monoidal if there are maps Φ(n) ⊗Φ(m) → Φ(n +m) natural in n and m and 
compatible with the symmetries of Ch and E . We say that Φ is split monoidal if these 
maps are isomorphisms and h-split if they are quasi-isomorphisms.

3.1. A∞-algebras

Recall from 2.7 the symmetric monoidal dg-category A∞. This category is freely 
generated as a symmetric monoidal category by the morphisms from k to 1, for each 
k ≥ 2, represented by a tree (or rather a corolla) mk of degree k− 2 with a single vertex 
with k incoming and 1 outgoing leaves. A symmetric monoidal functor

Φ : A∞ → Ch

corresponds precisely to giving an A∞-structure on Φ(1) with multiplication and higher 
multiplications

µk : Φ(1)⊗k → Φ(k) Φ(mk)−→ Φ(1)

for each k ≥ 2, where the first map uses the monoidal structure of Φ. The fact that 
this defines an A∞-structure comes from the fact that planar, or equivalently “fat” trees 
define a cellular decomposition of Stasheff’s polytopes. See for example [43, C.2, 9.2.7].

There is an additional generating map u : 0 → 1 of degree 0 in the category A+
∞, 

a singly labeled outgoing leaf, which behaves as a unit for the multiplication µ2. So if 
Φ extends to a symmetric monoidal functor with source A+

∞, the A∞-algebra Φ(1) is 
equipped with a unit for the multiplication µ2. This is what we will mean by a unital 
A∞-algebra.

More generally, we will consider in this paper symmetric monoidal dg-categories E
equipped with a symmetric monoidal functor i : A∞ → E , so that E-algebras, i.e. sym-
metric monoidal functors E → Ch have an underlying A∞-algebras by precomposition 
with i. We will call such a pair (E , i) a prop with A∞-multiplication. If E admits a functor 
i : A+

∞ → Ch, we call the pair (E , i) a prop with unital A∞-multiplication.

3.2. Frobenius and A∞-Frobenius algebras

By a symmetric Frobenius algebra, or just Frobenius algebra for short, we mean a dg-
algebra with a non-degenerate symmetric pairing. A Frobenius algebra can alternatively 
be defined as a chain complex with is a unital algebra and a counital coalgebra, such 
that the multiplication and coproduct satisfy the Frobenius identity:

ν(ab) =
∑

i

a′i ⊗ a′′i b =
∑

j

ab′j ⊗ b′′j
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where a, b are elements of the algebra, ν is the coproduct, ν(a) =
∑

i a
′
i ⊗ a′′i , and 

ν(b) =
∑

j b
′
j ⊗ b′′j . (See [37, 2.2, 2.2.9, 2.3.24] for the various equivalent definitions of 

(symmetric) Frobenius algebras.)
The cohomology of a closed manifold is an example of a Frobenius algebra, though 

with a pairing of degree −d for d the dimension of a manifold. Because of this, Frobenius 
algebras are sometimes called a Poincaré duality algebra (see e.g. [40, Def. 2.1] in the 
commutative setting).

Recall from 2.6 the open cobordism category O with objects the natural numbers 
and morphisms the chain complexes of moduli spaces of open cobordisms. We denote 
by H0(O) the dg-category with the same objects but with morphisms from n to m
concentrated in degree 0, given by H0(O). In other words, the morphisms from n to m is 
the free module on the topological types of cobordisms from n to m intervals. Corollary 
4.5 of [42] says that split symmetric monoidal functors Φ : H0(O) → Ch are in 1–1 
correspondence with symmetric Frobenius algebras. We note that split monoidality is 
in some sense an analogue the assumption of cyclicity for algebras over cyclic operads, 
since H0(O) has a built-in cyclic symmetry.

Replacing H0(O) in the above by the original open cobordism category O, we get an 
A∞-version of Frobenius algebras: We call a split symmetric monoidal functor

Φ : O → Ch

(or by abuse of language its value at 1, Φ(1)) an A∞-Frobenius algebra. If Φ is h-split, 
Φ could be called an extended A∞-Frobenius algebra, following [11, 7.3]. In either case, 
note that by restriction along i : A∞ → O, Φ equips Φ(1) with the structure of an 
A∞-algebra (in fact an A+

∞-algebra).
In addition to the A∞-structure, the morphism tr : 1 → 0 in O given by a single 

incoming labeled leaf (the mirror of the unit u) gives a map tr : Φ(1) → Φ(0). When Φ
is h-split, Φ(0) is quasi-isomorphic to Z (concentrated in degree 0). The map induced by 
the trace in homology

tr : H∗(Φ(1)) → H∗(Φ(0)) = Z,

which, along with the associative multiplication coming from the A∞ structure, equips 
H∗(Φ(1)) with the structure of a Frobenius algebra. When Φ is split, Φ(0) = Z, so one 
gets a trace defined on Φ(1), which is non-degenerate.

The structure of an A∞-Frobenius algebra is generated by this A∞-structure together 
with the trace; that is, all chain level operations from the moduli of surfaces in the open 
category can be derived from these operations, as is indicated in section 7.3 of [11]. 
Roughly speaking, having a non-degenerate trace allows one to construct the pairing 
and the copairing. Together with the A∞-structure, one can recover any fat graph. We 
expand upon this in the following section.
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Fig. 12. The corolla c3,2 as a composition m4 ◦ (C - id).

3.3. Positive boundary or “noncompact” A∞-Frobenius algebras

Define the positive boundary open cobordism category Ob to be the subcategory of O
with the same objects and whose morphisms are given by the subcomplex of fat graphs 
whose associated topological type is a disjoint union of surfaces, all of which have at 
least one outgoing boundary.

There are certain morphisms in Ob whose role should be highlighted. Certainly, Ob

contains all of the category A+
∞, and in particular the corollas mk : k → 1. It also contains 

the coproduct ν—the morphism from 1 to 2 given by the corolla with one incoming and 
two outgoing leaves.

Proposition 3.1. The category Ob is generated as a symmetric monoidal category by its 
subcategory A+

∞ and the coproduct ν.

Proof. First, define the copairing C := ν ◦u : 0 → 2; this is an exceptional graph with no 
vertices. Composing a disjoint union of n − 1 copies of C with mk+n−1 gives the corolla9

ck,n : k → n for any k ≥ 0 and n ≥ 1 (see Fig. 12). Note that we can write mk = ck,1, 
u = c0,1, ν = c1,2, and C = c0,2. Then the symmetric monoidal subcategory generated 
by A∞, u, and ν is the same as the one generated by all of the ck,n.

Now let Γ : m → n be an arbitrary graph in Ob; we may assume that Γ is connected 
and non-empty, and so n ≥ 1. Pick a maximal tree T of edges of Γ and choose an 
outgoing leaf of Γ attached at a vertex v (which is included in T by maximality). There 
is a unique way to orient the edges of T to make it rooted at v. Extend that orientation 
(arbitrarily) to an orientation of Γ, though keeping the “in” and “out” orientations of 
the leaves. Since T includes all of the vertices of Γ, there is always at least one outgoing 
edge (or leaf) at each vertex. Thus the star of each vertex is ck,n for some value of k
and n. Consequently Γ is obtained as an iterated composition of (disjoint unions of) the 
ck,n, and so is in the symmetric monoidal subcategory generated by them. ✷

The relations between these generators can be summarized (in a pithy if not partic-
ularly helpful way) by saying that two compositions of generators are equal if the fat 
graphs that they define are the same. For instance, the Frobenius relation

9 We should be careful to indicate the labeling of the leaves in ck,n, but since we will consider the 
symmetric monoidal category generated by these, any choice will suffice.



272 N. Wahl, C. Westerland / Advances in Mathematics 288 (2016) 240–307

Fig. 13. Frobenius relation.

(coproduct ' id) ◦ (id ' product) = (id ' coproduct) ◦ (product ' id)

expresses the fact that the fat graphs in Fig. 13 are isomorphic.
Noting that Ob contains a copy of Aop

∞ , extending the coproduct (though with no 
counit!), Proposition 3.1 gives us:

Corollary 3.2. A split symmetric monoidal functor Φ : Ob → Ch makes A := Φ(1) into 
a unital A∞-algebra and non-counital A∞-coalgebra.

4. Bar constructions

In this section, we define the classical double bar construction, as studied by many 
authors, and a quotient version of it by symmetries occurring in [11]. This less well-know 
bar construction has the advantage of providing resolutions of symmetric monoidal func-
tors. (See Proposition 4.3.)

Given a dg-category C and dg-functors Φ : C → Ch (which we can think of as a 
C-module) and Ψ : Cop → Ch (a Cop-module), define the pth simplicial level of the 
double bar construction

Bp(Φ, C,Ψ) =
⊕

m0,...,mp

∈Obj(C)

Φ(m0) ⊗ C(m0,m1) ⊗ . . .⊗ C(mp−1,mp) ⊗ Ψ(mp).

If C is symmetric monoidal with objects the natural numbers under addition, let 
Σ ∼=

∐
Σn denote the subcategory of C with the same objects and with morphisms 

the symmetries in C. Then we can define similarly

BΣ
p (Φ, C,Ψ) =

⊕

m0,...,mp

∈Obj(C)

Φ(m0) ⊗Σ C(m0,m1) ⊗Σ . . .⊗Σ C(mp−1,mp) ⊗Σ Ψ(mp)

where X ⊗Σ Y denotes the quotient of X ⊗Y by x.f ⊗ y ∼ x ⊗ f.y for any f ∈ Σ with f
acting by pre- or post-composition on the middle factors and via Φ(f) and Ψ(f) on the 
first and last factors.

Denoting elements of Bp(Φ, C, Ψ) by a ⊗ b1 ⊗ · · ·⊗ bp ⊗ c, let di : Bp → Bp−1, the ith 
face map, be defined by

d0(a⊗ b1 ⊗ · · ·⊗ bp ⊗ c) = Φ(b1)(a) ⊗ b2 · · ·⊗ bp ⊗ c

di(a⊗ b1 ⊗ · · ·⊗ bp ⊗ c) = a⊗ b1 ⊗ · · ·⊗ bi+1 ◦ bi ⊗ · · ·⊗ bp ⊗ c for 0 < i < p

dp(a⊗ b1 ⊗ · · ·⊗ bp ⊗ c) = a⊗ b1 · · ·⊗ bp−1 ⊗ Ψ(bp)(c).
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This makes B(Φ, C, Ψ) = ⊕p≥0Bp(Φ, C, Ψ), the double bar construction, into a semi-
simplicial chain complex, and a chain complex with differential Dp = (−1)pδ + d where 
δ denotes the differential of Bp(Φ, C, Ψ) as a tensor product of chain complexes, and 
d =

∑p
i=0(−1)idi denotes the simplicial differential.

As all the face maps are well-defined over Σ, we have that BΣ(Φ, C, Ψ) =
⊕p≥0BΣ

p (Φ, C, Ψ) is also a semi-simplicial chain complex. (In fact, B(Φ, C, Ψ) is a sim-
plicial chain complex, in that it admits well-defined degeneracies, but this is not true for 
BΣ(Φ, C, Ψ).)

Taking Ψ = C(−, m) to be the Cop-module represented by an object m of C, we note 
moreover that the bar construction B(Φ, C, C(−, m)) is natural in m, i.e. we get a functor 
B(Φ, C, C) : C → Ch with value B(Φ, C, C(−, m)) at m ∈ Obj(C).

Proposition 4.1. For any functor Φ : C → Ch there are quasi-isomorphisms of functors

α:B(Φ, C, C) ≃−→ Φ and αΣ: BΣ(Φ, C, C) ≃−→ Φ

In particular, B(Φ, C, C(−, m)) ≃ BΣ(Φ, C, C(−, m)) for each m.

The result is well-known for the usual bar construction B. We recall the proof here 
and show that it also applies to BΣ.

