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In these lectures, we’ll try to get at the algebraic topology of configuration spaces using
some natural fibre sequences. This will inform their homotopy groups (through long exact
sequences) and (co)homology (through the Serre spectral sequence).

Functoriality

It is worth noting that the constructions Confn and PConfn are not functors of arbitrary
maps f : X → Y . After all, a non-injective map f will carry a set of n distinct points to a
set of smaller cardinality. It is, however, a functor of injective continuous maps.

Recall that a homotopy H : X×I → Y from f to g is called an isotopy if Ht is injective
for all t ∈ I . It is easy to verify that if f and g are isotopic injective maps, they induce
homotopic maps Confn(X)→ Confn(Y ).

Let M be a manifold, possibly with boundary. If ∂M 6= ∅, we will implement the
notation

Confn(M) := Confn(M \ ∂M),

and similarly for PConfn(M). This is somewhat reprehensible. It is justified by the sim-
plicity of the resulting notation, as well as the following result:

Proposition 1. LetM be a manifold with boundary, and assume that the boundary is collared1:
there is a neighborhood U of the boundary which is homeomorphic to ∂M × (0, 1]. Then the
natural inclusion

Confn(M \ ∂M) ⊆ Confn(M)

is an equivalence (as is the same map for PConf).

1This is, for instance, true if M is compact.
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Proof. The existence of a collaring of M ensures that there is a continuous injective map
f : M → M \ ∂M whose composite with the inclusion M \ ∂M ⊆ M is isotopic to
the identity. On the collar neighborhood, f is given by shrinking towards 0 in the (0, 1]
direction; off the collar, f is the identity. It’s easy then to see that the map that f induces
configuration spaces is a homotopy inverse to the indicated map.

Homeomorphism and diffeomorphism groups

Definition 2. Let M be a manifold; then

Homeo(M) = {f : M →M | f is a homeomorphism}

is a topological group under composition (with the compactly generated compact open
topology). If M is smooth, Diff(M) will denote the subgroup of diffeomorphisms2.

• If M is orientable, we will write Homeo+(M) for the subgroup preserving the orien-
tation.

• If ∂M 6= ∅, Homeo(M,∂) is the subgroup fixing ∂M pointwise.

• If S ⊆ M is a (usually finite) subset of the interior, we will write Homeo(M,S) for
the subgroup fixing S pointwise, and Homeo(M)S for the subgroup fixing S as a
subset.

Similar notation holds for the corresponding variants on Diff(M).

Definition 3. The set of components

Γ(M) := π0 Diff+(M,∂)

is called the (oriented) mapping class group of M ; this is often also written Mod(M). When
M is a closed, oriented surface Σg of genus g, we tend to write Γg = Γ(Σg). If z ∈ Σg is a
subset of order n, we will write

Γg,n := π0 Diff+(Σg, z) and Γn
g = π0 Diff+(Σg)

z

for the n-punctured mapping class group of Σg

There is a natural inclusion Diff(M) ⊆ Homeo(M). This is not in general a homotopy
equivalence in high dimensions; however, this is true for M closed of dimension less than
or equal to 3 [Sma59, Cer68]. Consequently, we have a choice to make when defining
the mapping class group in terms of homeomorphisms or diffeomorphisms. As we will
essentially only consider this group in dimension 2, this is a distinction that we can safely
ignore. This is related to the following pair of results:

2There are a variety of alternative topologies that one may equip Diff(M) with so that, for instance, it
becomes a Banach manifold. We will not venture down this road.
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Theorem 4 ([Sma59, Hat83]). If n = 2 or 3, Diff(Dn, ∂) is contractible.

We will need the following result, whose proof is a straightforward construction:

Exercise 5. There exists a continuous map ϕ : Dn → Diff(Dn, ∂) with the property that
ϕz(0) = z, and ϕz(z) = 0.

Iterated fibrations

Let S = {s1, . . . , sm} ⊆ {1, . . . , n} be a subset of order m. Define a map

pS : PConfn(M)→ PConfm(M) by pS(z1, . . . , zn) = (zs1 , . . . , zsm)

Proposition 6. The map pS is a fibre bundle, with fibre over x ∈ PConfm(M) equal to
PConfn−m(M \ x).

