
Week 1: Configuration spaces and their many guises

September 14, 2015

The subject of this course will be, loosely, to survey what algebraic topology can say
about configuration, moduli, and function spaces, most particularly with an eye towards
their use in algebraic geometry and geometric topology.

Definition 1. Let X be a topological space, and n ∈ Z≥0. Define the nth ordered configura-
tion space of X as

PConfn(X) := {(x1, . . . , xn) ∈ X×n | if xi = xj , then i = j}

This is topologized as a subspace of X×n. Many authors will notate this space as F (X,n).

We note that the symmetric group Sn acts on X×n by permuting coordinates. The
restriction of this action to PConfn(X) is free, as we have removed the fixed points.

Definition 2. The nth unordered configuration space of X is

Confn(X) := PConfn(X)/Sn.

This is sometimes notated B(X,n) in the literature. The quotient map PConfn(X) →
Confn(X) is a Galois covering, with deck transformation group Sn.

We will explore several manifestations of configuration spaces in mathematics, and will
mainly focus on the case that X = C is the complex plane.

The fundamental group π1 Confn(C) is the nth braid group Bn

Recall that the braid group Bn is defined to be the set of isotopy classes of braids in R3

connecting two planes, with multiplication given by stacking braids on top of each other.
The pure braid group PBn is the subgroup of Bn where each strand begins and ends at the
same point.

It’s not hard to convince yourself that π1 Confn(C) = Bn, and π1 PConfn(C) = PBn.
A loop in Confn(C) is a path beginning and ending at the same configuration; this may be
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regarded as an n-tuple of paths beginning and ending at the same n-tuple of distinct points
in C. The graph of such a family of paths is precisely an n-strand braid. A homotopy of
loops gives rise to a homotopy of such paths. It must in fact be an isotopy, since at all
times the points in the strands are required to be distinct.

Some linguistics: Bn is the Artin group associated to the Coxeter group Sn. It has the
presentation

Bn = 〈σ1, . . . , σn−1 | σiσj = σjσi if |i− j| > 1, and σiσi+1σi = σi+1σiσi+1〉.

Here σi is the braid which swaps the ith and i+ 1st points in the configuration via a simple
crossing (say with the right-going strand in front). The symmetric group Sn is obtained
from this by adding the relations that all generators are involutions.

Squarefree polynomials

Let Xn be the algebraic variety of squarefree polynomials; over a field k,

Xn(k) = {polynomials p(z) ∈ k[z] which are monic of degree n}.

The set of all monic polynomials of degree n is affine space of dimension n; a natural
isomorphism is given by the association[

p(z) = zn + a1z
n−1 + · · ·+ an−1z + an

]
↔ (a1, . . . , an) ∈ An.

Consequently Xn may be identified as an open subvariety of An. In fact, it is the com-
plement of the discriminant locus: if {z1, . . . , zn} are the roots of p over an algebraically
closed field, the discriminant of p is

∆(p) := (−1)(
n
2)
∏
i 6=j

(zi − zj).
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Evidently ∆(p) vanishes precisely when p has repeated roots or equivalently when p is
not squarefree (over a field containing all the roots). Thus we may define Xn as the open
variety An \∆−1(0).

Over the complex numbers, we then get obtain an identification

Xn(C) = Confn(C)

via the bijection which carries p(z) to its set of roots. Since p is squarefree, there are
precisely n of these; furthermore, they come without a natural ordering (giving an element
of Confn(C), rather than PConfn(C)).

Genus 0 moduli spaces

We define the moduli space of n points in genus 0 as

M0,n := {(X, z) | z ⊆ X is an n-tuple of distinct points in X , a projective curve of genus 0}/ ∼= .

However, every projective curve of genus 0 is isomorphic to P1, so we may rewrite this as

M0,n = PConfn(P1)/Aut(P1).

We recall that Aut(P1) is the group of Möbius (or linear fractional) transformations.
Furthermore, for any three distinct points z1, z2, z3 ∈ P1, there is a unique element
µ ∈ Aut(P1) with µ(z1) = 0, µ(z2) = 1, and µ(z3) = ∞. Thus for n ≥ 3, there is
an isomorphism

M0,n
∼= PConfn−3(A1 \ {0, 1})

which carries (z1, . . . , zn) to (µ(z4), . . . , µ(zn)). Alternatively, we may write this as

M0,n
∼= PConfn−1(A1)/Aff(A1)

where the affine group Aff(A1) < Aut(P1) is the subgroup fixing∞.
The higher genus analoguesMg,n are defined similarly. However, since there is a finite

dimensional moduli space of isomorphism classes of curves of genus g (rather than the
unique one in genus 0), this space cannot simply be defined as a configuration space. Over
C, this extra data may be encoded in the Teichmüller space of hyperbolic metrics on the
curve.

