Weeks 4: Symmetric products and the Fox-Neuwirth cell decomposition

October 4, 2015

Symmetric products

Definition 1. For a space X and nonnegative integer n, we define $\text{Sym}^n(X)$ or $\text{SP}^n(X)$ to be the n-fold symmetric product of X:

$$\operatorname{Sym}^n(X) = X^{\times n} / S_n,$$

where S_n acts via permutation of coordinates.

The configuration space $\operatorname{Conf}_n(X) \subseteq \operatorname{Sym}^n(X)$ embeds as the open subset of *n*-tuples of distinct elements. We note that, in contrast to configuration spaces, symmetric products are functorial for all continuous maps (not just injective ones). Consequently, the homotopy type of $\operatorname{Sym}^n(X)$ depends only upon the homotopy type of X. In particular, if X is contractible, $\operatorname{Sym}^n(X) \simeq *$ is, too.

In what is to come, it will be helpful to have the stronger identification of these spaces up to homeomorphism in certain cases.

Proposition 2. *The following hold for* \mathbb{R} *:*

- 1. The configuration space $\operatorname{Conf}_n(\mathbb{R})$ is homeomorphic to the interior of the closed *n*-dimensional simplex, Δ^n . Note that this in turn is homeomorphic to \mathbb{R}^n .
- 2. Similarly, $\operatorname{Sym}^{n}(\mathbb{R})$ is homeomorphic to the complement of a two faces in Δ^{n} .

Proof. Using the homeomorphism $\mathbb{R} \cong (0, 1)$, we of course have $\operatorname{Conf}_n(\mathbb{R}) \cong \operatorname{Conf}_n((0, 1))$. Any *n*-tuple of distinct points (y_1, \ldots, y_n) in (0, 1) has a unique reordering $(y_{\sigma(1)}, \ldots, y_{\sigma(n)})$ with the property that $y_{\sigma(i)} < y_{\sigma(i+1)}$. So:

$$\operatorname{Conf}_n(\mathbb{R}) \cong \{ (x_1, \dots, x_n) \mid 0 < x_1 < x_2 < \dots < x_n < 1 \}.$$

We recall that $\Delta^n = \{(z_0, \ldots, z_n) \in \mathbb{R}^n \mid \sum z_i = 1, z_j \ge 0\}$. A homeomorphism from $\operatorname{Conf}_n((0, 1))$ to the interior of Δ^n is given by the map

$$(x_1, \ldots, x_n) \mapsto (x_1, x_2 - x_1, x_3 - x_2, \ldots, x_n - x_{n-1}, 1 - x_n)$$

Since none of the x_i are equal to each other, or to 0 or 1, the image consists of elements (z_0, \ldots, z_n) where none of the z_i are equal to 0 or 1; this is precisely the interior of the simplex.

The same map gives a homeomorphism of $\operatorname{Sym}^n(\mathbb{R})$ onto the subspace of Δ^n consisting of points (z_0, \ldots, z_n) where neither z_0 nor z_n are equal to 0 or 1. We recall that Δ^n has n+1 faces, all of which are defined by a single coordinate equalling 0. If any of the z_i are equal to 1, then all of the other z_j are 0; this is a single vertex and contained in one of the faces. Thus $\operatorname{Sym}^n(\mathbb{R})$ is the complement of two faces in Δ^n .

In contrast, the symmetric product of $\mathbb C$ admits a much simpler description:

Proposition 3. Symⁿ(\mathbb{C}) is homeomorphic to \mathbb{C}^{n} .

Proof. Let $Poly_n$ denote the space of monic, degree n polynomials over \mathbb{C} ;

$$Poly_n = \{f(z) = z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n\} \cong \mathbb{C}^n$$

There is a homeomorphism $\operatorname{Poly}_n \to \operatorname{Sym}^n \mathbb{C}$ which carries f to the unordered n-tuple of its (not necessarily distinct) roots. That this is a bijection is a consequence of the fundamental theorem of algebra.

Note that for an element $\underline{z} = (z_1, \ldots, z_n) \in \text{Sym}^n \mathbb{C}$, the monic polynomial f with roots at \underline{z} has coefficients $a_i = (-1)^i e_i(z_1, \ldots, z_n)$, where e_i is the i^{th} elementary symmetric polynomial. Thus an explicit set of coordinates on $\text{Sym}^n(\mathbb{C})$ is given by the elementary symmetric polynomials.

Finally, we have:

Proposition 4. Symⁿ($\mathbb{C}P^1$) is homeomorphic to $\mathbb{C}P^n$.

Proof. Define

$$\operatorname{Homog}_{n} := \{ f(z, w) = a_{0} z^{n} + a_{1} z^{n-1} w + \dots + a_{n-1} z w^{n-1} + a_{n} w^{n} \mid (a_{0}, \dots, a_{n}) \neq 0 \}$$

to be the space of nonzero homogenous polynomials of degree n in two variables z, w; it is homeomorphic to $\mathbb{C}^{n+1} \setminus \{0\}$. Letting \mathbb{C}^{\times} act by scaling the coefficients of such a polynomial, $\operatorname{Homog}_n / \mathbb{C}^{\times} \cong \mathbb{C}P^n$.

Define a homeomorphism $\operatorname{Sym}^n(\mathbb{C}P^1) \to \operatorname{Homog}_n/\mathbb{C}^{\times}$ by

$$(z_1,\ldots z_n)\mapsto f(z,w):=\prod_{i=1}^n(z-z_iw).$$

Here, if $z_i = \infty$, we interpret the factor $z - z_i w$ as -w. An inverse is given as follows: factor $f(z, w) = w^m g(z, w)$ for some m so that g(z, w) is indivisible by w. Then map f to the *n*-tuple consisting of m points at ∞ , along with the n - m roots in \mathbb{C} of g(z, 1) (which is of degree n - m).