Proof. Let α = ⊕pαp : B(Φ, C, C(−, m)) = ⊕pBp(Φ, C, C(−, m)) −→ Φ(m) be defined 
by α0(a ⊗ c) = Φ(c)(a) and αp = 0 for p > 0. This is natural in m. Let β : Φ(m) →
B(Φ, C, C(−, m)) be defined by β(a) = a ⊗1m ∈ Φ(m) ⊗C(m, m), where 1m here denotes 
the identity on m. We have α◦β = id and β ◦α ≃ id; an explicit chain homotopy is given 
by hi = sp ◦ . . . ◦ si+1 ◦ η ◦ di+1 ◦ . . . ◦ dp, where si is the ith degeneracy, introducing an 
identity at the ith position, and η is the “extra degeneracy” which introduces an identity 
at the right-most spot. Explicitly, hi takes a ⊗b1⊗ . . .⊗bp⊗c to a ⊗b1⊗ · · ·⊗bi⊗(c ◦bp ◦
· · ·◦bi+1) ⊗1m⊗ . . .⊗1m. Hence α gives a natural transformation by quasi-isomorphisms 
between the functors B(Φ, C, C) and Φ.

For BΣ, we now just note that the maps α,β and hi are well-defined over Σ. (For hi, 
the degeneracies sj are not well-defined but the above composition with η is.) ✷

Remark 4.2. More generally, one can show that B(M, C, N) ≃ BΣ(M, C, N) if M or N
is quasi-free (i.e., free as a C-module, if one ignores the differential).

Proposition 4.3. If C is (symmetric) monoidal and Φ : C → Ch is monoidal, then 
B(Φ, C, C) and BΣ(Φ, C, C) are monoidal. If Φ is symmetric monoidal, then so is 
BΣ(Φ, C, C). Moreover, if Φ is h-split, B(Φ, C, C) and BΣ(Φ, C, C) are both h-split.

Proof. The monoidal structure of B(Σ)(Φ, C, C) comes directly from that of Φ and C, 
taking (a ⊗f1⊗. . .⊗fp+1) ⊗(a′⊗f ′

1⊗. . .⊗f ′
p+1) to (a !a′) ⊗(f1"f ′

1) ⊗. . .⊗(fp+1"f ′
p+1), 

where ! denotes the monoidal structure of Φ and " that of C.
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We want to check that BΣ(Φ, C, C) is in fact symmetric monoidal, i.e. that the diagram

BΣ(Φ, C, C(−, n)) ⊗BΣ(Φ, C, C(−,m))

τ⊗

BΣ(Φ, C, C(−, n + m))

τC

BΣ(Φ, C, C(−,m)) ⊗BΣ(Φ, C, C(−, n)) BΣ(Φ, C, C(−,m + n))

commutes, where τ⊗ denotes the symmetry in the category of chain complexes and τC
the symmetry of C. This means that we need

(a′ ! a) ⊗Σ (f ′
1 " f1) ⊗Σ . . .⊗Σ (f ′

p+1 " fp+1)

equal to

(a! a′) ⊗Σ (f1 " f ′
1) ⊗Σ . . .⊗Σ (fp " f ′

p) ⊗Σ ((fp+1 " f ′
p+1) ◦ τC).

This holds because (fi " f ′
i) ◦ τC = τC ◦ (f ′

i " fi) in C and Φ(τC)(a ! a′) = a′ ! a as Φ is 
symmetric monoidal.

The fact that Φ is h-split implies B(Φ, C, C) and BΣ(Φ, C, C) are h-split; this follows 
from the commutativity of the following diagram:

B(Φ, C, C)(n) ⊗B(Φ, C, C)(m)

α≃

B(Φ, C, C)(n + m)

α≃

Φ(n) ⊗ Φ(m) ≃ Φ(n + m).

✷

Note that in the above proposition, strengthening the assumption on Φ to be split 
still only yields B(Σ)(Φ, C, C) h-split.

5. Hochschild complex operator

Let E be a symmetric monoidal dg-category which admits a symmetric monoidal 
functor i : A∞ → E , for A∞ the category defined in 2.7. For simplicity, and because 
all our examples are of this sort, we assume that i is the identity on objects, i.e. that 
E is a prop with A∞-multiplication. Recall from 3.1 that E-algebras, i.e. symmetric 
monoidal functors E → Ch, have an underlying A∞-algebra structure by precomposition 
with i, and hence have a well-defined Hochschild complex. We define in this section a 
generalization of the Hochschild complex in the form of an operator C on dg-functors 
Φ : E → Ch with the property that, if Φ is symmetric monoidal, the value of C(Φ) at 
0 is the usual Hochschild complex of the underlying A∞-algebra. The value of C(Φ) at 
n can more generally be identified with the higher Hochschild homology à la Pirashvili 
[50] associated to the simplicial set which is a union of a circle and n points.
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In 5.1 we study the basic properties of our Hochschild complex operator and in 5.2
we prove our main theorem, Theorem 5.11, which gives a way of constructing actions on 
Hochschild complexes.

Recall from 2.9 the functor L : Aop
∞ → Ch defined by

L(k) =
⊕

n≥1
A∞(k, n) ⊗ Ln

for Ln = ⟨ln⟩.
Let E be a monoidal dg-category. Given a functor Φ : E → Ch and an object m ∈ E , 

we can define a new functor

Φ(− + m) : E → Ch

by setting Φ(− + m)(n) = Φ(n + m) and Φ(− + m)(f) = Φ(f + idm). Note that for 
any morphism g ∈ E(m, m′), Φ(id + g) induces a natural transformation Φ(− + m) →
Φ(− + m′).

Given functors F : C → Ch and G : Cop → Ch, we denote by

F ⊗C G =
⊕

k∈Obj(C)
F (k) ⊗G(k)/ ∼

the tensor product of F and G, where the equivalence relation is given by f(x) ⊗ y ∼
x ⊗ f(y) for any x ∈ F (k), y ∈ G(l) and f ∈ C(k, l). This is a chain complex with 
differential d = dF + dG (with the usual Koszul sign convention).

Definition 5.1 (Hochschild complex). Let (E , i) be a prop with A∞-multiplication. For a 
functor Φ : E → Ch, define its Hochschild complex as a functor C(Φ) : E → Ch given on 
objects by

C(Φ)(m) := i∗Φ(− + m) ⊗A∞ L

and on morphisms by

C∗(Φ)(f) := i∗Φ(id + f) ⊗ id.

Note that L is free as a functor to graded vector spaces, so as a graded vector space,

C(Φ)(m) ∼=
⊕

n≥1
Φ(n + m) ⊗ Ln

∼=
⊕

n≥1
Φ(n + m)[n− 1]

where the second isomorphism comes from the fact that each Ln is generated by a single 
element in degree n − 1. The differential is given, for x ∈ Φ(n + m), by
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d(x⊗ ln) = dΦx⊗ ln + (−1)|x|
n−1∑

k=1
Φ(i(fn,k) + idm)(x) ⊗ lk

with fn,k the terms of the differential of Ln as defined in 2.9.
The construction is natural in Φ and E in the following sense: Given a factorization 

of i as A∞
i′→ E ′ j→ E and a functor Φ : E → Ch, we have C(j∗Φ) ∼= j∗C(Φ), and given 

two functors Φ, Ψ : E → Ch and a natural transformation η : Φ → Ψ, we get a natural 
transformation C(η) : C(Φ) → C(Ψ).

Remark 5.2. The operator C generalizes the usual Hochschild complex of A∞-algebras in 
the sense that for Φ : A∞ → Ch symmetric monoidal, C∗(Φ)(0) is the usual Hochschild 
complex of the A∞-algebra Φ(1) as in e.g. [39, 7.2.4]. In the case of a strict graded 
algebra, taking as generator of Ln the graph ln of Fig. 1 with orientation v∧h1∧ . . .∧hn

and using the sign convention for the product given in Fig. 19, our differential is explicitly 
given by the following formula: for a n-chain a0 ⊗ . . .⊗ an of the Hochschild complex of 
an algebra A, we have

d(a0 ⊗ . . .⊗ an) =
n∑

i=0
(−1)a0+···+ai−1a0 ⊗ . . .⊗ dai ⊗ . . .⊗ an

+ (−1)a0+···+an

n−1∑

i=0
(−1)i+1a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an

+ (−1)n+1+(an+1)(a0+···+an−1)+anana0 ⊗ a1 ⊗ . . .⊗ an−1,

where ai in a superscript denotes the degree of ai.

Note though that we have defined the Hochschild complex for any functor Φ : E → Ch, 
not just for monoidal ones. In particular, we will apply the Hochschild constructions 
to the (in general non-monoidal) representable functors Φ(m) = E(m, −), which can 
be thought of as “generalized free E-algebras”. Also, even for Φ monoidal, C(Φ) will in 
general not be monoidal, but we can nevertheless iterate the construction and talk about 
C(C(Φ)) = C2(Φ), C3(Φ), etc.

Definition 5.3 (Reduced Hochschild complex). Let (E , i) be a prop with unital A∞-multi-
plication and Φ : E → Ch a functor. Define the reduced Hochschild complex of Φ as the 
quotient functor C(Φ) = C(Φ)/U : E → Ch given on object by

C(Φ)(m) =
⊕

n≥1
Φ(n + m)/Un ⊗ Ln

where Un =
∑n

i=2 Im(Φ(i(ui) + idm)) ⊂ Φ(n + m) with ui = 1 ⊗ . . . ⊗ u ⊗ . . . ⊗ 1 in 
A+

∞(n − 1, n) the morphism that inserts a unit at the ith position.
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As the quotient does not affect the variable part of C(Φ), it is clear that C(Φ) is still 
defines a functor E → Ch. On the other hand, we need to check that the differential is 
well-defined on the quotient, which is done in the following lemma:

Lemma 5.4. The differential of C(Φ)(m) induces a well-defined differential on C(Φ)(m)
for each m.

Proof. Let Un ≤ Φ(n) be as in Definition 5.3. We first note that Un is mapped to itself 
by dΦ because the structure map cΦ of Φ is by chain maps and d(ui) = 0. We need to 
see that the same holds for the Hochschild part of the differential. This follows from the 
commutativity of the following diagram (written in the case m = 0 for readability)

Φ(n−1) ⊗ ⟨ui⟩ ⊗ Ln

dL

cΦ Φ(n) ⊗ Ln

dL

⊕

2≤r≤n
1≤j≤n

Φ(n−1) ⊗ ⟨ui⟩ ⊗ ⟨mj
r⟩ ⊗ Ln+1−r

cA∞

cΦ ⊕

2≤r≤n
1≤j≤n

Φ(n) ⊗ ⟨mj
r⟩ ⊗ Ln+1−r

cΦ

⊕

r,j

Φ(n−1) ⊗ ⟨ui ⊕mj
r⟩ ⊗ Ln+1−r

cΦ ⊕
k≥1 Φ(k) ⊗ Lk

where mj
r = 1 ⊕· · ·⊕mr⊕· · ·⊕1 denotes the multiplication mr of the entries j, . . . , j+r−1

(mod n). The target of the map cA∞ is justified as follows. There are two cases when 
composing ui and mj

r: either i /∈ {j, . . . , j + r − 1} so that the composition mj
r ◦ ui is of 

the form ui ⊕mj
r. Otherwise, the composition mj

r ◦ ui is the identity map when r = 2
and 0 when r > 2. In the case r = 2, the term mi−1

2 ◦ ui cancels with mi
2 ◦ ui. (The sign 

comes from the differential in L.) ✷

Let E , F be dg-categories and suppose that Φ : E → Ch in fact extends to a bifunctor 
Φ : Fop × E → Ch. In this case, we also call Φ an (Fop, E)-bimodule.10

Proposition 5.5. Let (E , i) be a prop with (unital) A∞-multiplication and suppose Φ is an 
(Fop, E)-bimodule. Then the Hochschild complexes C(Φ(a, −)) and C(Φ(a, −)) built using 
the E-structure of Φ pointwise on objects a of F assemble again to (Fop, E)-bimodules.

10 Here, to correctly work out the signs in the differential, we take the structure maps of the bimodule to 
be in the form F(m1, m2) × Φ(m2, n1) × E(n1, n2) → Φ(m1, n2) and apply the usual sign convention.
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Proof. Given f : m1 → m2 in E and g : a2 → a1 in Fop, C(Φ)(g, f) on the sum-
mand Φ(a2, n +m1) ⊗Ln is the map (−1)(n−1)|f |(g, idn + f). This is well-defined as the 
Hochschild part of the differential commutes with such maps. ✷

Example 5.6. The example we are interested in is the (Eop, E)-bimodule E . By the proposi-
tion, its Hochschild and iterated Hochschild complexes C(E), Cn(E), and reduced versions 
when relevant, are again (Eop, E)-bimodules. Given any Φ : E → Ch, this allows to con-
sider the double bar construction B(Φ, E , CnE) (as in Section 4), which in fact identifies 
with Cn(B(Φ, E , E)) as both have value at m given by

⊕

p≥0, n≥1
m0,...,mp≥0

Φ(m0) ⊗ E(m0,m1) ⊗ . . .⊗ E(mp, n + m) ⊗ Ln

(and similarly for the reduced constructions).