Homology representations of Sn

Since Sn acts on PConfn(C), it naturally is equipped with a linear action onH∗(PConfn(C)).
It is a natural question to describe the structure of this Sn representation. This is possible
(in a certain sense) using homotopy theory.
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Definition 3. A Gerstenhaber algebra A∗ is a graded abelian group equipped with two
binary operations

− · − : Am ⊗ An → Am+n and [−,−] : Am ⊗ An → Am+n+1

making A simultaneously into a graded commutative, associative ring and a graded Lie
algebra (with bracket of degree 1); these structures interact via a Leibniz rule (i.e., the
bracket is a derivation of the product in each variable). The Lie algebra grading is shifted
by 1, which makes a mess of the signs in the axioms:

• [a, b] = (−1)(|a|+1)(|b|+1)[b, a],

• [a, [b, c]] = [[a, b], c] + (−1)(|a|+1)(|b|+1)[b, [a, c]],

• [a, b · c] = [a, b] · c+ (−1)(|a|+1)|b|b[a, c].

Define Gersti(n) to be the space of Z-linear combinations of n-ary operations of degree
i on Gerstenhaber algebras formed from combinations of the product and bracket. For
instance, Gerst0(1) = Z{id} is generated by the identity (a 1-fold product), and there are
no other unary operations. Using dummy variables, the binary operations are

Gerst0(2) = Z{a · b} and Gerst1(2) = Z{[a, b]}

and the ternary operations are

Gerst0(3) = Z{a · b · c},
Gerst1(3) = Z{a · [b, c], b · [c, a], c · [a, b]}
Gerst2(3) = Z{[a, [b, c]], [[a, b], c]}.

The axioms defining Gerstenhaber algebras ensures that all other ternary operations are
linear combinations of these. Notice that Sn acts on Gersti(n) by permutation of the inputs
a1, . . . , an.

Theorem 4 (F. Cohen). There is an isomorphism Gersti(n) ∼= Hi(PConfn(C)) of Sn-
representations.

This is just a part of the larger story of the little disks operads and iterated loop spaces.
Which brings us to:

Function spaces

If X and Y are topological spaces, we will write Map(X, Y ) for the topological space of
all continuous functions from X to Y , equipped with the k-ification1 of the compact-open

1Recall that for a topological space Z , the k-ification kZ has the same underlying set, equipped with the
compactly generated topology (from the original topology on Z). That is: W ⊆ Z is closed in kZ if and
only if g−1(W ) is closed for any map g : K → Z where K is compact, and g is continuous with respect to
the original topology on Z .
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topology. If X and Y have basepoints, we will write Map∗(X, Y ) for the subspace of maps
which carry the basepoint of X to that of Y .

If X = Sk, we write ΩkY = Map∗(S
k, Y ). Recall that π0Z denotes the set of path

components in Z . A path in a function space from f to g is the same data as that of a
homotopy between f and g. Thus π0 Map(X, Y ) is the set of homotopy classes of maps
from X to Y . In particular, π0ΩkY = πkY is the kth homotopy group of Y . It goes without
saying that these groups are the central object of study in homotopy theory; thus we are
very interested in the spaces ΩkY . For a class α ∈ πkY , we will write Ωk

αY ⊆ ΩkY for the
component indicated by α.

Perhaps surprisingly, the homology of Map(X, Y ) can sometimes described using con-
figuration spaces. For instance, there is an “electrostatic map" (introduced in this form by
Segal)

e : Confn(Rk)→ Ωk
nS

k

(here Ωk
n indicates that the degree of these maps is n). One may assign an electric charge

to each element of a configuration x := (x1, . . . , xn) in Rk. The associated electric field
(with poles at the xi) may be regarded as a function e(x) from Rk to Sk = Rk∪{∞} which
extends naturally over infinity.

The following is a sample of many such results due to May, Boardman-Vogt, Segal, and
McDuff, amongst others:

Theorem 5. The induced map e∗ : Hp Confn(Rk) → HpΩ
k
nS

k is always injective, and an
isomorphism in dimensions p ≤ n/2.

Originally, this result (and many others like it) were used to flow information from left
to right: one computes the homology of configuration spaces using devious tricks (which
we will explore in the coming weeks), and concludes something about the homology of
function spaces (which was the original goal, for a better understanding of homotopy
groups). The flow of information can, of course, go in the other direction: we may be able
to study the homology of function spaces (for instance, using rational homotopy theory) in
order to conclude something about the homology of configuration spaces. The previous
sections suggest that mathematicians in other fields may have reason to be interested in
these computations.