Proof. For x ∈ PConfm(M), let Ui 3 xi be a small disk such that Ui ∩ Uj = ∅ for i 6= j.
Then U = U1 × · · · × Um is a neighborhood of x in PConfm(M). For x′ ∈ U , define
Φx′ ∈ Homeo(M,∂) by

Φx′(m) =

{
m, m /∈ ∪iUi

ϕx′i
(m), m ∈ Ui.

Here we are regarding Ui as the unit disk, with 0 identified with xi.
Then a homeomorphism U × PConfn−m(M \ x)→ p−1S (U) is given by sending (x′, z)

to the appropriate reordering3 of (x′,Φx′(z)).

Corollary 7. Let M be a manifold, and x an element x ∈ PConfm(M).

1. There is a long exact sequence

· · · //πk PConfn−m(M \ x) //πk PConfn(M)
(pS)∗ //πk PConfm(M) //· · ·

2. IfM is a connected surface, not equal to S2 or RP 2, then πk PConfn(M) = 0 for k > 1.

Proof. The first is simply the long exact sequence in homotopy for fibrations. The second
follows from the first by induction using the case m = n− 1:

· · · //πk PConf1(M \ x) //πk PConfn(M)
(pS)∗ //πk PConfn−1(M) //· · · (1)

along with the fact that PConf1(M \ x) = M \ x has vanishing higher homotopy groups
whenever M is not S2 or RP 2.

3Here, we simply acknowledge that S need not equal {1, . . . ,m}, nor need it be given in that order.
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Since the quotient map PConfn(M) → Confn(M) is a Galois covering with deck
transformation group Sn, we conclude:

• For k > 1, the quotient map πk PConfn(M) ∼= πk Confn(M) is an isomorphism.

• There is a (rarely split) short exact sequence

1 //π1 PConfn(M) //π1 Confn(M) //Sn
//1 (2)

The groups π1 PConfn(M) and π1 Confn(M) are called the n-strand (pure) braid groups
of M . The homomorphism to Sn may be described by sending a braid to the permutation
of its endpoints that it performs.

Example: the configuration space of the plane

Let us compute the first few braid groups of C (usually just called “the" braid groups).

1. Since PConf1(C) = Conf1(C) = C is contractible, the first braid group PB1 =
B1 = π1(C) = 1 is trivial.

2. Using the long exact sequence (1) for n = 2 and the previous fact, the inclusion of the
fibre (say over 0) is an isomorphism π1(C \ {0}) ∼= PB2. Of course, π1(C \ {0}) =
π1(S

1) = Z; this is generated by a loop around 0 of winding number 1. The image
of this generator in PB2 is the braid that winds the first strand around the second,
keeping the second fixed.

The braid group B2 sits in the exact sequence (2); this is 1→ Z→ B2 → S2 → 1. In
fact, this is the nonsplit extension 1 → 2Z → [B2 = Z] → Z/2 → 1. The generator
is represented by the half twist which crosses one strand over the other; it’s square is
the generator of PB2.

3. Generally, using (1) and the fact that π1(C \ x) = Fn−1 is the free group on n − 1
generators (loops around the punctures x) when x has order n − 1, there is a short
exact sequence

1 //Fn−1 //PBn
//PBn−1 //1 (3)

We will describe this extension in more detail in Proposition 10. In the case n = 3,
the reader is encouraged to draw a picture of the braids in PB3 coming from lifts of
the generator of PB2 and the generators of F2.
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Braid groups as mapping class groups

By functoriality, there is an obvious action of Homeo(M,∂) (and its various subgroups) on
PConfn(M) and Confn(M). For any element z ∈ PConfn(M), define a continuous map

evz : Homeo(M,∂)→ PConfn(M) by evz(f) = f(z)

Proposition 8. If M is path connected and of dimension d > 1, the map evz is a principal
Homeo(M,∂ ∪ z)-bundle, so evz induces a homeomorphism from the coset space

Homeo(M,∂)/Homeo(M,∂ ∪ z)→ PConfn(M).

Proof. First, we note that evz is surjective. For any configuration z′ ∈ PConfn(M), a home-
omorphism f carrying z to z′ is constructed as follows: find a family of non-intersecting
paths γi in M from zi to z′i. Let Ui be small tubular neighborhoods of these paths, home-
omorphic to Dd. Using Exercise 5, there are diffeomorphisms ϕi of Ui carrying zi to z′i.
Extend these by the identity to a diffeomorphism of M .