5.1. Properties of the Hochschild operator

We prove in this section that the Hochschild complex operator is homotopy invariant 
and we describe its behavior under iteration. Throughout the section, we assume that 
(E , i) is a prop with A∞-multiplication when we consider the Hochschild complex C, and 
that (E , i) is a prop with unital A∞-multiplication when we consider its reduced version 
C.

Recall that by a quasi-isomorphism of functors Φ ≃−→ Φ′ : E → Ch, we mean a natural 
transformation by quasi-isomorphisms Φ(m) ≃−→ Φ′(m).

Proposition 5.7. Let Φ, Φ′ : E → Ch. A quasi-isomorphism of functors Φ ≃−→ Φ′ induces 
quasi-isomorphisms of functors C∗(Φ) ≃−→ C∗(Φ′) and C∗(Φ) ≃−→ C∗(Φ′).

For the reduced part of the proposition, we need the following lemma.

Lemma 5.8. Suppose Φ ≃−→ Φ′ : E → Ch are quasi-isomorphic functors. For any J ⊂
{1, . . . , n}, let UJ =

∑
j∈J Im

(
Φ(i(uj))

)
⊂ Φ(n), and similarly for Φ′. Then

Φ(n)/UJ
≃−→ Φ′(n)/UJ .

If Φ ∼= Φ′, these maps are also isomorphisms.

Proof. We prove the lemma by induction on the cardinality of J , for any n, starting 
with the case J = ∅ which is trivial.

Fix J = {j1 ≤ · · · ≤ js} ⊂ {1, . . . , n} and denote by Ui, U ′
i the image of i(ui) in Φ(n)

and Φ′(n) respectively. We want to show that Φ(n)/(Uj1 + · · · + Ujs) 
≃−→ Φ′(n)/(U ′

j1 +
· · · + U ′

js).
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There is a short exact sequence

Φ(n− 1)/(Uj1 + · · · + Ujs−1)
i(ujs )

Φ(n)/(Uj1 + · · · + Ujs−1)

Φ(n)/(Uj1 + · · · + Ujs).

Indeed ujs is injective on Φ(n −1)/(Uj1 + · · ·+Ujs−1) with left inverse i(mjs
2 ) (where mjs

2
multiplies js and js + 1 modulo n). The result then follows by induction by considering 
the map of short exact sequences induced by Φ → Φ′. ✷

Proof of the Proposition. We filter the complexes C∗(Φ)(m) = ⊕Φ(k + m) ⊗ Lk and 
C∗(Φ)(m) = ⊕Φ(k + m)/Uk ⊗ Lk by k and consider the resulting spectral sequence. In 
both cases the differential is dΦ + dH where dH decreases the filtration grading and dΦ
does not. Hence the E1-terms of the spectral sequences are E1

p,q = Hp(Φ(q+1 +m)) ⊗Lq+1
and E1

p,q = Hp(Φ(q + 1 +m)/Uq+1) ⊗Lq+1 in the reduced case. A quasi-isomorphism of 
functors induces a map of spectral sequences which is an isomorphism on the E1-term 
by the assumption in the unreduced case and by Lemma 5.8 in the reduced case. ✷

Applying Proposition 5.7 to the map α : B(Φ, E , E) ≃→ Φ of Proposition 4.1, we get a 
quasi-isomorphism

C(α) : C(B(Φ, E , E)) ≃−→ C(Φ).

The proof of Proposition 4.1 gives a pointwise homotopy inverse β to α which is not a 
natural transformation, so we cannot apply Proposition 5.7 to it. (In fact C(β) does not 
define a chain map.) Instead, we construct now an explicit pointwise homotopy inverse 
β̃ to Cn(α), for any n, as this will be useful later to produce explicit actions on the 
Hochschild complex of E-algebras.

Proposition 5.9. For any n and m, there is a quasi-isomorphism of chain complexes

β̃ : Cn(Φ)(m) ≃−→ Cn(B(Φ, E , E))(m)

natural both with respect to natural transformations Φ → Φ′ and with respect to functors 
j : E → E ′ with i′ = j ◦ i : A∞ → E ′. Moreover, β̃ is a right inverse to C(α) for α as in 
Proposition 4.1.

Proof. We first define β̃ in the case E = A∞, and using the identification

Cn(B(Φ,A∞,A∞))(m) ∼= B(Φ,A∞, Cn(A∞)(m))
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of Example 5.6. The map β̃ for a general E and Φ : E → Ch is then obtained by 
post-composition with the quasi-isomorphism

Cn(B(i∗Φ,A∞,A∞))(m) → Cn(B(Φ, E , E))(m)

induced by i : A∞ → E . The naturality of β̃ in E follows from the naturality of that 
second map.

Recall from 2.9 the map

dL : Lk →
⊕

1≤j<k

A∞(k, j) ⊗ Lj .

We consider here more generally the map

dL : Lk1 ⊗ . . .⊗ Lkn →
⊕

1≤k<n

A∞(k1 + · · · + kn, k
′
1 + · · · + k′n) ⊗ Lk′

1 ⊗ . . .⊗ Lk′
n

induced by the differential of the [ nk ]-graph which is the union lk1 ' . . . ' lkn , where 
k = k1 + · · ·+ kn. We let β̃ :=

∑
p≥0(dL)p, where we interpret (dL)p as the composition

Φ(k + m) ⊗ Lk

(dL)p−→
⊕

ji

Φ(k + m) ⊗A∞(k, j1) ⊗ . . .⊗A∞(jp−1, jp) ⊗ Lj
p

+idm−→
⊕

ji

Φ(k + m) ⊗A∞(k + m, j1 + m) ⊗ . . .⊗A∞(jp−1 + m, jp + m) ⊗ Lj
p

with image in the pth simplicial level of B(Φ, A∞, Cn(A∞)(m)), where Lk = Lk1 ⊗ . . .⊗
Lkn and Lj

p
= Ljp1

⊗. . .⊗Ljpn is identified with ⟨idjp+m⟩ ⊗Lj
p

in A∞(jp+m, jp+m) ⊗Lj
p

in Cn(A∞)(m). Note that the sum is always finite as (dL)p applied to Lk is 0 for all 
p ≥ k.

We will show that the relation dβ̃ = β̃d holds on each component as maps
⊕

(k)=(k1,...,kn)
Φ(k + m) ⊗ Lk1 ⊗ . . .⊗ Lkn −→

⊕

p

Bp

(
Φ,A∞, Cn(A∞)(m)

)

i.e. that for each fixed (k), the images of dβ̃ and β̃d agree on the component of simplicial 
degree p. We first consider β̃d.

As d = dΦ + cΦdL, we have on the (k)th component

(k)(β̃d) =
K−1∑

i=0
(dL)idΦ +

K−2∑

i=0
(dL)icΦdL

with K = max(k1, . . . , kn), which can be rewritten as
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(k)(β̃d) = dΦ

K−1∑

i=0
(−1)i(dL)i + d0

K−2∑

i=0
(dL)i+1

as dLdΦ = −dΦdL and d̄iLcΦd̄L = d0d̄
i+1
L with d0 the 0-th face map in Bi(Φ, A∞,

Cn(A∞)(m)). Hence the component of (k)(β̃d) of simplicial degree p is

(k)(β̃d)p = (−1)pdΦ(dL)p + d0(dL)p+1.

On the other hand, we have (k)(dβ̃) = d((k)β̃) where the differential on the pth com-
ponent of (k)β̃ is (−1)p(dΦ+(dA)1+ · · ·+(dA)p+ d̃L) +

∑p
i=0(−1)idi , where (dA)i denotes 

the differential of the ith factor A∞(−, −) and d̃L the map dp+1dL which applies the 
differential to the factors L without increasing the simplicial degree. As the face maps 
di reduce the simplicial degree, we have

(k)(dβ̃)p = (−1)p
(
dΦ + (dA)1 + · · · + (dA)p + dp+1dL

)
(dL)p +

( p+1∑

i=0
(−1)idi

)
(dL)p+1.

This is a sum of two compositions whose respective first terms are exactly (k)(β̃d)p, and 
whose last terms cancel. Hence

(k)(dβ̃)p − (k)(β̃d)p =
p∑

i=1

(
(−1)p(dA)i(dL)p + (−1)idi(dL)p+1

)
.

The ith term in the sum can be rewritten as

(−1)i(dL)p−i
(
(dA)i + didL

)
(dL)i

which is 0 as the middle part ((dA)i +didL)dL is the square of a differential in the graph 
complex, which gives the desired equality.

As Cn(α)(m) ◦ β̃ is the identity and Cn(α)(m) is a quasi-isomorphism by Proposi-
tions 4.1 and 5.7, β̃ is also a quasi-isomorphism. The map β̃ is natural in Φ as dL is 
natural in Φ. ✷

Next we describe how the Hochschild operator behaves under iteration. Recall from 
Section 3 that a monoidal functor Φ : E → Ch is h-split if the maps Φ(n) ⊗ Φ(m) →
Φ(n + m) are quasi-isomorphisms, and split if the maps are isomorphisms.

For Φ : E → Ch, we can consider the iterated Hochschild functor Cn(Φ) =
C(C(. . . C(Φ) . . .)). When Φ is h-split monoidal, it computes the tensor powers of the 
Hochschild complex:

Proposition 5.10. If Φ : E → Ch is monoidal, then there are natural maps

λ : C(Φ)(0)⊗n ⊗ Φ(1)⊗m −→ Cn(Φ)(m)
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and

λ̄ : C(Φ)(0)⊗n ⊗ Φ(1)⊗m −→ Cn(Φ)(m).

These maps are quasi-isomorphisms if Φ is h-split, and isomorphisms if Φ is split.
Moreover, there exists an action of Σn on Cn(Φ) such that if E , Φ and i are symmetric 

monoidal, these maps are Σn × Σm-equivariant (where Σm acts on Cn(Φ)(m) via the 
symmetries of E).

Proof. C∗(Φ)(0)⊗n = (⊕k1Φ(k1) ⊗ Lk1) ⊗ . . . ⊗ (⊕knΦ(kn) ⊗ Lkn) and Cn
∗ (Φ)(m) =

⊕kn(. . . (⊕k1Φ(k1 + · · ·+kn +m) ⊗Lk1) ⊗ . . .⊗Lkn). The maps λ and λ̄ are then defined 
by appropriately permuting the factors and then using the monoidal structure of Φ. 
These maps are isomorphisms/quasi-isomorphisms in the unreduced case if the structure 
maps of Φ have that property. For the reduced complexes, we need Φ(k1)/Uk1 ⊗ . . . ⊗
Φ(kn)/Ukn ⊗ Φ(m) → Φ(k1 + · · · + kn + m)/Uk1/ . . . /Ukn to be an isomorphism when 
Φ is split and a quasi-isomorphism when Φ is h-split. This follows from an iteration 
of Lemma 5.8: Consider the restriction of the natural transformation Φ ⊗ . . . ⊗ Φ →
Φ( + · · ·+ ) to the first variable and apply the lemma with J1 = {2, . . . , k1}. This gives 
a quasi-isomorphism Φ(k1)/Uk1 ⊗ Φ(k2) ⊗ . . . ⊗ Φ(m) → Φ(k1 + · · · + m)/Uk1 . This 
quasi-isomorphism is functorial in the variables k2, . . . , m and we can repeat the process 
until we obtain the desired result. ✷

5.2. Action on Hochschild complexes

Given a monoidal dg-category D with objects pairs of natural numbers [ n
m ], we say 

that a pair of chain complexes (V, W ) is a D-module if there is a split monoidal dg-functor 
Ψ : D → Ch with Ψ([ 1

0 ]) = V and Φ([ 0
1 ]) = W , i.e. if there are chain maps

(
V ⊗n1 ⊗W⊗m1

)
⊗D([ n1

m1 ], [ n2
m2 ]) −→ V ⊗n2 ⊗W⊗m2

compatible with composition in D. We say that (V, W ) is a homotopy D-module if the 
compatibility condition is only satisfied up to homotopy, that is if Ψ is only a functor 
up to homotopy, satisfy the equation Ψ(f ◦ g) ≃ Ψ(f) ◦Ψ(g) for any pair of composable 
morphisms f, g in D. In particular, taking homology with field coefficients (or general 
coefficients but restricting to the “operadic part” with [ n2

m2 ] = [ 1
0 ] or [ 0

1 ]), we get in both 
cases an honest action of H∗(D) on (H∗(V ), H∗(W )).

