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Symmetric products

Definition 1. For a space X and nonnegative integer n, we define Symn(X) or SPn(X)
to be the n-fold symmetric product of X :

Symn(X) = X×n/Sn,

where Sn acts via permutation of coordinates.

The configuration space Confn(X) ⊆ Symn(X) embeds as the open subset of n-tuples
of distinct elements. We note that, in contrast to configuration spaces, symmetric products
are functorial for all continuous maps (not just injective ones). Consequently, the homotopy
type of Symn(X) depends only upon the homotopy type of X . In particular, if X is
contractible, Symn(X) ' ∗ is, too.

In what is to come, it will be helpful to have the stronger identification of these spaces
up to homeomorphism in certain cases.

Proposition 2. The following hold for R:

1. The configuration space Confn(R) is homeomorphic to the interior of the closed n-dimensional
simplex, ∆n. Note that this in turn is homeomorphic to Rn.

2. Similarly, Symn(R) is homeomorphic to the complement of a two faces in ∆n.

Proof. Using the homeomorphism R ∼= (0, 1), we of course have Confn(R) ∼= Confn((0, 1)).
Any n-tuple of distinct points (y1, . . . , yn) in (0, 1) has a unique reordering (yσ(1), . . . , yσ(n))
with the property that yσ(i) < yσ(i+1). So:

Confn(R) ∼= {(x1, . . . , xn) | 0 < x1 < x2 < · · · < xn < 1}.
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We recall that ∆n = {(z0, . . . , zn) ∈ Rn |
∑
zi = 1, zj ≥ 0}. A homeomorphism from

Confn((0, 1)) to the interior of ∆n is given by the map

(x1, . . . , xn) 7→ (x1, x2 − x1, x3 − x2, . . . , xn − xn−1, 1− xn)

Since none of the xi are equal to each other, or to 0 or 1, the image consists of elements
(z0, . . . , zn) where none of the zi are equal to 0 or 1; this is precisely the interior of the
simplex.

The same map gives a homeomorphism of Symn(R) onto the subspace of ∆n consisting
of points (z0, . . . , zn) where neither z0 nor zn are equal to 0 or 1. We recall that ∆n has
n+ 1 faces, all of which are defined by a single coordinate equalling 0. If any of the zi are
equal to 1, then all of the other zj are 0; this is a single vertex and contained in one of the
faces. Thus Symn(R) is the complement of two faces in ∆n.

In contrast, the symmetric product of C admits a much simpler description:

Proposition 3. Symn(C) is homeomorphic to Cn.

Proof. Let Polyn denote the space of monic, degree n polynomials over C;

Polyn = {f(z) = zn + a1z
n−1 + . . . an−1z + an} ∼= Cn.

There is a homeomorphism Polyn → SymnC which carries f to the unordered n-tuple
of its (not necessarily distinct) roots. That this is a bijection is a consequence of the
fundamental theorem of algebra.

Note that for an element z = (z1, . . . , zn) ∈ SymnC, the monic polynomial f with
roots at z has coefficients ai = (−1)iei(z1, . . . zn), where ei is the ith elementary symmetric
polynomial. Thus an explicit set of coordinates on Symn(C) is given by the elementary
symmetric polynomials.

Finally, we have:

Proposition 4. Symn(CP 1) is homeomorphic to CP n.

Proof. Define

Homogn := {f(z, w) = a0z
n + a1z

n−1w + · · ·+ an−1zw
n−1 + anw

n | (a0, . . . , an) 6= 0}

to be the space of nonzero homogenous polynomials of degree n in two variables z, w;
it is homeomorphic to Cn+1 \ {0}. Letting C× act by scaling the coefficients of such a
polynomial, Homogn /C× ∼= CP n.
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Define a homeomorphism Symn(CP 1)→ Homogn /C× by

(z1, . . . zn) 7→ f(z, w) :=
n∏
i=1

(z − ziw).

Here, if zi = ∞, we interpret the factor z − ziw as −w. An inverse is given as follows:
factor f(z, w) = wmg(z, w) for some m so that g(z, w) is indivisible by w. Then map f to
the n-tuple consisting of m points at∞, along with the n−m roots in C of g(z, 1) (which
is of degree n−m).

The Fox-Neuwirth cell decomposition of Confn(C)

We will describe1 the results of [FN62] (see also [GS12]) which give a decomposition of
Confn(Rm) into spaces homeomorphic to Euclidean spaces. This does not give a cell-
decomposition of Confn(Rm), but rather of its 1-point compactification. We will restrict
our focus to the case m = 2 (i.e., Confn(C)), and encourage the interested reader to extend
these constructions to m > 2.

An ordered partition λ = (λ1, . . . , λk) of n has
∑
λi = n. With apologies to the

combinatorialists present, we will write k = |λ| for the number of parts of λ. The nth

symmetric product Symn(R) of the real line has a stratification by these partitions:

Symn(R) =
∐
λ`n

Symλ(R)

where elements of Symλ(R) consist of |λ| distinct points x1, . . . x|λ|, the ith of which has
multiplicity λi. Further, since R is ordered, we insist that x1 < · · · < x|λ|. This space is
evidently homeomorphic to Conf |λ|(R), which is in turn homeomorphic to R|λ|, as shown
above.

Define a map π : Confn(C)→ Symn(R) by taking real parts:

π(z1, . . . , zn) = (<(z1), . . . ,<(zn)),

and let Confλ(C) denote the preimage of Symλ(R) under π. This subspace is homeomor-
phic to

Symλ(R)×
|λ|∏
i=1

Confλi(R),

1This discussion is taken from a forthcoming paper which is joint with TriThang Tran; the results de-
scribed are not original to us, although the presentation is. I suppose that I don’t feel too much shame in
plagiarizing myself when summarizing someone else’s work.
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where the configuration factors record the imaginary part of the configuration of λi points
lying over the ith term in the set of the real coordinates of z. We again employ the fact that
Confk(R) ∼= Rk and conclude that Confλ(C) ∼= Rn+|λ|.

Proposition 5. The collection of subspaces Confλ(C) forms a cellular decomposition of the 1-
point compactification Confn(C)∪{∞}; the cells of dimension d are indexed by those partitions
λ with n+ |λ| = d. Furthermore, the closure of the cell Confλ(C) is the union

Confλ(C) =
∐
ρ

Confρ(C)

over ordered partitions ρ which are refined by λ.

We must explain the last comment. Loosely speaking, the boundaries of the cell de-
scribed above occur in two ways. First, points in a configuration may approach each other
or ±i∞ along vertical lines (in which case their boundary is the point at infinity). Secondly,
the ith and i + 1st vertical columns of configurations may approach each other horizon-
tally, in which case the associated component of the boundary is given in terms of the cell
Confρ(C), where ρ is obtained from λ by summing λi and λi+1.

It is worth noting that, other than {∞}, there are no cells of dimension less than or
equal to n in this decomposition. Therefore, we have

Corollary 6. For ∗ ≥ n,

H∗Confn(C) ∼= H2n−∗
c Confn(C) = H2n−∗(Confn(C) ∪ {∞}, {∞}) = 0.

There are more computational proofs of this fact that rely on our previous computation
of the homology of PConfn(C), though perhaps none quite as enlightening. In any case,
this follows from the cellular decomposition and the following exercise:

Exercise 7. Confn(C) is a 2n-dimensional, oriented, non-compact manifold.

A word of warning: there are 2n−1 ordered partitions of n, so this is not the most
efficient approach to computing H∗Confn(C) as n grows.
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