Therefore PConfn(M) is a principal homogenous Homeo(M,∂)-space. It is evident
that the stabilizer of z is Homeo(M,∂∪z); the orbit-stabilizer theorem yields the indicated
isomorphism on the coset space. To lift this to the stronger statement that evz is a fibre
bundle, we must construct local trivializations. This is done in much the same way as
Proposition 6.

This works just as well for Diff(M) and its subgroups in place of Homeo(M). We may
use the long exact sequence in homotopy for the fibre sequence

Diff+(M,∂ ∪ z)→ Diff+(M,∂)→ PConfn(M)

to relate homotopy groups of these spaces. In particular, we have

Corollary 9. The space Diff+(D2, ∂ ∪ z) has contractible components, and there is a group
isomorphism

Γ(D2, ∂ ∪ z) = π0 Diff+(D2, ∂ ∪ z) ∼= PBn = π1 PConfn(D2).

That is, the nth pure braid group is the mapping class group of diffeomorphisms fixing z pointwise.
Similarly, the full braid group Bn

∼= Γ(D2, ∂)z is the mapping class group fixing z as a set.

Proof. Using Smale’s contractibility of Diff+(D2, ∂), the long exact sequence gives an iso-
morphism

πk Diff+(D2, ∂ ∪ z) ∼= πk+1 PConfn(D2), k ≥ 0.

The contractibility of the components follows from the vanishing of these groups when
k > 0, and the identification of the group of components as the braid group is the content
of this isomorphism for k = 0.
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We very much encourage the reader to explore how this theorem fails to be true in the
setting where D2 is replaced with a surface with interesting topology.

Notice that there is an obvious action of Γ(M) on π1(M, ∗), where ∗ ∈ ∂M by the
homotopy (hence isotopy) functoriality of π1 for maps M → M fixing the basepoint. We
will call this the “natural" action of the mapping class group on π1(M, ∗). WhenM = D2\z
is a punctured disk, for instance, this gives an action of Bn = Γ(D2, ∂)z on the free group
π1M ∼= Fn.

Proposition 10. The short exact sequence (3) is split. In fact PBn is isomorphic to the semidirect
product PBn−1 n Fn−1 using the natural action of PBn−1 on Fn−1.

The proof of this fact employs a number of important ideas in the subject. Recall that
(3) is obtained in π1 from the fibre sequence

C \ x i //PConfn(C)
p //PConfn−1(C)

where the bundle map forgets the last point in the configuration, and x is a configuration
of n− 1 points in C. A splitting to p is given by the stabilization map s : PConfn−1(C)→
PConfn(C) which adds a point near infinity. Explicitly, if we identify C with the interior
of the unit disk D ⊆ C, then s is given by

s(z1, . . . , zn−1) = (
z1
2
, . . . ,

zn−1
2
,
3

4
)

(of course, there’s nothing special about 3/4; any element of norm greater than 1/2 will
do). The composite p ◦ s scales z by a factor of 1/2, and so is homotopic to the identity.
Thus the map s∗ induces a splitting of the short exact sequence.

The image of s∗ may be identified with those (pure) braids in which the last strand
does not move (or more generally, doesn’t intertwine with any other strand). For the jth

generator fj of Fn−1, the image i∗(fj) is the braid which keeps the first n − 1 strands
fixed, and winds the last one around the jth strand. The action of PBn−1 on Fn−1 is then
by conjugation of these subgroups in PBn. In fact, this action naturally extends to Bn−1.
Proposition 10 then follows from:

Exercise 11. Verify that:

1. The action of σi ∈ Bn−1 on fj ∈ Fn−1 by conjugation in PBn is:

σi(fj) = fj if j 6= i, i+ 1, σi(fi+1) = fi, and σi(fi) = fifi+1f
−1
i

Your proof should involve pictures of braids.

2. This is precisely the same action as via the identification of Bn−1 with the mapping
class group. Hint: the generator σi corresponds to the diffeomorphism of D2 which
swaps the ith and i + 1st points in z via a Dehn twist along a circle containing these
two points.
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Cohomology via the Serre spectral sequence

We will compute the cohomology of the ordered configuration spaces of Rk in this section.

Lemma 12. The map f : PConf2(Rk) → Sk−1 given by f(x, y) = x−y
|x−y| is a homotopy

equivalence.