If D is symmetric monoidal, we say that the module structure is Σ-equivariant if the 
functor Ψ is symmetric monoidal.

Proposition 5.5 in the case where Φ is the (E , Eop)-bimodule E can be reinterpreted 
as follows: Given E , we can define its Hochschild core category CE with objects

[ n
m ] = (m,n) ∈ Obj(E) × N (= N × N),
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for N the natural numbers including 0, and morphisms

CE([ n1
m1 ], [ n2

m2 ]) =
{

Cn2(E(m1,−))(m2) n1 = 0
0 n1 ̸= 0

where C0 means the identity operator, so that CE([ 0
m1 ], [ 0

m2 ]) = E(m1, m2). The 
only possible non-trivial compositions in CE are given by the bimodule structure of 
Cn(E(m, −)) described in Proposition 5.5. Moreover, CE is monoidal via the maps

Cn(E(m1,−))(m2) ⊗ Cn′(E(m′
1,−))(m′

2) → Cn+n′(E(m1 + m′
1,−))(m2 + m′

2)

as in Proposition 5.10, and CE is symmetric monoidal when the same is true for E .
We call a monoidal category Ẽ with objects N × N an extension of CE if there is a 

monoidal inclusion CE ↪→ Ẽ with Ẽ([ n1
m1 ], [ n2

m2 ]) = CE([ n1
m1 ], [ n2

m2 ]) when n1 = 0. We 
define the reduced Hochschild core category CE and its extensions in the same way, 
replacing C by C.

Our main result says that if Ẽ is an extension of CE (or CE), then Ẽ acts on the 
(reduced) Hochschild complex of split monoidal functors Φ : E → Ch in the following 
sense:

Theorem 5.11. Let (E , i) be a prop with A∞-multiplication and Ẽ an extension of CE. 
Then for any monoidal functor Φ : E → Ch, there is a diagram

(
C(Φ)(0)⊗n1 ⊗ Φ(1)⊗m1

) ⊗
Ẽ([ n1

m1 ], [ n2
m2 ])

γ
Cn2(Φ)(m2)

C(Φ)(0)⊗n2 ⊗ Φ(1)⊗m2

λ

natural in Φ, with λ as in Proposition 5.10. If Φ is split, the composition λ−1 ◦ γ makes 
the pair (C(Φ)(0), Φ(1)) into a Ẽ-module, and a homotopy Ẽ-module for any choice of 
λ−1 if Φ is h-split. Moreover, if E , Φ, i and λ−1 are symmetric monoidal, the module 
structure is Σ-equivariant.

If (E , i) is a prop with unital A∞-multiplication, the same holds for the reduced case, 
replacing C by C.

An extension Ẽ of CE can be thought of as a way to encode a natural action on the 
Hochschild complex of the representable functors E(n, −), and the above theorem is only 
non-trivial when the complex Ẽ([ n1

m1 ], [ n2
m2 ]) are not identically 0 for n1 ̸= 0. Thinking of 

the representable functors as generalized free algebras, the theorem can be interpreted 
as saying that an natural/compatible action on the Hochschild complex of free algebras 
induces an action on the Hochschild complex of all algebras.
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The map γ in the statement is explicit, given by the big diagram in the proof of the 
theorem below. This allows to write down formulas for operations given cycles in the 
extension category (see Section 6.2 and the end of Section 6.5).

Note that restricting to n2 = 1 and m2 = 0 avoids having to invert λ, and restricting 
further to n1 = 1 and m1 = 0 avoids needing λ at all. In particular, C(Φ)(0) is a 
Ẽ([ 1

0 ], [ 1
0 ])-module without any monoidal assumption on Φ. Alternatively, one can use 

Cn(Φ)(m) as a model of C(Φ)(0)⊗n ⊗ Φ(1)⊗m which admits an action of Ẽ without 
reference to λ, as in the following:

Corollary 5.12. Let (E , i) be a prop with (unital) A∞-multiplication. For any Φ : E → Ch
and any extension Ẽ of CE, taking CΦ([ n

m ]) = Cn(Φ)(m) defines a dg-functor CΦ : Ẽ →
Ch extending Φ on E (and the same in the reduced case). Moreover, the association 
Φ )→ CΦ defines a functor Fun(E , Ch) → Fun(Ẽ , Ch).

This corollary is a direct corollary of the proof of Theorem 5.11.

Proof of Theorem 5.11. The action is defined by the following diagram:

C(Φ)(0)⊗n1 ⊗ Φ(1)⊗m1 ⊗ Ẽ([ n1
m1 ], [ n2

m2 ])

λ⊗id
γ

C(Φ)(0)⊗n2 ⊗ Φ(1)⊗m2

λ

Cn1(Φ)(m1) ⊗ Ẽ([ n1
m1 ], [ n2

m2 ])

β̃⊗id≃

Cn2(Φ)(m2)

Cn1
(
B(Φ, E , E)

)
(m1) ⊗ Ẽ([ n1

m1 ], [ n2
m2 ])

∼=

Cn2
(
B(Φ, E , E)

)
(m2)

C(α) ≃

B
(
Φ, E , Cn1(E)(m1)

)
⊗ Ẽ([ n1

m1 ], [ n2
m2 ])

=

B
(
Φ, E , Cn2(E)(m2)

)
∼=

B
(
Φ, E , Ẽ([ 0

− ], [ n1
m1 ])

)
⊗ Ẽ([ n1

m1 ], [ n2
m2 ]) B

(
Φ, E , Ẽ([ 0

− ], [ n2
m2 ])

)
=

The map β̃ is that of Proposition 5.9 and the map α is that of Proposition 4.1. They are 
quasi-isomorphisms for any Φ. The map λ is that of Proposition 5.10. It is an isomorphism 
whenever Φ is split and a quasi-isomorphism whenever Φ is h-split. The bottom horizontal 
arrow is induced by composition in Ẽ .

Consider the composition with a further morphism in Ẽ([ n2
m2 ], [ n3

m3 ]). Note now that 
the failure of β̃ ◦ Cn2(α) to be the identity lies in the non-zero simplicial degrees of 
B
(
Φ, E , Ẽ([ 0

− ], [ n2
m2 ])

)
. As the simplicial degree is constant when applying the composi-

tion with Ẽ([ n2
m2 ], [ n3

m3 ]), this difference is killed when we apply Cn3(α) at the end of the 
action. Hence, when Φ is split monoidal, the action is strictly associative.
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Let BΣ denote the quotiented bar construction defined in Section 4. If E , i and Φ
are symmetric monoidal, then using BΣ instead of B, replacing β̃ with its composition 
with the quotient map B → BΣ, makes the diagram above equivariant under the action 
of Σm1 × Σn1 , by Propositions 4.3 and 5.10, and the fact that this action is given by 
morphisms of Ẽ .

For the reduced version, we need to check that this composition of maps is well-defined. 
(The map β̃ is in fact not well-defined in that case.)

Consider the action of some f ∈ Ẽ([ n1
m1 ], [ n2

m2 ]) on some x ⊗ lk ∈ Cn1(Φ)(m1) with 
x ⊗ lk identified with 0 in Cn1(Φ)(m1), i.e.

x⊗ lk = cΦ(y ⊗ uj) ⊗ lk1 ⊗ . . .⊗ lkn1

for y ∈ Φ(k − 1 + m1), with k = k1 + · · · + kn1 and uj = i(uj) ∈ E(k − 1 + m1, k + m1)
introducing a unit in the jth position for j ∈ {2, . . . , k1, k1 + 2, . . . , kn1}.

Following the diagram defining the action, we have

(x⊗ lk1 ⊗ . . .⊗ lkn1
) ⊗ f

β̃)−→ x⊗ (idk+m1 ⊗ lk1 ⊗ . . .⊗ lkn1
) ⊗ f + higher order

cẼ)−→ x⊗ (
∑

g ⊗ lk′
1 ⊗ . . .⊗ lk′

n2
) + higher order

α)−→
∑

cΦ(x⊗ g) ⊗ lk′
1 ⊗ . . .⊗ lk′

n2

for some maps g ∈ E(k + m1, k′ + m2). Now

cΦ(x⊗ g) = cΦ(cΦ(y ⊗ uj) ⊗ g) = cΦ(y ⊗ cE(uj ⊗ g))

so it is enough to know that 
∑

cE(uj ⊗ g) is of the form 
∑

cE(g′ ⊗ uj′) for some g′, j′

whenever g comes from a composition as above. We have (in abbreviated notation)

∑
cE(uj ⊗ g) ⊗ lk′ = cẼ(uj ⊗ cẼ((idk+m1 ⊗ lk) ⊗ f)) = cẼ((uj ⊗ lk) ⊗ f)

by definition and associativity of composition in Ẽ . As uj ⊗ lk is identified with 0 in 
Cn1(E(k − 1 + m1, −))(m1) = Ẽ([ 0

k−1+m1 ], [ n1
m1 ]), we must have that cẼ((uj ⊗ lk) ⊗ f)

is identified with 0 in the reduced Hochschild complex Ẽ([ 0
k−1+m1 ], [ n2

m2 ]), which means 
precisely that 

∑
cE(uj ⊗ g) is of the form 

∑
cE(g′ ⊗ uj′) as required. ✷

The next result says that the action of Theorem 5.11 is also natural in (E , Ê) in the 
following sense:

Theorem 5.13. Let (E , i), (E ′, i′) be props with (unital) A∞-multiplication and Ê , Ê ′ be 
extensions of E , E ′. Suppose that there is a symmetric monoidal functor ĵ : Ẽ → Ẽ ′ such 
that i′ = j ◦ i : A∞ → E → E ′ for j the restriction of ĵ to E. Then for any (h-)split
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monoidal functor Φ : E ′ → Ch, the (homotopy) Ẽ-action of Theorem 5.11 on the pair (
j∗Φ, C(j∗Φ)

) ∼=
(
Φ, C(Φ)

)
factors through the Ẽ ′-action.

The same holds in the reduced case, replacing C by C.

Proof. This follows directly from the naturality of the maps defining the action. ✷

6. Examples and applications

In this section, we apply Theorem 5.11 to specific categories E . In 6.1, we consider the 
case E = O, the open cobordism category of 2.6. We show that the open-closed category 
OC of section 2.8 is an extension of CO in the sense of Section 5.2. The application 
of Theorem 5.11 to this extension, stated as Theorem 6.2, can be interpreted as a re-
formulation of Costello’s Theorem A (2–3) in [11]. In 6.2, we explain how reading off 
the action of OC obtained in the previous section on open field theories Φ : O → Ch
recovers the recipe given by Kontsevich–Soibelman in [39]. Sections 6.3 and 6.4 give 
determinant-twisted and positive boundary versions of Theorem 6.2.

In 6.5, we consider the case of strict Frobenius algebras, with E = H0(O). We show 
that the category SD of Sullivan diagrams defined in 2.10 is an extension of C(H0(O)). 
The application of Theorem 5.11 in this case yields Theorem 6.7, which recovers Theorem 
3.3 of [57], giving an action of Sullivan diagrams on the Hochschild complex of strict 
Frobenius algebras. Using the projection OC → SD, this produces a open-closed field 
theory though with much of the structure collapsed. At the end of the section, we give 
explicit formulas for the product, coproduct, and ∆- (or B-)operator on the Hochschild 
complex in this case. In Section 6.6 then gives an application to string topology in 
characteristic 0 using the models of Lambrechts–Stanley [40].

Finally, sections 6.8 and 6.9 consider the cases of E = A+
∞ and E = Ass+ × P for P

an operad.