The Fox-Neuwirth cell decomposition of $Conf_n(\mathbb{C})$

We will describe¹ the results of [FN62] (see also [GS12]) which give a decomposition of $\operatorname{Conf}_n(\mathbb{R}^m)$ into spaces homeomorphic to Euclidean spaces. This does not give a cell-decomposition of $\operatorname{Conf}_n(\mathbb{R}^m)$, but rather of its 1-point compactification. We will restrict our focus to the case m = 2 (i.e., $\operatorname{Conf}_n(\mathbb{C})$), and encourage the interested reader to extend these constructions to m > 2.

An ordered partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ of n has $\sum \lambda_i = n$. With apologies to the combinatorialists present, we will write $k = |\lambda|$ for the number of *parts* of λ . The n^{th} symmetric product $\text{Sym}_n(\mathbb{R})$ of the real line has a stratification by these partitions:

$$\operatorname{Sym}_n(\mathbb{R}) = \coprod_{\lambda \vdash n} \operatorname{Sym}_{\lambda}(\mathbb{R})$$

where elements of $\text{Sym}_{\lambda}(\mathbb{R})$ consist of $|\lambda|$ distinct points $x_1, \ldots x_{|\lambda|}$, the i^{th} of which has multiplicity λ_i . Further, since \mathbb{R} is ordered, we insist that $x_1 < \cdots < x_{|\lambda|}$. This space is evidently homeomorphic to $\text{Conf}_{|\lambda|}(\mathbb{R})$, which is in turn homeomorphic to $\mathbb{R}^{|\lambda|}$, as shown above.

Define a map π : $\operatorname{Conf}_n(\mathbb{C}) \to \operatorname{Sym}_n(\mathbb{R})$ by taking real parts:

$$\pi(z_1,\ldots,z_n)=(\Re(z_1),\ldots,\Re(z_n)),$$

and let $\operatorname{Conf}_{\lambda}(\mathbb{C})$ denote the preimage of $\operatorname{Sym}_{\lambda}(\mathbb{R})$ under π . This subspace is homeomorphic to

$$\operatorname{Sym}_{\lambda}(\mathbb{R}) \times \prod_{i=1}^{|\lambda|} \operatorname{Conf}_{\lambda_i}(\mathbb{R}),$$

¹This discussion is taken from a forthcoming paper which is joint with TriThang Tran; the results described are not original to us, although the presentation is. I suppose that I don't feel too much shame in plagiarizing myself when summarizing someone else's work.

where the configuration factors record the imaginary part of the configuration of λ_i points lying over the i^{th} term in the set of the real coordinates of \underline{z} . We again employ the fact that $\operatorname{Conf}_k(\mathbb{R}) \cong \mathbb{R}^k$ and conclude that $\operatorname{Conf}_{\lambda}(\mathbb{C}) \cong \mathbb{R}^{n+|\lambda|}$.

Proposition 5. The collection of subspaces $\text{Conf}_{\lambda}(\mathbb{C})$ forms a cellular decomposition of the 1point compactification $\text{Conf}_n(\mathbb{C}) \cup \{\infty\}$; the cells of dimension d are indexed by those partitions λ with $n + |\lambda| = d$. Furthermore, the closure of the cell $\text{Conf}_{\lambda}(\mathbb{C})$ is the union

$$\overline{\operatorname{Conf}_{\lambda}(\mathbb{C})} = \coprod_{\rho} \operatorname{Conf}_{\rho}(\mathbb{C})$$

over ordered partitions ρ which are refined by λ .

We must explain the last comment. Loosely speaking, the boundaries of the cell described above occur in two ways. First, points in a configuration may approach each other or $\pm i\infty$ along vertical lines (in which case their boundary is the point at infinity). Secondly, the i^{th} and $i + 1^{\text{st}}$ vertical columns of configurations may approach each other horizontally, in which case the associated component of the boundary is given in terms of the cell $\operatorname{Conf}_{\rho}(\mathbb{C})$, where ρ is obtained from λ by summing λ_i and λ_{i+1} .

It is worth noting that, other than $\{\infty\}$, there are no cells of dimension less than or equal to n in this decomposition. Therefore, we have

Corollary 6. For $* \ge n$,

$$H_* \operatorname{Conf}_n(\mathbb{C}) \cong H_c^{2n-*} \operatorname{Conf}_n(\mathbb{C}) = H^{2n-*} (\operatorname{Conf}_n(\mathbb{C}) \cup \{\infty\}, \{\infty\}) = 0$$

There are more computational proofs of this fact that rely on our previous computation of the homology of $PConf_n(\mathbb{C})$, though perhaps none quite as enlightening. In any case, this follows from the cellular decomposition and the following exercise:

Exercise 7. Conf_n(\mathbb{C}) is a 2*n*-dimensional, oriented, non-compact manifold.

A word of warning: there are 2^{n-1} ordered partitions of n, so this is not the most efficient approach to computing $H_* \operatorname{Conf}_n(\mathbb{C})$ as n grows.

References

- [FN62] R. Fox and L. Neuwirth, The braid groups, Math. Scand. 10 (1962), 119–126. MR 0150755 (27 #742)
- [GS12] Chad Giusti and Dev Sinha, Fox-Neuwirth cell structures and the cohomology of symmetric groups, Configuration spaces, CRM Series, vol. 14, Ed. Norm., Pisa, 2012, pp. 273-298. MR 3203643