Proof. Le R>0 denote the multiplicative group of positive real numbers, and Aff+(Rk) =
R>0 nRk the group of affine transformations of Rk which scale only by positive numbers.
Aff+(Rk) acts on Rk through homeomorphisms by the formula

(a, v) · w = aw + v.

We check that for each (a, v) 6= (1, 0), there is precisely one fixed point of the action:
aw + v = w implies (a − 1)w = −v. Then either a = 1 and v = 0 (the identity of
Aff+(Rk)) or w = 1

1−av.
Consequently the induced action of Aff+(Rk) on PConfn(Rk) is without fixed points

for n > 1. Further, when n = 2, f is constant on orbits of Aff+(Rk), and so descends to

f : PConf2(Rk)/Aff+(Rk)→ Sk−1

It’s easy to check that f is a homeomorphism; an inverse sends z to (z, 0). With a little
effort, one can show that this makes PConf2(Rk) a principal Aff+(Rk)-bundle over Sk−1.
Since the fibre Aff+(Rk) is contractible, f is an equivalence.

Remark 13. Notice that f is [S2 = Z/2]-equivariant, where Z/2 acts on Sk−1 by the
antipodal action. This in turn implies that Conf2(Rk) is homotopy equivalent to RP k−1.

Let i 6= j ∈ {1, . . . , n}, and consider the map pij : PConfn(Rk) → PConf2(Rk) that
projects onto the (i, j) factor. Choose an orientation of Sk−1, and let ω ∈ Hk−1 PConf2(Rk) ∼=
Hk−1Sk−1 = Z be dual to the associated fundamental class. Finally, define

ωij := p∗ij(ω) ∈ Hk−1 PConfn(Rk).

Theorem 14 (V. Arnol’d [Arn69] (k = 2), F. Cohen [CLM76] (k ≥ 2)). There is a ring
isomorphism between H∗ PConfn(Rk) and the quotient of the free graded commutative ring
Z[ωij | 1 ≤ i 6= j ≤ n] by the relations

1. ωij = (−1)kωji for each i 6= j.

2. ω2
ij = 0 for each i 6= j.

3. ωijωjk + ωjkωki + ωkiωij = 0 for every distinct i, j, and k.
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Proof. We first prove this result for k > 2. The case k = 2 requires a bit more care
regarding the simplicity of the local coefficients and the collapsing of the spectral sequence;
we address these points at the end of the proof.

That the first two relations hold follows from the corresponding statements about ω ∈
Hk−1(Sk−1): its square is certainly zero, and the antipodal map carries it to (−1)kω.

The result is clearly true for n = 1, 2. Assume inductively that the result is true for
n− 1, and consider the fibre sequence

Rk \ x→ PConfn(Rk)→ PConfn−1(Rk)

where x has n − 1 elements. It is the case that the system of local coefficients that the
cohomology H∗(Rk \ x) of the fibre defines on PConfn−1(Rk) is simple. This is evidently
true when k > 2, since π1 PConfn−1(Rk) is trivial in that case.

Consequently the Serre spectral sequence for this fibration is of the form

Ep,q
2 = Hp PConfn−1(Rk)⊗Hq(Rk \ x) =⇒ Hp+q PConfn(Rk),

Of course Rk \ x is homotopy equivalent to the bouquet ∨n−1Sk−1, so

Hq(Rk \ x) =


Z, q = 0
Zn−1, q = k − 1
0, else.

This is a spectral sequence of algebras. For each r, the rth differential dr must vanish
on E∗,0r , since there is nowhere for them to go to. Further, they must vanish on E0,∗

2 :
the same reason applies for ∗ = 0. For ∗ = k − 1, inductively we have assumed that
H∗ PConfn−1(Rk) is generated by classes in dimension k − 1. Thus the first possible
differential would be

dk−1 : E0,k−1
2 → Ek−1,1

2 = Hk−1 PConfn−1(Rk)⊗H1(Rk \ x) = 0.

The next possible differential (and all subsequent) must vanish, having target E2(k−1),2−k
2 =

0 involving negative dimensional cohomology. Since E∗,∗2 is generated in E0,∗
2 and E∗,02 , all

differentials must vanish, and the spectral sequence collapses:

H∗ PConfn(Rk) ∼= H∗ PConfn−1(Rk)⊗H∗(Rk \ x).