6.1. Open topological conformal field theories

Let O be the open cobordism category defined in 2.6, with i : A+
∞ → O the inclusion 

of trees into all graphs, and OC the open-closed cobordism category of 2.8. We have that 
O is a subcategory of OC. The following lemma shows that OC is in fact an extension 
of the Hochschild core category of O:

Lemma 6.1. The category OC is an extension of CO.

Proof. We need to check that OC([ 0
m1 ], [ n

m2 ]) ∼= Cn(O(m1, −))(m2). Now

Cn(O(m1,−))(m2) = ⊕k1,...,kn≥1O(m1, k1 + · · · + kn + m2)/U ⊗ Lk1 ⊗ . . .⊗ Lkn .

We describe a bijection between the generators of this complex and the generators 
of OC: a generator of the complex above is identified with a black and white graph 
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Fig. 14. Black and white graphs as elements in the iterated Hochschild complex of O.

with n white vertices and m1 + m2 leaves by attaching the first k1 + · · · + kn outgo-
ing leaves of generating graphs in O to the leaves of the generating graphs lk1 , . . . , lkn

of Lk1 , . . . , Lkn , respecting the ordering. (An example of this procedure is shown in 
Fig. 14.) The fact that the only units allowed in O are at the positions correspond-
ing to the first leaf of an Lki corresponds to the fact that the only unlabeled leaves 
allowed in OC are those that are start-edges of white vertices. As the graphs lki

have a start-leaf, this is a reversible process whose target is exactly the generator of 
OC([ 0

m1 ], [ n
m2 ]). ✷

Applying Theorem 5.11 to E = O with Ẽ = OC then yields:

Theorem 6.2. Let Φ : O → Ch be an (h-)split symmetric monoidal functor. Then the 
pair 

(
C(Φ)(0), Φ(1)

)
is a Σ-equivariant (homotopy) OC-module.

As morphisms in O models the moduli space of cobordisms between (open strings) 
(see Theorem 2.3), a split monoidal functor Φ : O → Ch is a model of an open 
topological conformal field theory. Algebraically, such an object is an A∞-version of a 
Frobenius algebra (see Section 3.2). Similarly, Theorem 2.6 shows that an equivariant 
OC-module can be thought of as a model for an open-closed topological conformal field 
theory. In particular, it includes an action of a chain model of the moduli space of Rie-
mann surfaces with fixed boundary parametrization on the value of the module at the 
circle.

We note that the category OC does not include morphisms associated to the disk with 
one outgoing closed boundary component. Consequently, algebras over the closed sector 
of this theory are not necessarily unital (the unit in the algebra would come from the 
generator of H0 of the moduli of such disks). That is, algebras over OC are inherently 
“co-positive boundary” topological conformal field theories.

The above theorem is essentially a reformulation of Costello’s theorem [11, Thm. A 
(2–3)], though we obtain a more precise description of the action of the open-closed 
cobordism category. This allows us to recover the recipe given by Kontsevich–Soibelman 
for such an action in Section 11.6 of [39], which we expand on in the next section. Re-
stricting to genus 0 surfaces, the statement includes the “A∞-cyclic Deligne conjecture”, 
which was also proved in [63].
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Fig. 15. General terms in a chosen product and coproduct induced by the graphs Γ1 and Γ2 on the Hochschild 
complex of A∞-Frobenius algebras. The outputs are to be read along the white vertices after evaluating 
the operations defined by the graphs, which are elements of O, at their outputs (denoted by arrows in the 
figure).

6.2. Making the action explicit: the Kontsevich–Soibelman recipe

Let Φ : O → Ch be a split monoidal functor with Φ(1) = A. Given n1 Hochschild 
chains in A, m1 elements A and a graph Γ in OC([ n1

m1 ], [ n2
m2 ]), that is:

(a1
0 ⊗ . . .⊗ a1

k1), . . . , (a
n1
0 ⊗ . . .⊗ an1

kn1
), b1, . . . , bm1 and Γ

the diagram in the proof of Theorem 5.11 gives an explicit way to obtain a sum of a 
tensor product of n2 Hochschild chains in A and m2 elements of A. We apply here the 
sequence of maps given in the diagram to such elements and show how this recovers the 
recipe given by Kontsevich and Soibelman in [39, pp. 58–62]. Fig. 15 shows two examples 
of the construction.

The first map in the diagram assembles all these terms as

a1
0 ⊗ . . .⊗ a1

k1 ⊗ . . .⊗ an1
0 ⊗ . . .⊗ an1

kn1
⊗ b1 ⊗ . . .⊗ bm1 ⊗ lk1+1 ⊗ . . .⊗ lkn1+1 ⊗ Γ.

The following map, β̃, embeds these into the Hochschild complex of the bar construc-
tion. It gives terms of simplicial degree 0 coming from the canonical inclusion (adding 
an identity map in O(k+m1.k+m1) to the above), plus additional terms of higher sim-
plicial degrees. These elements of Cn1(B(Φ, O, O))(m1) are now reinterpreted as lying 
in B(Φ, O, OC(−, [ n1

m1 ])) just by considering idk+m1 ⊗ lk1+1 ⊗ . . . ⊗ lkn1+1 as a graph 
with n1 disjoint white vertices of valences k1 + 1, . . . , kn1 + 1 and m1 additional disjoint 
leaves.

The bottom horizontal map in the diagram now glues this last graph to Γ. The result 
of gluing is a sum of graphs Γ′ which are obtained from Γ by adding ki labeled leaves 
cyclically in all possible manners on the ith closed incoming cycle of Γ for each i. After 
reinterpreting the new graphs as morphisms in O attached to n2 white vertices (as in 
Lemma 6.1), the map α—in simplicial degree 0—applies these morphisms of O to the 
elements of A and kills terms of higher simplicial degree. Finally, the resulting chain of 
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Φ((k′1+1) +· · ·+(k′n2 +1) +m2) is reinterpreted as n2 Hochschild chains in A (around the 
white vertices) and m2 elements of A. The terms of higher simplicial degrees produces 
by β̃ are killed by α.

The appendix explains how to read signs for the operations. For concrete examples of 
these operations in the case of a strict Frobenius algebra, we refer the reader to the end 
of section 6.5.

6.3. Twisting by the determinant bundle

For a black and white graph G defining a morphism in OC([ n1
m1 ], [ n2

m2 ]), we define its 
outgoing boundary ∂out = ∂outG to be the union of its n2 white vertices and the end-
points of its m2 outgoing leaves, regarded as a subspace of the corresponding topological 
graph, also denoted G. We write det(G, ∂out) for the Euler characteristic of the relative 
homology H∗(G, ∂out), regarded as a graded abelian group:

det(G, ∂out) := det(H∗(G, ∂out)) = det(H0(G, ∂out)) ⊗ det(H1(G, ∂out))∗

here considered as a graded Z-module, in degree −χ(G, ∂out).
For d ∈ Z, define a d-orientation for G to be a choice of generator of

det(R(V 'H)) ⊗ det(G, ∂out)⊗d.

We define new categories Od and OCd just like O and OC but replacing the previously 
defined orientation of graphs by a d-orientation. So the objects of Od and OCd are the 
same as those of O and OC, but the morphisms are now chain complexes generated 
by pairs (G, od(G)) for G a graph representing a morphism in O or OC and od(G) a 
d-orientation of G. The boundary of a d-oriented graph (G, od(G)) is the boundary of 
the graph G as before together with the d-orientation induced as before for its det(R(V '
H))-part. For its det(G, ∂out)-part, we use the isomorphism between the determinant of 
G and that of its boundary summand induced by a topological map (unique up to 
homotopy) contracting the blown-up of vertex with support in a small neighborhood of 
that vertex.

To define composition in Od and OCd, we need the following. Let G1, G2 be two graphs 
representing composable morphisms in OC, with (G2 ◦G1) =

∑
G their composition in 

OC. As G2 is a subgraph of each G, we have a triple (G, G2, ∂out). Note also that 
H∗(G, G2) ∼= H∗(G1, ∂out) as collapsing the copy of G2 in any term G of G2 ◦ G1 will 
exactly recreate G1 with its outer boundary collapsed. Given a short exact sequence of 
free abelian groups U ↪→ V # W , choosing a splitting W → V gives an isomorphism 
det(U) ⊗ det(W ) → det(V ), and one can check that this isomorphism is independent of 
the choice of splitting. Now splitting the long exact sequence in homology for each triple 
(G, G2, ∂out) into short exact sequences and then choosing splittings for each of those 
short exact sequences, one gets an isomorphism
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det(G1, ∂out) ⊗ det(G2, ∂out) → det(G, ∂out)

for each term in the composition, which is natural and likewise independent of the choices 
of splitting. Explicitly, if β denotes the connecting homomorphism in the long exact 
sequence associated to the triple (G, G2, ∂out), then this isomorphism is the following 
composition:

det(H0(G1, ∂out)) ⊗ det(H1(G1, ∂out))∗ ⊗ det(H0(G2, ∂out)) ⊗ det(H1(G2, ∂out))∗

→ det(H0(G1, ∂out)) ⊗ det(kerβ)∗ ⊗ det(Im β)∗ ⊗ det(Im β) ⊗ det(cokerβ)

⊗ det(H1(G2, ∂out))∗

→ det(H0(G1, ∂out)) ⊗ det(cokerβ) ⊗ det(kerβ)∗ ⊗ det(H1(G2, ∂out))∗

→ det(H0(G, ∂out)) ⊗ det(H1(G, ∂out))∗

It is not difficult to check that this isomorphism is associative. One then can define 
composition in Od or OCd as composition in O or OC, tensored with the dth power of 
this isomorphism. More precisely, the composition of d-oriented graphs (G1, od(G1)) and 
(G2, od(G2)) is by the same gluing as before on the graphs, and via the composition

det(R(V1 'H1)) ⊗ det(G1, ∂out)⊗d ⊗ det(R(V2 'H2)) ⊗ det(G2, ∂out)⊗d

→ det(R(V1 'H1)) ⊗ det(R(V2 'H2)) ⊗ det(G1, ∂out)⊗d ⊗ det(G2, ∂out)⊗d

→ det(R(V1 'H1 ' V2 'H2)) ⊗ det(G, ∂out)⊗d

for each term G in G2 ◦ G1, where the first arrow introduces a sign (−1)d|G2|χ(G1,∂out)

and the second map is juxtaposition on the first factors as in O and OC, and the dth 
power of the above isomorphism on the last factors.

The resulting categories Od and OCd are symmetric monoidal.
Note that Od admits a symmetric monoidal functor i : A∞ → Od, since any graph 

G ∈ A∞ is a union of trees, each with exactly one outgoing boundary point, so 
det(G, ∂out) is of degree 0, with a canonical generator, compatible under composition in 
A∞. Thus we are entitled to form the Hochschild complex of any functor Φ : Od → Ch. 
Lemma 6.1 extends to show that OCd is an extension of COd, as the isomorphism 
Cn(O(m1, −))(m2) 

∼=−→ OC([ 0
m1 ], [ n

m2 ]) takes a graph in O(m1, k1 + · · ·+ kn +m2) to a 
graph with canonically isomorphic determinant in OC([ 0

m1 ], [ n
m2 ]) as the added li’s are 

part of the outgoing boundary of the graph in OC, glued to outgoing leaves of the graph 
in O. Hence by Theorem 5.11, we have

Corollary 6.3. Let Φ : Od → Ch be an (h-)split symmetric monoidal functor. Then the 
pair 

(
C(Φ)(0), Φ(1)

)
is a Σ-equivariant (homotopy) OCd-module.
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6.4. Positive boundary variations

Recall from 3.3 the positive boundary subcategory Ob ⊆ O whose morphisms are 
those satisfying that their underlying surface has at least one outgoing boundary in each 
component. Define now OCb ⊆ OC to be the subcategory consisting of graphs with at 
least one outgoing boundary in each component. Recalling that the closed-to-closed mor-
phisms of OC satisfy a “co-positive” boundary condition, namely that every component 
of the underlying surface has at least one incoming or free boundary, we have that the 
closed-to-closed part of OCb satisfies both the positive and free/co-positive boundary 
conditions.

Lemma 6.4. The category OCb is an extension of C(Ob).