Gerstenhaber structure on homology of function spaces

We recall that the homotopy groups πkY are groups – this is perhaps most familiar when
k = 1: the multiplication on the fundamental group is given by concatenation of loops.
One might wonder if this algebraic structure is reflected in the topology of the space ΩkY
or its homology in some fashion. This is in fact the case; let us focus on the case k = 2 for
pictorial simplicity:
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Theorem 6 (F. Cohen). For any space X , H∗Ω2X is a Gerstenhaber algebra.

We will give a proper proof of this result (and its generalization to ΩkX ) later, but
sketch a picture proof here. We will construct a family of maps of spaces

PConfn(C)× (Ω2X)×n → Ω2X (1)

for each n. Applying homology and invoking Theorem 4, we get maps

γn : Gerst∗(n)⊗ (H∗Ω
2X)⊗n → H∗Ω

2X.

By their very nature2, these maps define the structure of a Gerstenhaber algebra onH∗Ω2X ,
since Gerst∗(n) parameterizes the set of n-ary operations intrinsic to all Gerstenhaber
algebras, and γn gives a specific presentation of these n-ary operations.

How would we obtain maps of the form (1)? First, rewrite the double loop space as

Ω2X = Map((D2, ∂D2), (X, ∗))

Furthermore, we will confuse C with the interior of D2, to which it is homeomorphic. Given
an ordered configuration z = (z1, . . . , zn) and a family of maps fi : (D2, ∂D2) → (X, ∗),
the map g = γn(z, f1, . . . fn) is gotten in the following fashion:

1. Draw little non-overlapping circles around each zi, say with radius equal to 1
3
of the

minimum distance between the zi.

2. Define g : D2 → X to be constant at the basepoint ∗ on the complement of these
little disks.

3. Note that there is a “standard" homeomorphism hi from D2 to each little disk cen-
tered on zi given by translation and scaling.

4. On the interior of the ith little disk (centered on zi), let g be given by fi ◦ h−1
i .

Note that since fi is constant on the boundary of D2, the resulting function g is
continuous.

There is a lot of machinery developed to utilize these sorts of constructions; this will
lead us into operads.

2We are, of course, neglecting the compatibility of these maps with the axioms of a Gerstenhaber algebra;
until a proper proof is given, we encourage the reader to employ the “optimism principle" (thanks to Dylan
Wilson for the terminology): this says that in algebraic topology, if one can write down a map, then it’s the
right map.
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Squarefree polynomials, again

Return for a moment to the variety Xn of monic, squarefree, degree n polynomials. We
notice that over a finite field Fq, Xn(Fq) is a finite set. It is classical to enumerate this set:

#Xn(Fq) = qn − qn−1, n > 1.

A proof is as follows: write ζ(t) for the generating function in which the coefficient of
tn is the total number of polynomials of degree n:

ζ(t) =
∞∑
n=0

qntn =
1

1− qt

Let f(t) be the generating function for the squarefree polynomials: f(t) =
∑

#Xn(Fq)tn.
Then ζ(t) = f(t)ζ(t2), reflecting the decomposition of an arbitrary monic polynomial into
the product of a squarefree polynomial and a square. Solving for f(t) we have

f(t) =
ζ(t)

ζ(t2)
=

1− qt2

1− qt
= (1− qt2)

∞∑
n=0

qntn = 1 + qt+
∞∑
n=2

(qn − qn−1)tn,

giving the result.
We may obtain this result through cohomological methods, and the Grothendieck-

Lefschetz fixed point theorem. While this is of course a ludicrously heavy-handed way to
reprove the above argument, such techniques may avail us in similar questions without as
classical a solution.

One consequence of Theorem 5 is that, for n > 1,

Hp(Confn(C),Q) ∼= Hp(Ω
2
nS

2,Q) =

{
Q, p = 0, 1;
0, else.

One can prove this using rational homotopy theory, for instance. Alternatively, we may
employ Theorem 4, and compute the Sn-invariants of the Gerstenhaber operad:

H∗(Confn(C),Q) ∼= H∗(PConfn(C),Q)Sn = Gerst∗(n)Sn

Poincaré duality implies that the compactly supported cohomology H2n−p
c (Confn(C),Q)

is concentrated at p = 0, 1, where it is Q. Using Artin’s comparison theorem, we may
conclude a similar fact for the étale cohomology; for ` coprime to q:

H2n−p
c,ét (Xn|Fq

,Q`) =

{
Q`, p = 0, 1;
0, else.

One may establish that the Frobenius operator Frobq on this vector space acts with trace
qn in the case p = 0 and qn−1 when p = 1. Applying the Grothendieck-Lefschetz fixed
point theorem, we alternatively conclude that #Xn(Fq) = qn − qn−1.
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