Let’s begin to identify the classes represented in this isomorphism. In the first factor,
we know by induction that H∗ PConfn−1(Rk) is generated by ωij for 1 ≤ i 6= j ≤ n − 1,
subject to the indicated relations. In the second factor, Hk−1(Rk \ x) ∼= Zn−1, the ith

generator is dual to the homology class corresponding to a small sphere in Rk around xi.
The image of this sphere in PConfn(Rk) is the family of configurations z where zj = xj is
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constant at xj for j 6= n, and zn moves in a sphere around the fixed point zi = xi. The
image of the dual cohomology class in H∗ PConfn(Rk) may therefore be identified with
ωin.

Consequently, every element of H∗ PConfn(Rk) may be identified as a sum of products
of the form

Z{1, ω1n, . . . , ωn−1,n} ·H∗ PConfn−1(Rk). (4)

Thus H∗ PConfn(Rk) is generated by the ωij . As we have seen that the first two relations
hold, it suffices to show the third, and to show that there are no further relations.

To show the third relation, consider the special case n = 3; Equation (4) implies

H2(k−1) PConf3(Rk) = Z{ω13ω12, ω23ω12} ∼= Z2.

Now, employing relations (1) and (2) and the graded commutativity of the cup product,
every possible product of 2 generators must be (up to sign) one of the following:

ω12ω23, ω23ω31, or ω31ω12.

Since the rank of the corresponding cohomology group is 2, there must be a single relation
between three classes:

aω12ω23 + bω23ω31 + cω31ω12 = 0.

For symmetry reasons, however, we must have a = b = c: if I apply the permutation
(12) ∈ S3, we get

0 = aω21ω13 + bω13ω32 + cω32ω21

= aω12ω31 + bω31ω23 + cω23ω12

= cω23ω12 + bω31ω23 + aω12ω31

= (−1)(k−1)
2

(cω12ω23 + bω23ω31 + aω31ω12)

So a = c. Using another transposition in S3, we can similarly show that a = b. Furthermore,
it must be the case that a = b = c is either 1 or -1. This constant can’t be 0 (or the rank
of the group would be 3), and it can’t be of positive norm (or there would be torsion in the
group).

Thus relation (3) holds in H∗ PConf3(Rk). The general form of relation (3) involves ωij ,
ωjk, and ωki. Thus it may be pulled back from H∗ PConf3(Rk) under the projection map
pS : PConfn(Rk)→ PConf3(Rk) where S = {i, j, k}. So indeed, (3) does hold generally.

To conclude, we must show that there are no further relations than those indicated in
the statement of the theorem. We will do so by showing that the 3 indicated relations are
sufficient to imply that every element is of the form indicated in (4). As we know that the
ωij generate H∗ PConfn(Rk), consider an arbitrary word in the ωij :

w = ωi1,j1 · · ·ωim,jm = ±ωk1,n, · · ·ωks,nωp1,q1 · · ·ωpm−s,qm−s .
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Here we have collected all of the occurrences of ωir,jr involving ir = n or jr = n to the left
(using graded commutativity) and rewritten them in the form ωkr,n using relation (1). If, for
any m, km = km+1, then w = 0, by relation (2). If this is not the case, using relations (1),
(3), and graded commutativity, we have

ωkm,nωkm+1,n = ±ωkm+1,nωkm+1,km ± ωkm,nωkm+1,km .

which allows us to reduct the length of of the string of elements of the form ωkm,n on the
left of the expression for w by 1. Inductively, then, every w is equal to a sum of words
beginning with at most one element of the form ωkn; that is, of the form in (4).

For the case k = 2, it is not obvious that the system of coefficients defined by H∗(R2\x)
is simple. However, Exercise 11 shows that the action of σi ∈ Bn−1 on π1(R2 \x) is through
permutation and conjugation of the generators. In H1(R2 \ x), the Bn−1-action therefore
factors through Sn−1. Thus the restriction to PBn−1 is a trivial action in (co)homology.

The argument regarding the collapsing of the spectral sequence (via sparsity) does not
hold in this setting, either. However, since the stabilization map s : PConfn−1(R2) →
PConfn(R2) homotopically splits the projection, the induced map H∗ PConfn−1(R2) →
H∗ PConfn(R2) must inject. This is given by the edge map in the spectral sequence; thus
no elements in the bottom row can be the target of a differential.
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