Proof. Using the bijection in Lemma 6.1, we see that

Cn(Ob(m1,−))(m2) = ⊕k1,...,kn≥1Ob(m1, k1 + · · · + kn + m2)/U ⊗ Lk1 ⊗ . . .⊗ Lkn

identifies with the subcomplex OCb([ 0
m1 ], [ n

m2 ]) of OC([ 0
m1 ], [ n

m2 ]) as outgoing closed 
boundary components in OC correspond to non-empty outgoing boundary in each com-
ponent of O attached to it in the above decomposition. ✷

Applying Theorem 5.11 to E = Ob and Ẽ = OCb immediately gives

Corollary 6.5. If Φ : Ob → Ch is an (h-)split symmetric monoidal functor, then the pair (
C(Φ)(0), Φ(1)

)
is a Σ-equivariant (homotopy) OCb-module.

6.5. Strict Frobenius algebras and Sullivan diagrams

Recall from 3.2 the category H0(O), whose morphisms are the 0-th homology groups 
of those of O, and which has the property that H0(O)-algebras are exactly (strict) 
symmetric Frobenius algebras. We consider also the shifted version Hbot(Od) whose 
morphisms are the bottom homology groups in each component of the morphisms of the 
category Od of Section 6.3, i.e.

Hbot(Od) =
∐

S∈π0(O(n,m))
H−d·χ(S,∂out)(Od,S(n,m)).

We call Hbot(Od)-algebras dimension d Frobenius algebras.
We show in this section that the category of Sullivan diagrams SD of Section 2.10 is an 

extension of C(H0(O)), and a shifted version SDd of SD is an extension of C(Hbot(Od)), 
which gives the action of Sullivan diagrams on the Hochschild complex of Frobenius 
algebras stated in Theorem 6.7. We then give explicit formulas for the product, coproduct 
and ∆-operator on the Hochschild complex of Frobenius algebras coming out of our 
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method, and check in Proposition 6.9 that, over a field, the Batalin–Vilkovisky coalgebra 
structure given by the coproduct and ∆-operator on Hochschild homology is dual to the 
Batalin–Vilkovisky structure on the Hochschild cohomology of the algebra defined using 
the cup product and the dual to Connes’ operator B.

As already remarked in 2.10, the components of the category SD of Sullivan dia-
grams are in 1–1 correspondence with those of OC, namely the topological types of 
open-closed cobordisms. For S such a topological type, we denote by SDS([ n1

m1 ], [ n2
m2 ])

the corresponding component. We define SDd to be the dg-category obtained from SD
by shifting the degree of the component SDS([ n1

m1 ], [ n2
m2 ]) by d.χ(S, ∂out); note that the 

shifts in degree are consistent with composition. (The category SDd is a quotient of the 
category OCd of 6.3.)

Lemma 6.6. The category SD is an extension of C(H0(O)) and more generally, SDd is 
an extension of C(Hbot(Od)).

Proof. We have

Cn(H0(O)(m1,−))(m2)
= ⊕k1,...,kn≥1H0(O(m1, k1 + · · · + kn + m2))/U ⊗ Lk1 ⊗ . . .⊗ Lkn

whose generators, by gluing the graphs in O to the white vertices in the Lki ’s, are black 
and white graphs with trivalent black vertices modulo the equivalence relation coming 
1-cells in O(m1, k1 + · · ·+kn +m2), i.e. from blowing up 4-valent black vertices. But this 
corresponds exactly to the description of SD([ 0

m1 ], [ n
m2 ]) in terms of quotient of black 

and white graphs given by Theorem 2.9.
Replacing H0(O) by Hbot(Od) in the above, we get SDd([ 0

m1 ], [ n
m2 ]) instead as the 

shifts in degree are the same. ✷

For E = Hbot(Od), taking Ẽ = SDd, Theorem 5.11 thus gives

Theorem 6.7. Let A be a symmetric Frobenius algebra of dimension d, then the pair 
(C(A), A) is a Σ-equivariant SDd-module, where C(A) denotes the reduced Hochschild 
complex of the algebra A.

As a differential graded algebra with a non-degenerate inner product defines a sym-
metric Frobenius algebra, this recovers Theorem 3.3 of [57] after dualization. (See also 
[58] which considers the open part as well as the closed part.)

Using Theorem 5.13, a consequence of Proposition 2.14 and the above theorem is the 
following:

Corollary 6.8. For strict symmetric Frobenius algebras A, the TCFT structure on C∗(A)
defined by Costello and Kontsevich–Soibelman factors through an action of Sullivan di-
agrams. In particular, stable classes in the homology of the moduli space act trivially.
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This results puts together the work of Costello and Kontsevich–Soibelman with that 
of Tradler–Zeinalian: we have shown that Costello’s construction (which translates to 
that of Kontsevich–Soibelman when made explicit) of an action of moduli space on 
the Hochschild homology of a strict Frobenius algebra factors through an action of the 
complex of Sullivan diagrams as constructed by Tradler–Zeinalian [57, Thm. 3.3].

We are also now able to give a proof of Proposition 2.12 which says that the projection 
map from OC to SD, on the component of the multi-legged pair of pants with one 
incoming and p outgoing boundary components, is a quasi-isomorphism.

Proof of Proposition 2.12. By Lemma 6.1, we have that OC([ 1
0 ], [ p0 ]) ∼= OC([ 0

1 ], [ p0 ])
is the iterated Hochschild complex Cp(O(1, −)(0). Likewise, by Lemma 6.6, we have 
that SD([ 1

0 ], [ p0 ]) ∼= SD([ 0
1 ], [ p0 ]) is the iterated Hochschild complex Cp(H0O(1, −)(0). 

We have Cp(O(1, −)(0) = ⊕k1,...,kpO(1, k1 + · · · + kp) ⊗A∞ (Lk1 ⊗ . . . ⊗ Lkp) and the 
components of this complex corresponding to a surface of genus 0 with p + 1 bound-
ary components is the subcomplex ⊕k1,...,kpA(k1, . . . , kp) ⊗A∞ (Lk1 ⊗ . . . ⊗ Lkp) with 
A(k1, . . . , kp) ⊂ O(1, k1 + · · · + kp) the subcomplex of forests with the property that, 
once glued to lk1 , . . . , lkp , they form a tree (with p white vertices). This is a condition on 
the labeling of the leaves of the forest. For Cp(H0O(1, −)(0), we have a similar subcom-
plex B(k1, . . . , kp) ⊂ H0O(1, k1 + · · · + kp) giving the corresponding component. Now 
the projection O → H0O induces a quasi-isomorphism A(k1, . . . , kp) → B(k1, . . . , kp) for 
each k1, . . . , kp. Indeed, the latter complex is a free abelian group on its graph generators 
which are all in degree 0, and for each such generator, which is a union of trees, there 
is in A a product of the corresponding cellular complex of the associahedra, which are 
contractible. Hence the map we are interested in can be described as

⊕k1,...,kpA(k1, . . . , kp) ⊗A∞ (Lk1 ⊗ . . .⊗ Lkp)
−→ ⊕k1,...,kpB(k1, . . . , kp) ⊗A∞ (Lk1 ⊗ . . .⊗ Lkp)

induced by a quasi-isomorphism of multi-functor A ≃−→ B. The then result follows from 
a multivariable version of Proposition 5.7. ✷

The action on the Hochschild complex given by Theorem 5.11 is easy to implement 
explicitly in the case of strict Frobenius algebras because operations involve fewer terms 
than in the general case. Fig. 16 (a–c) gives examples of graphs representing the product 
(pair of pants with two inputs and one output), the coproduct (pair of pants with one 
input and two outputs) and the ∆-operator (degree 1 operator with one closed input and 
one closed output). We give now the explicit formulas for the action of these graphs on 
the Hochschild complex of a strict Frobenius algebra. Note that, because these operations 
are images of corresponding operations in OC generating a BV and a co-BV structure, 
we know that the product and ∆ as well as the coproduct and ∆ satisfy the BV relation. 
By Proposition 2.12, the co-BV structure is a priori a non-trivial one. On the other 
hand, as we will see, the product in SD is rather trivial and hence the corresponding 
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Fig. 16. Representing graphs for the product, coproduct and ∆-operator.

BV structure is rather trivial. We refer to Remark 6.10 below for a product giving a less 
degenerate BV-structure in the case of commutative Frobenius algebras.

Let A be a strict symmetric Frobenius algebra. To obtain the action of a (sum of) 
graph(s) G representing a chain in SDd, on a chain in the Hochschild complex of A, we 
need to follow the prescription laid out in Section 6.2 (together with Appendix A for 
the signs). In Fig. 16(a–c), we have made a choice of an ordering of the vertices, and of 
an orientation of the edges. The chosen orientation of each graph is then the orientation 
corresponding to considering the graph as a composition of the operations at each vertex 
in this ordering, with their canonical orientation (see Appendix A). Fig. 16(a’–c’) shows 
the non-trivial graphs created when applying the procedure described in Section 6.2.

We denote as before a k-chain in the Hochschild complex of A by a0 ⊗ . . .⊗ ak. Using 
the convention for the product and coproduct given in Appendix A, the graphs of Fig. 16
induce the following operations on C∗(A):

(a) Product:

(a0 ⊗ · · ·⊗ ak) ⊗ (b0 ⊗ · · ·⊗ bl) )→
{

0 k > 0∑
(−1)ϵa′′0a′0b0 ⊗ b1 ⊗ · · ·⊗ bl k = 0

where 
∑

a′0 ⊗ a′′0 denotes the coproduct of a0 as an element of the Frobenius algebra A
and

ϵ = |a′0||a′′0 | + d(|b0| + · · · + |bl| + l).

(The main part of this computation is done in detail in the appendix.) Note in par-
ticular that, as the product is homotopy commutative, in homology it is 0 except on 
HH0(A, A) ⊗HH0(A, A).

(b) Coproduct:

(a0 ⊗ · · ·⊗ ak) )→
∑

(−1)ϵ(a′′0 ⊗ a1 ⊗ · · ·⊗ ai) ⊗ (a′0 ⊗ ai+1 · · ·⊗ ak)

where ϵ = d(|a1| + · · · + |ak| + k).
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(c) ∆-operator:

(a0 ⊗ · · ·⊗ ak) )→
∑

(−1)ϵ1 ⊗ ai+1 ⊗ · · ·⊗ ak ⊗ a0 ⊗ a1 ⊗ · · ·⊗ ai

where ϵ = (|a0| + · · · + |ai|)(|ai+1| + · · · + |ak|) + ik.

Proposition 6.9. If A is a strict graded symmetric Frobenius algebra over a field k, the 
coproduct and ∆ make HH∗(A, A) into a Batalin–Vilkovisky coalgebra. Moreover, this 
structure is dual to the BV-algebra structure on HH∗(A, A), where the product is the 
cup product of Hochschild cochains, and the BV operator is dual to Connes’ B-operator.

The first part of this proposition, before going to homology, recovers the cyclic Deligne 
conjecture as proved in [30,57,54].

The duality in this proposition is given on the chain level by a chain isomorphism 
CH ∗(A, A) → Hom(CH ∗(A, A), k). Degree-wise this is given by the map

Hom(A⊗n, A) → Hom(A⊗n+1, k), f )→ f̃

where f̃(a0, . . . , an) = ⟨a0, f(a1, . . . , an)⟩.

Proof. A BV coalgebra is an algebra over the cooperad whose k-ary operations are given 
by the homology of the moduli space of Riemann surfaces of genus 0 with one incoming 
and k outgoing closed boundary components, with composition induced by gluing. As the 
corresponding component of SD([ 1

0 ], [ k0 ]) is quasi-isomorphic to that of OC([ 1
0 ], [ k0 ]), the 

first part of the statement follows, independently of the second part, from Theorems 2.6
and 6.7.

Now the duality carries ∆ to B, since the ∆-operator in HH∗(A, A) given in (c) is 
precisely B, and the ∆-operator on HH∗(A, A) is defined by transferring B∗ via f )→ f̃ . 
(The signs in the formula for B given in [17, Sect. 2.4] differs from ours due to different 
conventions. They match if we introduce a factor (−1)a0+···+ak+k passing the generator 
of H1(S1) on the other side of the Hochschild complex, and a factor (−1)a1+2a2+···+kak

before and after the operation to compare the Hochschild complexes—this last factor 
sets the degree k shift of the Hochschild complex in between the ai’s instead of at the 
end as we have it.)

So it suffices to check that the coproduct in (b) (which we will write as ν) is dual to 
the Hochschild cup product. Let f and g be two Hochschild cochains; then (up to sign 
issues as above)

f̃ ∪ g (a0, . . . , ap+q) = ± ⟨a0, f(a1, . . . , ap) · g(ap+1, . . . , ap+q)⟩

= ±
∑

⟨a′′0 , f(a1, . . . , ap)⟩ · ⟨a′0, g(ap+1, . . . , ap+q)⟩

= ± ν∗(f̃ ⊗ g̃)(a0, . . . , ap+q)
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Fig. 17. Duality of the cup product and coproduct.

where the first equality is the definition and the third from the formula given in (b) 
above. The second follows from Fig. 17, which relates the coproduct and product in the 
Frobenius algebra A via the pairing. ✷

Remark 6.10. The product defined above is rather degenerate. If we assume that the 
Frobenius algebra is in addition commutative, then there is a less degenerate product 
of degree 1, which also is part of a (now shifted) BV structure—see [35, Thm. 4.7 and 
Cor. 4.8]. This product was also studied by Abbaspour on the homology level, see [1, 
Sec. 7] or [2, Thm. 6.1] and is expected to be related to the Goresky–Hingston product 
on the cohomology of the free loop space on a manifold [22].

6.6. String topology

We apply in this section the results of the previous sections—particularly Theo-
rem 5.11 and Corollary 6.8—in order to control the (not yet entirely understood) 
operations in string topology in characteristic 0.

Let C∗(M) = C∗(M ; Q) denote the rational singular cochain complex of a compact, 
oriented, simply connected manifold, and H∗(M) its cohomology. It is well known (see 
[25]) that there is an isomorphism

H−∗(LM) ∼= HH∗(C−∗(M), C−∗(M))

from the cohomology of the free loop space LM to the Hochschild homology of C−∗(M), 
the cochains of M seen as a chain complex in negative degree. H∗(LM) is equipped with 
the structure of a BV-algebra, extending to an action of certain spaces of non-degenerate 
string diagrams [6,10,9,8]. This structure has been expected to extend to the structure 
of a (positive boundary) homological conformal field theory (HCFT), i.e. action of the 
moduli space of Riemann surfaces, possibly compactified, see e.g. [7,19,55,51,52,13]. We 
will give here such an extension using the above algebraic model of H∗(LM). It bears 
pointing out that this construction does not obviously agree with the geometric con-
structions above, although the underlying BV structures do agree. See Remark 6.12 for 
a subtler example.

We follow the prescription laid out by Lambrechts–Stanley [40] and Felix–Thomas 
[17] to construct this structure in Hochschild homology. We note that C∗(M) is quasi-
isomorphic to a (simply connected) commutative differential graded algebra A (e.g., the 
algebra of differential forms on M with rational coefficients), and that H∗(A) ∼= H∗(M)
is a strict Frobenius algebra. Lambrechts–Stanley give a recipe for constructing, for any 
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such A, a weakly equivalent algebra B which is itself a commutative differential graded 
Frobenius algebra; that is, B itself satisfies Poincaré duality prior to application of coho-
mology. If M has dimension d, such an algebra B is a dimension d symmetric Frobenius 
algebra in our sense, that is it defines a functor Φ : Hbot(Od) → Ch. In particular, we 
can apply Theorem 6.7 to B and get an action of Sullivan diagrams on its Hochschild 
homology.

Using the chain of isomorphisms

(∗) H−∗(LM) ∼= HH∗(C−∗(M), C−∗(M)) ∼= HH∗(A−∗, A−∗) ∼= HH∗(B−∗, B−∗)

we get an action of Sullivan diagrams on H∗(LM), and hence an HCFT by precomposi-
tion with the map OC → SD. We do not know for sure that this (somewhat collapsed) 
action is the one constructed by Godin, but the next proposition says that it is an 
extension of Chas–Sullivan’s string topology:

Proposition 6.11. The co-BV operations on H∗(LM, Q) dual to the Chas–Sullivan string 
topology BV operations on H∗(LM, Q) of [6] extend to an action of the closed part of 
H−∗(SD−d, Q) (for d = dimM) using Theorem 6.7.

Proof. The co-BV structure (and H∗(SDd)-structure) we define on H∗(LM, Q) is defined 
via an action on HH∗(B, B), hence it is equivalent to check that the action on HH∗(B, B)
is dual to the string topology action. By Proposition 6.9, our co-BV structure is dual to 
the BV structure on HH∗(B, B) coming from the Hochschild cup product and the dual 
of Connes’ operator B. Hence, by [17, Prop. 1], our structure is carried to the dual of 
the Chas–Sullivan structure by the isomorphism (∗). ✷

The HCFT structure we produce on H∗(LM, Q) is an action of moduli spaces of 
Riemann surfaces factoring through an action of Sullivan diagrams, which immediately 
implies that a substantial part of the action is trivial (see Proposition 2.14). In particular, 
we know that all stable classes in the homology of the moduli space act trivially, a fact 
known in the string topology setting by work of Tamanoi [56].

Remark 6.12. It is worth issuing a caveat here: the main result of [44] implies that the 
BV structures on

H∗(LS2; F2) and HH∗(H∗(S2; F2), H∗(S2; F2))

cannot be isomorphic (even though the underlying Gerstenhaber structures are), if we 
equip H∗(S2; F2) with the Frobenius algebra structure coming from Poincaré duality. 
Consequently, we cannot expect the construction given above to yield the HCFT struc-
ture on string topology if done integrally.
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Remark 6.13. As the Lambrechts–Stanley models for C∗(M) used above are actually 
commutative Frobenius algebras, the action of Sullivan diagrams on H∗(LM) con-
structed here actually factors through an action of the complex of looped diagrams 
later constructed by Klamt in [35]. The map from Sullivan diagrams to looped diagrams 
is not surjective on either the chain or homology level, so this gives new operations such 
as the higher coproduct already mentioned in Remark 6.10. The map from Sullivan dia-
grams to looped diagrams corresponding to considering commutative Frobenius algebras 
as symmetric Frobenius algebras, is expected to be essentially injective, both on the 
chain and the homology level, so this further factorization is not expected to give much 
in terms of vanishing results.

6.7. A dual perspective and relationship to the work of Kaufmann–Penner

In [33], Kaufmann and Penner give a model of open and closed “string interaction” 
using arc systems in surfaces. We discuss here how their model relates to the open-closed 
cobordism category OC and the category of Sullivan diagrams SD occurring in the 
present paper, and gives to a dual approach to string topology.

The open-closed category OC is build out of fat graphs. A fat graph can be defined as 
an equivalence class of graphs embedded in a fixed surface F of the same topological type, 
up to isotopy, in such a way that F is just a thickening of the graph. The equivalence 
relation is given by the action of the mapping class group of F . Now dual to such a graph 
is a system of arcs in F going from boundary to boundary and cutting the surface into 
polygons—such families of arcs are called filling. To model the moduli space of Riemann 
surfaces, one can equivalently work with either fat graphs or equivalence classes of filling, 
or even quasi-filling,11 arc systems.

When modeling open-closed cobordisms, one starts with a windowed surface F , just as 
in Remark 2.15, that is F comes equipped with a marked point for each open and closed 
boundary component and a corresponding “in” and “out” labeling. Let ∆ = ∆0

∐
∆1 ⊂

∂F denote the set of these marked points, with ∆0, a set of points alone in their boundary 
components corresponding to closed boundaries, and ∆1 the set of points corresponding 
to the open boundaries. Kaufmann and Penner work with arc families in such surfaces, 
and in their model, the open boundaries are the intervals that are in between the points 
of ∆1. This is motivated by the fact that the arcs have their endpoints in the complement 
of ∆, and that arcs at such “open windows” should model the evolution of an open string. 
The dual graph on the other hand will have its endpoints at ∆; our interpretation in 
this paper (just like in [11]) is that these endpoints of leaves in the graph model the 
open boundaries. This is motivated by the model of the open cobordism category we 
worked with, and in particular the fact that the gluing along leaves model the gluing 
in moduli space induced by juxaposition of polygonal decomposition of the surfaces as 

11 A family of arcs in a punctured surface is quasi-filling if the complements of the arcs in the surface is a 
union of polygons and once punctured polygons.
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Fig. 18. Arc family and dual fat graph.

explained in Section 2.6. This means that, in this dual picture, the role of the “open” 
and “free” intervals is switched (see Fig. 18)! The fact that such a switch in the roles of 
the intervals is possible comes from the fact that the diffeomorphism group which fixes 
a point on a boundary component is homotopy equivalent to the subgroup fixing the 
whole boundary. Hence the boundary components containing open boundaries can be 
considered as completely fixed, and if we subdivide a boundary component as a succession 
of “open” and “free” intervals, there is no difference from the point of view of moduli 
space between the one set of intervals (the open) and the other (the free).

(We refer to [14, Secs. 3.2 and 4] for more details about the relationship between fat 
graphs and filling arc families in the bordered case and the relationship to black and 
white graphs, and [46] for a direct proof that quasi-filling arc families model the moduli 
space of Riemann surfaces.)

The above paragraphs indicate that we can switch between the fat graph and arc 
system models, but given that the role of open and free boundaries switches under this 
duality when there are open boundary components, the gluing along open boundaries 
is not going to be compatible, simply because we glue at different places! We expect 
nevertheless that these two gluing are closely related, as we explain now.

The idea of the gluing used by Kaufmann and Penner (first introduced in [32]) is 
to think of a weighted arc family, a point in the space of arc families, as a collection 
of ribbons whose widths are given by the weights, and then gluing two such families 
by scaling so that the total weights match, possibly then discarding arcs that are not 
of an appropriate type. As arcs correspond to edges of the dual fat graphs, this gluing 
corresponds to a gluing that identifies edges in fat graphs. Gluing quasi filling arc families 
this way does not always produce a quasi filling arc family, but when gluing along closed 
boundaries and restricting to arcs families corresponding to admissible fat graphs, the 
gluing stays within admissible fat graphs and corresponds under the duality to the gluing 
of admissible metric fat graphs along boundary components which models the gluing of 
moduli space [14, Lem. 3.36, Lem. 3.39 and Thm. 3.30]. Moreover, this closed gluing 
corresponds to the gluing of black and white graphs used in the present paper under the 
equivalence between admissible fat graphs and black and white graphs of [14, Thm. 4.41].
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The gluing along open boundaries proposed by Kaufmann and Penner has not been 
studied much yet, but it is likely that one can define more generally a category of “ad-
missible open-closed fat graphs”, with the corresponding admissible arc families under 
the duality, still modeling the moduli space of Riemann surfaces and with the prop-
erty that the Kaufmann–Penner gluing is well-defined and does model the gluing of 
moduli spaces also along open boundaries. In terms of fat graphs, this gluing would 
on open boundaries correspond to identifying certain edge sequences in between leaves 
in the graphs and thus would be as such different than the open gluing along leaves 
used in the present paper—we would again be gluing at a different place in the graph. 
However we expect that the result would simply be a different model of the open-
closed gluing on moduli space once the role of the open boundaries is switched again. 
Note that if such a category of open-closed fat graphs exist, the open part will de-
fine a prop with A∞-multiplication and by Theorem 3.1 and Corollary 2.2 of [62], we 
will have that this category of admissible open-closed fat graphs is quasi-isomorphic 
to the prop of formal operations on the Hochschild complex of algebras over its open 
part.

In the present paper, we have applied our open-closed cobordism category OC to 
string topology using on the open part a model of the algebras C∗(M). This resulted 
in, at least rationally, a structure of algebra over OC factoring through our cate-
gory SD of Sullivan diagrams for the pair (C∗(M), C∗(LM)), with Jones’ Hochschild 
model of C∗(LM). As we have seen in Remark 2.15, arc families where the arcs go 
from “in” to “out” boundaries, without any filling condition, and such that each out-
going boundary has arcs, correspond under the same duality as above to Sullivan 
diagrams when restricting to surfaces with only closed boundaries. For open bound-
aries, this duality defines a new version of open Sullivan diagrams (which should be 
a quotient of the above open admissible fat graphs). Given the nature of these open 
Sullivan diagrams, it is natural to expect that C∗(ΩM), the chain complex of the 
based loop space ΩM , is an algebra over them. As these open Sullivan diagrams 
form a prop with A∞-multiplication, one can then ask whether the whole open-closed 
category of arc families of Sullivan type is an extension, or at least up to quasi-
isomorphism, of the Hochschild category of its open part (in our terminology). This 
would fit with the moduli space model proposed above as well as with our string topol-
ogy computation in the previous section, and the fact that C∗(C∗(Ω(M)), C∗(Ω(M)))
is a model for C∗(LM) [21]. The generalization to more branes should also allow 
to use more general path spaces in M . Such a construction should then recover 
[31, Cor. 6.7].

6.8. Hochschild homology of unital A∞ algebras

In this section, we briefly consider what our construction gives when applied to the 
category E = A+

∞, equipped with the identity functor id : A+
∞ → A+

∞.
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Proposition 6.14. The Hochschild complex Cp(A+
∞(m, −))(n) is isomorphic to the (split) 

subcomplex of (p̄, m + n)-Graphs consisting of fat graphs whose associated surface is a 
disjoint union of

• n disks, each with precisely one outgoing open boundary, and
• p annuli, each with precisely one closed outgoing boundary,

and with m incoming open boundaries distributed on the free boundaries of these.

Proof. The gluing map
⊕

ni≥1
A+

∞(m,n1 + · · · + np + n)/UI ⊗ Ln1 ⊗ . . .⊗ Lnp → (p̄,m + n)-Graphs

produces graphs which are a disjoint union of trees and trees attached to white vertices 
(see Fig. 6); the associated surfaces are as described. ✷

We therefore define an extension Ann of CA+
∞ to be the subcategory of OC consisting 

of graphs whose associated surface is a disjoint union of surfaces as in 6.14, or a closed-
to-closed annulus. Note that we cannot introduce any closed-to-open annuli in Ann, for 
composites would produce open-to-open morphisms that are not already present12 in 
CA+

∞. As Ann is an extension of CA+
∞, by Theorem 5.11, we conclude:

Theorem 6.15. For any A+
∞-algebra A, the pair (C(A), A) is an Ann-module.

We examine the resulting H∗(Ann)-structure on the pair (HH∗(A, A), H∗(A)), for A
a unital A∞-algebra.

Ann evidently contains A+
∞ = Ann ∩ O, and so the open sector of an Ann-module 

remains (unsurprisingly) a unital A∞-algebra. This equips H∗(A) with the structure of 
a unital associative ring. Write m ∈ H0(Ann([ 0

2 ], [ 0
1 ])) for the class corresponding to the 

product, and u ∈ H0(Ann([ 0
0 ], [ 0

1 ])) for the class corresponding to the unit.
Furthermore, since the mapping class group of an annulus with fixed boundaries is 

isomorphic to Z, generated by the Dehn twist, the morphism complex Ann([ 1
0 ], [ 1

0 ]) is 
quasi-isomorphic to C∗(BZ) = C∗(S1). Up to homotopy, the only nontrivial operation 
[ 1
0 ] → [ 1

0 ] is thus a class ∆ of degree 1, corresponding to the fundamental class of 
the circle. This is Connes’ operator B explicitly given at the end of Section 6.5 (see 
Proposition 6.9).13

One should also consider the interaction of the open and closed sectors. There are 
no closed-to-open morphisms in Ann, but there is a class i ∈ H0(Ann([ 0

1 ], [ 1
0 ])) coming 

12 Similarly there are no disks with a closed incoming boundary, since compositions would produce an 
open-to-open morphism with codomain 0.
13 Note here that the formula is the same for A∞-algebras as for strictly associative algebras as there are 
no black vertices in the graph generating the operation ∆.
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from the annulus with one open incoming and one closed outgoing boundary. This map 
i : H∗(A) → HH∗(A, A) is induced by the quotient map A → HH0(A, A).

Proposition 6.16. The category H∗(Ann) is generated as a symmetric monoidal category 
by the operations m, u, ∆, and i.

Remark 6.17. The Hochschild complex of a category E is functorial in E ; furthermore, it is 
not hard to see that a monoidal quasi-isomorphism E → E ′ induces a quasi-isomorphism 
of Hochschild complexes (using, e.g. the spectral sequence of a bicomplex). Consequently 
the results above apply equally to the category associated to the operad Ass+ of unital 
associative algebras, since it is quasi-isomorphic to A+

∞.

6.9. Algebras over E = Ass+ ⊗ P for an operad P

Let P be a chain operad, and consider the operad Ass+⊗P whose algebras are unital 
associative algebras together with a commuting P-algebra structure. By the work of 
Brun, Fiedorowicz, and Vogt [5], if P is the chain complex of the little disks operad 
Cn, the resulting tensor product is an En+1-operad. Furthermore, they show that the 
Hochschild complex of an Ass+ ⊗ P-algebra admits the structure of a P-algebra.

Explicitly, the action of P on C∗(A) is as follows: As A is a unital associative algebra, 
we can consider C∗(A) as the chain complex associated to a simplicial chain complex 
A• with Ap = A⊗p+1 and degeneracy si inserting a unit in position i + 1. The Ass+ ⊗
P-structure of A defines a simplicial P-structure on A• by acting diagonally on A⊗p+1, 
and this in turn induces a P-structure on the associated total chain complex C∗(A). This 
last structure can be made explicit via the Eilenberg–Zilber maps. The action of a chain 
p ∈ P(k) on (a1

0 ⊗ . . .⊗ a1
p1) ⊗ . . .⊗ (ak0 ⊗ . . .⊗ akpk

) is of the form

∑
± p(a1

0, . . . , a
k
0) ⊗ p(1, . . . , a1, . . . , 1) ⊗ . . .⊗ p(1, . . . , ap1+···+pk , . . . , 1),

where the sum is over all possible shuffles of (a1
1, . . . , a

1
p1), . . . , (ak1 , . . . , akpk

), with the 
resulting sequence denoted a1, . . . , ap1+···+pk , and p(1, . . . , ai, . . . , 1) means take ai = ajk
at the jth position and 1’s everywhere else.

By the results of the previous section, HH∗(A, A) is a H∗(Ann)-module. It is natural, 
then, to ask how this interacts with the Brun–Fiedorowicz–Vogt P-algebra structure. 
Comparing the above formula with the formula for Connes’ B operator (given at the 
end of Section 6.5) shows though that these two structures do not interact very well, in 
particular because of the special role of the aj0’s in the P-action. One can though define 
an extension of the category Ass ⊗ P with the free operad generated by P and B as 
“closed-to-closed” morphisms, subject to the relations in P and B2 = 0.
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Fig. 19. Sign convention for the product.
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Appendix A. How to compute signs

Let Φ : E → Ch be a split monoidal functor for E = O, Od, OC or OCd, with Φ(1) = A

an A∞-Frobenius algebra. Given an oriented graph Γ which is a morphism in E , we want 
to read off an explicit formula of the associated operation on A or C∗(A, a) with signs. 
The explicit formula will be given in terms of a chosen set of generating operations for 
O, for example in terms of the (co)product and higher (co)products, the unit and the 
trace in O (or Od), and additionally the generator ln of Fig. 1 for OC (or OCd).

To be precise, one first needs to make a choice of which orientation should be thought 
of as the “positive” orientation for the graphs representing the chosen basic operations. 
For the products and coproducts, we choose here the orientation v ∧ h1 ∧ . . . ∧ hk for 
v the vertex and h1, . . . , hk the half edges in their cyclic order starting at the first 
incoming half-edge. The unit and the trace are exceptional graphs with a canonical 
positive orientation. For lk, we take the orientation w ∧ h1 ∧ . . . ∧ hk for w the vertex, 
h1, . . . , hk the half edges in their cyclic order starting at the start half-edge.

Fig. 19 gives as an example the convention we will use for the product in an algebra.
Given a graph Γ, we first need to write it as a composition of the chosen generating 

operations. This means choosing an orientation of the internal edges and an ordering of 
the vertices, possibly introducing new vertices together with unit or trace operations, and 
possibly using the symmetries of the category. (See Fig. 20 for an example, and the proof 
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Fig. 20. Writing a graph as a composition.

of Proposition 3.1 for the case of Ob.) Suppose Γ has vertices v1, . . . , vk with half-edges 
hi

1, . . . , h
i
ni

at vi and vi ∧ hi
1 ∧ . . . ∧ hi

ni
the chosen orientation of the (chosen) operation 

µi associated to vi. To interpret Γ as a composition of the operation at v1, then at v2 etc. 
requires writing the orientation of Γ as ±(v1 ∧h1

1 ∧ . . .∧h1
n1) ∧ . . .∧ (vk ∧hk

1 ∧ . . .∧hk
nk

).
Suppose we start from

a1 ⊗ . . .⊗ an ⊗ (Γ, od(Γ))

in A⊗n ⊗Od(n, m), with Γ as above and

od(Γ) = (v1 ∧ h1
1 ∧ . . . ∧ h1

n1) ∧ . . . ∧ (vk ∧ hk
1 ∧ . . . ∧ hk

nk
) ⊗ det(Γ, ∂out)⊗d.

We rewrite this (with a Koszul sign!) as

a1 ⊗ . . .⊗ an ⊗
(
(v1 ∧ h1

1 ∧ . . . ∧ h1
n1) ⊗ det(µ1)⊗d

)
⊗ . . .

⊗
(
(vk ∧ hk

1 ∧ . . . ∧ hk
nk

) ⊗ det(µk)⊗d
)

in A⊗n ⊗Od(n, p1) ⊗ . . .⊗Od(pr, m), from which we can apply the first operation and 
then the next etc. The final sign for the operation will come, in addition, from the signs 
occurring when using the symmetries in the category.

If the graph was an operation in OCd instead, that is if we start with

(a1
0 ⊗ . . .⊗ a1

k1 ⊗ lk1) ⊗ . . .⊗ (an1
0 ⊗ . . .⊗ ankn

⊗ lkn) ⊗ b1 ⊗ . . .⊗ bm ⊗ (Γ, od(Γ))

in C(A, A)⊗n) ⊗A⊗m⊗OCd([ n
m ], [ n′

m′ ]), the principle is the same, but we have in addition 
to apply the procedure described in Section 6.2.

We now give an explicit example with a graph of Od(2, 1) which is used in the com-
putations at the end of section 6.5. In Fig. 20, we give a graph with a choice of ordering 
of its vertices v1, v2, v3, and a choice of orientation of its internal edges e1, e2, e3. We 
choose the orientation of the graph that corresponds to writing it as a composition of 
the operation attached to v1 (a coproduct), followed by the operation attached to v2 and 
then v3 (both products). Explicitly, it is given as

(v1 ∧ h1 ∧ e1 ∧ e2) ∧ (v2 ∧ ē2 ∧ h2 ∧ e3) ∧ (v3 ∧ ē1 ∧ ē3 ∧ h̄1)

where ei and ēi are the start and end half-edges of ei, hi is the ith incoming leaf, and 
h̄1 is the outgoing leaf.
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The graph has relative Euler characteristic χ(Γ, ∂out) = −1 which is also the relative 
Euler characteristic det(c) of the coproduct, while the products have trivial relative Euler 
characteristic. As the products have degree 0, moving the determinant past the products 
does not produce a sign and the operation associated to Γ with the above orientation is 
that of the composition

(
((v1 ∧ h1 ∧ e1 ∧ e2) ⊗ (det c)⊗d) ⊕ id

)
⊗ (τ ⊕ id)

⊗(v2 ∧ ē2 ∧ h2 ∧ e3) ⊗ (v3 ∧ ē1 ∧ ē3 ∧ h̄1)

in (Od(1, 2) ⊕Od(1, 1)) ⊗Od(3, 3) ⊗Od(3, 2) ⊗Od(2, 1), where τ denotes the twist map.
The succession of operations (a comultiplication, a twist and two multiplications) 

applied to an pair a ⊗ b is

a⊗ b )→ (−1)|b|d
∑

a′ ⊗ a′′ ⊗ b

)→ (−1)|b|d+|a′||a′′|
∑

a′′ ⊗ a′ ⊗ b

)→ (−1)|b|d+|a′||a′′|
∑

a′′ ⊗ a′b

)→ (−1)|b|d+|a′||a′′|
∑

a′′a′b
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